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Rationale

General Relativity should obey the following principles:

@ Action Principle: The fundamental laws of nature should follow from
action principles

@ General Principle of Relativity: The form of the action principle —
and hence the resulting field equations — should be the same in any
frame of reference ~~  extended canonical transformation

© Einstein’s conclusion: “...the essential achievement of general
relativity is only indirectly connected with the introduction of a
Riemannian metric. The directly relevant conceptual element is the
‘displacement field" ", ..."

© ~~ General Relativity must emerge from an
extended canonical transformation of the I'%,,.



Relativistic field theory with variable space-time

Extended action principle, extended Lagrangian

Generalized action functional for dynamical space-time: treat x and
Ox” /Qy* as dynamical variables in the Lagrangian £

Extended action principle

o= (o

)daA&% 55 =0, 6y]yp = 0x"|yp =0

with y* the new set of independent variables and x” = x"(y)

ax0
ay0

A=

a3
ay0

o

Oy 0 3
] daa= )
s 900, y?)

a3



Relativistic field theory with variable space-time

Extended action principle, extended Lagrangian

Generalized action functional for dynamical space-time: treat x and
Ox” /Qy* as dynamical variables in the Lagrangian £

Extended action principle

o= (o

>det/\d4y, 55 =0, 6y]yp = 0x"|yp =0

with y* the new set of independent variables and x” = x"(y)
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The integrand defines the extended Lagrangian £, = LdetA
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Extended Lagrangians in field theory

Extended set of Euler-Lagrange equations

For L, the Euler-Lagrange equations adopt the usual form

0 _OLe _OLe _, 0 0Le  OLe
0 - Ox o
Iy o (de) Py Iy 9 (Wg) OxH

=0.
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Extended set of Euler-Lagrange equations

For L, the Euler-Lagrange equations adopt the usual form

0 _OLe _OLe _, 0 0Le  OLe
0 - Ox o
Iy o (de) Py Iy 9 (Wg) OxH

=0.

The derivative of L. with respect to the space-time coefficients 9x* /dy”
yields the canonical energy-momentum tensor H”Q(x)

0L, _ ,0deth = oL 5(%)det/\
o(57) o(8r) o(5w)o(5r)

oL Oy, \ dy” dy"
_ 6 _ o
= (5u[’ — 5 (glﬂ) axﬂ) e det\ = —9“ (x) Ee det A
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Example: Einstein-Hilbert Lagrangian
Example: Einstein-Hilbert Lagrangian

The Einstein equations follow from the extended Lagrangian

R 1
= = — ‘U'VR
2k 2r & T
wherein R = gt R, denotes the Riemann curvature scalar, « [Lenght]? a

coupling constant, and Ly the conventional Lagrangian of a given system.

Lern = (Lr + Lu) detA, Lr
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Example: Einstein-Hilbert Lagrangian

The Einstein equations follow from the extended Lagrangian

R 1
Le,EH — (ER + ;CM) det /\, ER — ﬂ — ﬂg#VRHV7
wherein R = g"”R,,,, denotes the Riemann curvature scalar, [Lenght]z a

coupling constant, and Ly the conventional Lagrangian of a given system.
The Ricci tensor R, = R",,, is the contraction n = 3 of the
Riemann-Christoffel curvature tensor
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Example: Einstein-Hilbert Lagrangian

The Einstein equations follow from the extended Lagrangian

R 1

['e,EH = (ﬁR + EM) det A, Lr= ﬂ 2/€ g R/W’

wherein R = gt R, denotes the Riemann curvature scalar, « [Lenght]? a
coupling constant, and Ly the conventional Lagrangian of a given system.

The Ricci tensor R, = R",,, is the contraction n = 3 of the

Riemann-Christoffel curvature tensor

arn ar’
n o _ p JS) A 77 Ao
R\ = ay8 oy + 100 s = T sl

v

In the Palatini approach, the metric and the connection coefficients are a
priori independent quantities, hence the Euler-Lagrange equations are

0 a‘Cfe,EH aACfe,EH -0 0 8Ee,EH 6ACe,EH

ayﬂa(%;)_ oxn ayﬂa(%’ég)_ ar’

=0.
af
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Example: Einstein-Hilbert Lagrangian
Remarks regarding the Einstein GR

@ The Einstein-Hilbert Lagrangian was postulated.
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Example: Einstein-Hilbert Lagrangian
Remarks regarding the Einstein GR

The Einstein-Hilbert Lagrangian was postulated.

