General Relativity from Basic Principles General Relativity as an Extended Canonical Gauge Theory

Jürgen Struckmeier

GSI Helmholtzzentrum für Schwerionenforschung GmbH, Darmstadt, Germany j.struckmeier@gsi.de, web-docs.gsi.de/~struck

Goethe Universität, Frankfurt am Main, Germany

STARS 2015

Third Caribbean Symposium on Cosmology, Gravitation, Nuclear and Astroparticle Physics

La Habana, Cuba, 10 – 13 May 2015

Relativistic field theory with variable space-time

- Extended Lagrangians in field theory
 Example: Einstein-Hilbert Lagrangian
- 3 Extended Hamiltonians in field theory
- Extended canonical transformations
- 5 General Relativity as an extended canonical gauge theory

- Relativistic field theory with variable space-time
- Extended Lagrangians in field theory
 Example: Einstein-Hilbert Lagrangian
 - 3 Extended Hamiltonians in field theory
 - Extended canonical transformations
 - 5 General Relativity as an extended canonical gauge theory

- Relativistic field theory with variable space-time
- Extended Lagrangians in field theory
 Example: Einstein-Hilbert Lagrangian
- Extended Hamiltonians in field theory
 - Extended canonical transformations
 - 5 General Relativity as an extended canonical gauge theory

- Relativistic field theory with variable space-time
- Extended Lagrangians in field theory
 Example: Einstein-Hilbert Lagrangian
- Extended Hamiltonians in field theory
 - Extended canonical transformations
 - General Relativity as an extended canonical gauge theory

- Relativistic field theory with variable space-time
- Extended Lagrangians in field theory
 Example: Einstein-Hilbert Lagrangian
- Extended Hamiltonians in field theory
 - Extended canonical transformations
- 5 General Relativity as an extended canonical gauge theory

- Relativistic field theory with variable space-time
- Extended Lagrangians in field theory
 Example: Einstein-Hilbert Lagrangian
 - 3 Extended Hamiltonians in field theory
 - Extended canonical transformations
- 5 General Relativity as an extended canonical gauge theory

- Action Principle: The fundamental laws of nature should follow from action principles
- General Principle of Relativity: The form of the action principle and hence the resulting field equations — should be the same in any frame of reference ~ extended canonical transformation
- Einstein's conclusion: "... the essential achievement of general relativity is only indirectly connected with the introduction of a Riemannian metric. The directly relevant conceptual element is the 'displacement field' Γ^α_{µν}...."

- Action Principle: The fundamental laws of nature should follow from action principles
- ② General Principle of Relativity: The form of the action principle and hence the resulting field equations — should be the same in any frame of reference → extended canonical transformation
- Sinstein's conclusion: "... the essential achievement of general relativity is only indirectly connected with the introduction of a Riemannian metric. The directly relevant conceptual element is the 'displacement field' Γ^α_{µν}..."
- \hookrightarrow General Relativity must emerge from an extended canonical transformation of the $\Gamma^{\alpha}_{\ \mu\nu}$.

- Action Principle: The fundamental laws of nature should follow from action principles
- General Principle of Relativity: The form of the action principle and hence the resulting field equations — should be the same in any frame of reference ~ extended canonical transformation
- Sinstein's conclusion: "... the essential achievement of general relativity is only indirectly connected with the introduction of a Riemannian metric. The directly relevant conceptual element is the 'displacement field' Γ^α_{µν}..."
- \hookrightarrow General Relativity must emerge from an extended canonical transformation of the $\Gamma^{\alpha}_{\ \mu\nu}$.

- Action Principle: The fundamental laws of nature should follow from action principles
- General Principle of Relativity: The form of the action principle and hence the resulting field equations — should be the same in any frame of reference ~ extended canonical transformation
- Sinstein's conclusion: "... the essential achievement of general relativity is only indirectly connected with the introduction of a Riemannian metric. The directly relevant conceptual element is the 'displacement field' Γ^α_{µν}..."
- \rightsquigarrow General Relativity must emerge from an extended canonical transformation of the $\Gamma^{\alpha}_{\ \mu\nu}$.

- Action Principle: The fundamental laws of nature should follow from action principles
- General Principle of Relativity: The form of the action principle and hence the resulting field equations — should be the same in any frame of reference ~ extended canonical transformation
- Sinstein's conclusion: "... the essential achievement of general relativity is only indirectly connected with the introduction of a Riemannian metric. The directly relevant conceptual element is the 'displacement field' Γ^α_{µν}..."
- \hookrightarrow General Relativity must emerge from an extended canonical transformation of the $\Gamma^{\alpha}_{\ \mu\nu}$.