Thus, the resulting theory is justified only inasmuch as it
complies with experimental data.

It perfectly describes the dynamics of our solar system.

It is not compatible with the observed dynamics of remote galaxies.
Possible solutions:

@ Introduce fictitious dark matter / dark energy to fit the observed
dynamics to the dynamics following from Einstein’s equations.
So far, dark matter / dark energy have not been identified.

@ Consider an alternative GR that has the Einstein GR as the weak
gravitational field limit. A reasonable candidate emerges from an
extended gauge theory that provides a form-invariant Lagrangian
of GR in analogy to the Yang-Mills theory.

@ For option @ we need to set up a particular canonical transformation
in the extended Hamiltonian formalism of classical field theory.
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Extended Hamiltonians in field theory

Extended (covariant) Hamiltonian

Corresponding to the 7', the tensor densities 7}’ = 7}’ det A are defined
as the dual quantities of the derivatives of the fields for ext. Lagrangians

m'(x) = ma T (y) = W-
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Extended Hamiltonians in field theory

Extended (covariant) Hamiltonian

Corresponding to the 7', the tensor densities 7}’ = 7}’ det A are defined
as the dual quantities of the derivatives of the fields for ext. Lagrangians

oL . oL
7T7L(X) = @, 7TfL(y) = (9((;%-

Similarly, the canonical variables t,# define the dual quantity to dx”/dy*

~ 0L = ay*  « oyH
tleu = - = Qa/‘(y) = ua(x) aoa”
P ( g;:) Ox¥ ox

An extended Lagrangian £, = Ldet A is thus Legendre-transformed to the

Extended Hamiltonian He

He :Hdet/\—faﬂgiﬁ & He=(H—0,%)detA.
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This condition implies that the integrands may differ by the divergence of
a vector field F' with 6F} |sprr =0
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Extended canonical transformations

Form-invariance for the extended action principle

The extended action principle must be maintained for extended canonical
transformations that also map x* — X, ¢ # s T H

Condition for extended canonical transformations

— d*y.
8y B gy e} o/

This condition implies that the integrands may differ by the divergence of
a vector field F' with 6F} |sprr =0

oxP L ow, . oxP o
NQa/I;Z)I taai_He: ?&_Tﬁaa B 8]:1
oy™ oy®
Fi' may be defined to depend on ¢, W/, x¥, and X" only.
This defines the extended generating function of type F}'

Fi' = Fy (v, x7, XY).




Extended canonical transformations

Transformation rules for a generating function F}'
The divergence of a vector function F1' (¢, Wy, x”, XV) is

OFy _ OFf 00y | OFy 0V, OFf 0x’  OF oX°
Oy — Oy Oy® = OV, Oy®  OxP dy> ~ 9XB gy>’
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Transformation rules for a generating function F}'
The divergence of a vector function F1' (¢, Wy, x”, XV) is

OFy _ OFf 00y | OFy 0V, OFf 0x’  OF oX°
Oy — Oy Oy® = OV, Oy®  OxP dy> ~ 9XB gy>’

Comparing the coefficients with the integrand condition yields the

Transformation rules for a generating function '

OFy

oy’

The second derivatives of the generating function F}' yield the
symmetry relations for canonical transformations from F}'

- . oFt . . oFt
=221 fp— 271 fu_ 201 ! =He.
I 8\“[’ 14 8XV7 v 8XV7 %e H

Sp
7TI =

ox  O2F} __8ﬁ‘j of » PFY _aTau

oV, ooV, Yy’ oxXe — 9xvaXe  Oxv
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Extended generating function of type F4
By means of a Legendre transformation

FY @by, O x7, TRy = Fi(r, Wy, x7, XY) + Wil — XOT, -,
an equivalent set of transformation rules is encountered, hence the

Rules for an extended generating function F

OFY OFy . OFY OFY
~p 2,‘]»’(5: ~27tu:_ 2,Xa(5M=— ~2,Hl H
4y 81/1/ 19y al—lll, v OxV v aTaV @o
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Extended generating function of type F4
By means of a Legendre transformation

FY @by, O x7, TRy = Fi(r, Wy, x7, XY) + Wil — XOT, -,
an equivalent set of transformation rules is encountered, hence the

Rules for an extended generating function F

Symmetry relations for F4":

OFf _ OPF 5,0V, ot,"  PFy  0Xxe

ofty — ayofiy Y ov 9T,y oxPoaT,r Y oxP’

11/23



Concept of extended gauge theory

In Yang-Mills theories, gauge fields axy,, had to be introduced to convert a
system that is form-invariant under a global transformation group
W, = uyy1y into a locally form-invariant system when uy; = ujy(x).
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Inhomogeneous transformation rule for gauge bosons

1 8UK/
Akyp = Uk api, upy + E Dxl ujy-

We now set up the gauge formalism in order to convert a Lorentz-invariant
system into a locally form-invariant system under a general metric.

The connection coefficients r"a5 act as gauge fields that convert a global
(Lorentz) form-invariance into a local one under a transition x* — X*.

Switching between general, non-inertial reference frames x* — X* requires
inhomogeneous transformation rule for the connection coefficients
Ox' OxI X" 9?xk axn
rnaf(X) = Vkij(x) Tt k-
OX> OXE Ox OX*OXE dx
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General Relativity as an extended canonical gauge theory

General space-time transformation

General principle of relativity means:

The description of physics must be form-invariant under the transition

to another, possibly non-inertial frame of reference.

For a physical theory derived from an action principle,

the principle must be maintained in its form.

~» The transition must be a canonical transformation, hence must be
described by a generating function in the Hamiltonian formalism.

The generating function is set up to yield the required transformation

rule for the connection coefficients 777&5.

The canonical transformation formalism yields simultaneously the

rules for for their conjugates, Fnag“, and for the Hamiltonian.

The transformation rule for the Hamiltonian then uniquely defines

the particular Hamiltonian that is form-invariant under the given

transformation rule 7" (x) = "¢ (X).
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B )
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General Relativity as an extended canonical gauge theory

Generating function for the CT 7" (x) —

V)= T, ()
ok OXM Ox" OxI

‘7:5(7”&5 7R>17a§1/a Xav 7-a

rnaf (X)

oxX"

~ 8)/“
ag

ax> \ | ¥ axk 9x« oX¢

82 k
oKk amaxf)

The subsequent transformation rules are:

Mg — OFy OXH L OXT OxT oxI oXn 9%xk
o€ T ok 8 yn W\ T T axk 9Xa axE T Oxk aX0XE
i OFEOX o onOXT OX 06 O OFE
KT oak oy axk axa oxEaxy T :
- OFy = L O
=22 _fou
t, OxV @ aXV
P afx oy" OX" Ox Ox N 9 [OX" §2xk
Ry ax |’ Uax” Oxk OX 9X& Oxv \ Oxk 9X*9X¢
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General Relativity as an extended canonical gauge theory

Space-time transformation in classical vacuum

We observe:
@ The required transformation rule for the connection coefficients 7"066
is reproduced.
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General Relativity as an extended canonical gauge theory

Space-time transformation in classical vacuum

We observe:
@ The required transformation rule for the connection coefficients 7"a£
is reproduced.
@ The formally introduced quantity Fno‘g“ transforms as a tensor!
@ The canonical formalism also defines the transformation rule for the
Hamiltonians, namely

X8 B
Ho=H, o Hdeth —Hdeth= T, o X

dy~
The transformation rule for the Hamiltonian is unambiguously given by
OPX" Ox¥ Ox' OxI
Oxkoxv OXr oX> oX¢&
Pxt oX" Ox 9Pxi X" Ox'
T aXaoxk oxk 9XE T aXEOXH DXk axa)
PX"  92xk oxv 93xk ox"n
Oxkox” DXTOXE OXE | DXaDXEDXH axk}

H'det ' — H det A = R % {yk,.j (
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General Relativity as an extended canonical gauge theory

Transformation rule for the Hamiltonian

Recipe to derive the physical Hamiltonian

The task is now to express all derivatives of the X* and x* in terms of the
connection coefficients fy"ag and F"ag, and their conjugates, ?,7“5“ and
IN?,]“f“ according to the 1st and 2nd canonical transformation rules.
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Recipe to derive the physical Hamiltonian

The task is now to express all derivatives of the X* and x* in terms of the
connection coefficients fy"ag and F"ag, and their conjugates, ?naéu and

IN?,]af“ according to the 1st and 2nd canonical transformation rules.