Extended action principle, extended Lagrangian

Generalized action functional for dynamical space-time: treat x^{ν} and $\partial x^{\nu}/\partial y^{\mu}$ as dynamical variables in the Lagrangian \mathcal{L}

Extended action principle

$$S = \int_{\mathcal{R}'} \mathcal{L}\left(\psi_I, \frac{\partial \psi_I}{\partial x^{\nu}}, x\right) \det \Lambda \, \mathrm{d}^4 y, \quad \delta S \stackrel{!}{=} 0, \quad \delta \psi_I \big|_{\partial \mathcal{R}'} = \delta x^{\mu} \big|_{\partial \mathcal{R}'} \stackrel{!}{=} 0$$

with y^{μ} the new set of independent variables and $x^{
u} = x^{
u}(y)$

$$\Lambda = \begin{pmatrix} \frac{\partial x^0}{\partial y^0} & \cdots & \frac{\partial x^0}{\partial y^3} \\ \vdots & \ddots & \vdots \\ \frac{\partial x^3}{\partial y^0} & \cdots & \frac{\partial x^3}{\partial y^3} \end{pmatrix}, \qquad \det \Lambda = \frac{\partial (x^0, \dots, x^3)}{\partial (y^0, \dots, y^3)} \neq 0.$$

The integrand defines the extended Lagrangian $\mathcal{L}_{\mathrm{e}}=\mathcal{L}\,\mathsf{det}\,\mathsf{\Lambda}$

$$\mathcal{L}_{e}\left(\psi_{I}(y),\frac{\partial\psi_{I}(y)}{\partial y^{\mu}},x^{\nu}(y),\frac{\partial x^{\nu}(y)}{\partial y^{\mu}}\right) = \mathcal{L}\left(\psi_{I}(y),\frac{\partial y^{\alpha}}{\partial x^{\mu}}\frac{\partial\psi_{I}(y)}{\partial y^{\alpha}},x^{\nu}(y)\right)\det\Lambda$$

Extended action principle, extended Lagrangian

Generalized action functional for dynamical space-time: treat x^{ν} and $\partial x^{\nu}/\partial y^{\mu}$ as dynamical variables in the Lagrangian \mathcal{L}

Extended action principle

$$S = \int_{\mathcal{R}'} \mathcal{L}\left(\psi_I, \frac{\partial \psi_I}{\partial x^{\nu}}, x\right) \det \Lambda \, \mathrm{d}^4 y, \quad \delta S \stackrel{!}{=} 0, \quad \delta \psi_I \big|_{\partial \mathcal{R}'} = \delta x^{\mu} \big|_{\partial \mathcal{R}'} \stackrel{!}{=} 0$$

with y^{μ} the new set of independent variables and $x^{
u} = x^{
u}(y)$

$$\Lambda = \begin{pmatrix} \frac{\partial x^0}{\partial y^0} & \cdots & \frac{\partial x^0}{\partial y^3} \\ \vdots & \ddots & \vdots \\ \frac{\partial x^3}{\partial y^0} & \cdots & \frac{\partial x^3}{\partial y^3} \end{pmatrix}, \qquad \det \Lambda = \frac{\partial (x^0, \dots, x^3)}{\partial (y^0, \dots, y^3)} \neq 0.$$

The integrand defines the extended Lagrangian $\mathcal{L}_{\rm e} = \mathcal{L}\,\text{det}\,\Lambda$

$$\mathcal{L}_{e}\left(\psi_{I}(y),\frac{\partial\psi_{I}(y)}{\partial y^{\mu}},x^{\nu}(y),\frac{\partial x^{\nu}(y)}{\partial y^{\mu}}\right)=\mathcal{L}\left(\psi_{I}(y),\frac{\partial y^{\alpha}}{\partial x^{\mu}}\frac{\partial\psi_{I}(y)}{\partial y^{\alpha}},x^{\nu}(y)\right)\det\Lambda$$

Extended set of Euler-Lagrange equations

For $\mathcal{L}_{e}\text{,}$ the Euler-Lagrange equations adopt the usual form

$$\frac{\partial}{\partial y^{\alpha}} \frac{\partial \mathcal{L}_{\mathrm{e}}}{\partial \left(\frac{\partial \psi_{I}}{\partial y^{\alpha}}\right)} - \frac{\partial \mathcal{L}_{\mathrm{e}}}{\partial \psi_{I}} = 0, \qquad \frac{\partial}{\partial y^{\alpha}} \frac{\partial \mathcal{L}_{\mathrm{e}}}{\partial \left(\frac{\partial x^{\mu}}{\partial y^{\alpha}}\right)} - \frac{\partial \mathcal{L}_{\mathrm{e}}}{\partial x^{\mu}} = 0.$$

The derivative of \mathcal{L}_{e} with respect to the space-time coefficients $\partial x^{\mu}/\partial y^{\nu}$ yields the canonical energy-momentum tensor $\theta_{\mu}^{\ \alpha}(x)$

$$\begin{aligned} \frac{\partial \mathcal{L}_{e}}{\partial \left(\frac{\partial x^{\mu}}{\partial y^{\nu}}\right)} &= \mathcal{L} \frac{\partial \det \Lambda}{\partial \left(\frac{\partial x^{\mu}}{\partial y^{\nu}}\right)} + \frac{\partial \mathcal{L}}{\partial \left(\frac{\partial \psi_{I}}{\partial x^{\alpha}}\right)} \frac{\partial \left(\frac{\partial \psi_{I}}{\partial x^{\alpha}}\right)}{\partial \left(\frac{\partial \psi_{I}}{\partial y^{\nu}}\right)} \det \Lambda \\ &= \left(\delta^{\alpha}_{\mu} \mathcal{L} - \frac{\partial \mathcal{L}}{\partial \left(\frac{\partial \psi_{I}}{\partial x^{\alpha}}\right)} \frac{\partial \psi_{I}}{\partial x^{\mu}}\right) \frac{\partial y^{\nu}}{\partial x^{\alpha}} \det \Lambda = -\theta^{\alpha}_{\mu}(x) \frac{\partial y^{\nu}}{\partial x^{\alpha}} \det \Lambda \end{aligned}$$