Remarkably, this works perfectly. The result is:
ore o

ap i n i n
axr T axe e it Nanl e

n
7 agp <67 ag , 9oy

H' det N' — H det A = 1R, *¥ (

N =

i n i n
" OxH + oxé Tag? in TV ap? i&)
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connection coefficients fy"ag and F"ag, and their conjugates, Fnaéu and

IN?,]af“ according to the 1st and 2nd canonical transformation rules.

Remarkably, this works perfectly. The result is:

n
H'det N' — HdetA = 3R, ° il a§+ar T Y A A
2 oXH T 9XE agl ip T apl ie
oy oy" . .
1z ¢
" < 3><Z + 8xcéw =V i+ Va7 e

@ The terms emerge in a symmetric form in the original and the
transformed dynamical variables.
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General Relativity as an extended canonical gauge theory

Transformation rule for the Hamiltonian

Recipe to derive the physical Hamiltonian

The task is now to express all derivatives of the X* and x* in terms of the
connection coefficients fy"ag and F”ag, and their conjugates, Fnaéu and

IN?,]‘*f“ according to the 1st and 2nd canonical transformation rules.

Remarkably, this works perfectly. The result is:

n
H'det N' — HdetA = 3R, ° il a§+ar T Y A A
2 oXm  OXE of ! ip T anl i
oy oy" . .
1~ o ap
25 < axk T oxE Voe Vi T Vau e

@ The terms emerge in a symmetric form in the original and the
transformed dynamical variables.
@ ~~ We encounter unambiguously the particular Hamiltonian that
is form-invariant under the transformation of the connection

coefficients.
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Final form-invariant Hamiltonian

Similar to conventional gauge theory, the final form-invariant Hamiltonian
must contain in addition a dynamics term

/ — _1p agupn — _ 1z afu,n
e, dyn — 4R77 R afp? He,dyn - 4r77 r alp”
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Similar to conventional gauge theory, the final form-invariant Hamiltonian
must contain in addition a dynamics term
/ — _1p agupn — _ 1z afp,n
e, dyn — 4R17 R abp? He,dyn - 4r77 r alp”
’e7dyn = He,dyn mMust hold in order for the final extended Hamiltonians to
maintain the required transformation rule H, = He.

This is ensured if det A’ = det A, hence if h*(x) in F} satisfies
o(X%.... X3  9(h(x),...,R(x))

O(x%...,x3)  9(x9,...,x3)

=1
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Final form-invariant Hamiltonian

Similar to conventional gauge theory, the final form-invariant Hamiltonian
must contain in addition a dynamics term

/ — _1p agupn — _ 1z afu,n
e, dyn — 4R17 R abp? He,dyn - 4r77 r alp”
/ _ . , I
e.dyn = He,dyn must hold in order for the final extended Hamiltonians to

maintain the required transformation rule H, = He.
This is ensured if det A’ = det A, hence if h*(x) in F} satisfies

O(X%....X3)  0(h(x),...,n(x)) 1
o(x%...,x3) — a(x%...,x3) 7
The final form-invariant extended Hamiltonian that is compatible with the
canonical transformation rules now writes for the x reference frame
OXY 1 aen
oyP 27" ag
oy 0y
5 Qg ap af k n_ .k .m
rﬂ“#( axg + IxH _'_’Y a,u’y 43 ’YQS’Y ku

He,GR (?a e %) = _%0/8

N[

+
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First canonical equation

The canonical equation for the connection coefficients follows as
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Riemann curvature tensor
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Solved for r"agu one finds exactly the representation of the

Riemann curvature tensor
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n _ 9 R
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Magn = IxE IxH TV anY ke =V 0tV kp

It is manifestly skew-symmetric in the indices £ and .
We observe:

@ The quantity r"aéu — that was formally introduced setting up the
generating function 4" — turns out to be the Riemann tensor.

@ The CT requirement for r"agu to constitute a tensor is satisfied.
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General Relativity as an extended canonical gauge theory

Second canonical equation

The second canonical equation follows as

8? TOOQ 8’H GR . ~
Ka = - ‘2 :7ﬁnar,BTUa_7Ta,Brn
Ox Mg

ﬁaoa'
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Second canonical equation

The second canonical equation follows as

8FKTUQ _ _8H67GR _ B FTOQ T % Boa
Ox - af)ﬁro- =Y kals Y apls :

This equation is actually a tensor equation
(;ﬁfaa);a _ ,YUQB;HT/BQ

= % (’7004,8 - ’)/O-/Ba) FHTBQ
TBa

— O >
=S aﬁrn

with s"aﬁ the torsion tensor.
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General Relativity as an extended canonical gauge theory

Second canonical equation

The second canonical equation follows as

87:%7—0'0( B _8He7GR _ B # Too T ¥ Boa
Ix - af)ﬁro- =Y kals Y apls :

This equation is actually a tensor equation
Ba

(FNTUa);a = ’7004,8?&7
= % (’7004,8 - ’)/O-/Ba) FHTBQ
TBa

EpNe >
_Saﬁrn

with s"aﬁ the torsion tensor.

~> For a torsion-free space-time, the canonical equation states that
the covariant divergence of the Riemann tensor vanishes

(rnTUa);a =0. J
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General Relativity as an extended canonical gauge theory

Form-invariant extended Lagrangian L. gr

: n
With r at

u expressed in terms of the 4", , and their derivatives, the

extended Lagrangian L. cr can be set up as the Legendre transform

Form-invariant extended Lagrangian in classical vacuum

n
7 akp 8’}/ af

2 Bax

LeGR <’Y77 afynaé 8Xﬂ) =

& Gxv 7 Py T OxH
1y aéu n 15 atu [ 9V on
4'n afp 27 IxE

_ 9
OxH

aaﬂ

- He,GR

k k
+ a,u’ynkg -7 aEfynk‘u>
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General Relativity as an extended canonical gauge theory

Form-invariant extended Lagrangian L. gr
With rnagﬂ expressed in terms of the 4", , and their derivatives, the
extended Lagrangian L. cr can be set up as the Legendre transform

Form-invariant extended Lagrangian in classical vacuum

" OxH " Ox“
n af _zoafp_ € 7 p _
LeGR (’Y o€ gxr ayr | i e t, 9y? He,GR

Ny 07"
_ 1= Y] 1= ap af k m k m
= Zrnagu M agp 2rna@< ox€  Oxh TV o ke =V 0V kp

~+ Le¢ R is a particular quadratic function of the Riemann tensor.
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@ The gauge principle can be applied as well to theories that are
(globally) form-invariant under Lorentz transformations

@ The theories can be rendered form-invariant under the corresponding
local group by introducing connection coefficients 'Ynag as the
respective gauge quantities.

@ The canonical formalism yields unambiguously a Hamiltonian
that describes the dynamics of the “displacement fields” 7"af.

@ The resulting theories maintain the

e action principle

e general principle of relativity

e principle of scale invariance, hence the theories are form-invariant
under transformations of the length scales of the space-time manifold.
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Conclusions

Conclusions Il

@ The theories are unambiguous in the sense that no other functions
of the Riemann tensor emerge from the canonical transformation
formalism.

@ In contrast to standard GR that is based on the postulated Einstein-
Hilbert action, the Lagrangian L gr is derived.

@ For the source-free case (L) = 0), the theories are compatible with
standard GR as they possess the Schwarzschild metric as a solution.
For Ly # 0, the solutions differ from that of standard GR.

@ A quantized theory that is based on the Lagrangian L. gr is
renormalizable as the coupling constant to £y is dimensionless.

Remarkably, a Lagrangian of the derived form that is quadratic in the
curvature tensor was already proposed by A. Einstein in a personal letter
to H. Weyl, reasoning analogies with other classical field theories.
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