Extended set of Euler-Lagrange equations

For $\mathcal{L}_{e},$ the Euler-Lagrange equations adopt the usual form

$$\frac{\partial}{\partial y^{\alpha}}\frac{\partial \mathcal{L}_{\mathrm{e}}}{\partial \left(\frac{\partial \psi_{I}}{\partial y^{\alpha}}\right)} - \frac{\partial \mathcal{L}_{\mathrm{e}}}{\partial \psi_{I}} = 0, \qquad \frac{\partial}{\partial y^{\alpha}}\frac{\partial \mathcal{L}_{\mathrm{e}}}{\partial \left(\frac{\partial x^{\mu}}{\partial y^{\alpha}}\right)} - \frac{\partial \mathcal{L}_{\mathrm{e}}}{\partial x^{\mu}} = 0.$$

The derivative of \mathcal{L}_{e} with respect to the space-time coefficients $\partial x^{\mu}/\partial y^{\nu}$ yields the canonical energy-momentum tensor $\theta_{\mu}^{\ \alpha}(x)$

$$\begin{aligned} \frac{\partial \mathcal{L}_{e}}{\partial \left(\frac{\partial x^{\mu}}{\partial y^{\nu}}\right)} &= \mathcal{L}\frac{\partial \det \Lambda}{\partial \left(\frac{\partial x^{\mu}}{\partial y^{\nu}}\right)} + \frac{\partial \mathcal{L}}{\partial \left(\frac{\partial \psi_{I}}{\partial x^{\alpha}}\right)} \frac{\partial \left(\frac{\partial \psi_{I}}{\partial x^{\alpha}}\right)}{\partial \left(\frac{\partial \psi_{I}}{\partial y^{\nu}}\right)} \det \Lambda \\ &= \left(\delta^{\alpha}_{\mu}\mathcal{L} - \frac{\partial \mathcal{L}}{\partial \left(\frac{\partial \psi_{I}}{\partial x^{\alpha}}\right)} \frac{\partial \psi_{I}}{\partial x^{\mu}}\right) \frac{\partial y^{\nu}}{\partial x^{\alpha}} \det \Lambda = -\theta^{\alpha}_{\mu}(x) \frac{\partial y^{\nu}}{\partial x^{\alpha}} \det \Lambda \end{aligned}$$

Example: Einstein-Hilbert Lagrangian

The Einstein equations follow from the extended Lagrangian

$$\mathcal{L}_{ ext{e,EH}} = (\mathcal{L}_R + \mathcal{L}_{ ext{M}}) \det \Lambda, \qquad \mathcal{L}_R = rac{R}{2\kappa} = rac{1}{2\kappa} \, g^{\mu
u} R_{\mu
u},$$

wherein $R = g^{\mu\nu}R_{\mu\nu}$ denotes the Riemann curvature scalar, κ [Lenght]² a coupling constant, and \mathcal{L}_{M} the conventional Lagrangian of a given system.

The Ricci tensor $R_{\mu\nu} = R^{\eta}_{\ \mu\eta\nu}$ is the contraction $\eta = \beta$ of the

Riemann-Christoffel curvature tensor

$$R^{\eta}_{\ \mu\beta\nu} = \frac{\partial\Gamma^{\eta}_{\mu\nu}}{\partial y^{\beta}} - \frac{\partial\Gamma^{\eta}_{\mu\beta}}{\partial y^{\nu}} + \Gamma^{\lambda}_{\ \mu\nu}\Gamma^{\eta}_{\ \lambda\beta} - \Gamma^{\lambda}_{\ \mu\beta}\Gamma^{\eta}_{\ \lambda\nu}.$$

In the Palatini approach, the metric and the connection coefficients are *a priori* independent quantities, hence the Euler-Lagrange equations are

$$\frac{\partial}{\partial y^{\beta}}\frac{\partial \mathcal{L}_{\mathrm{e,EH}}}{\partial \left(\frac{\partial x^{\mu}}{\partial y^{\beta}}\right)} - \frac{\partial \mathcal{L}_{\mathrm{e,EH}}}{\partial x^{\mu}} = 0, \qquad \frac{\partial}{\partial y^{\beta}}\frac{\partial \mathcal{L}_{\mathrm{e,EH}}}{\partial \left(\frac{\partial \Gamma^{\eta}}{\partial y^{\beta}}\right)} - \frac{\partial \mathcal{L}_{\mathrm{e,EH}}}{\partial \Gamma^{\eta}_{\alpha\xi}} = 0.$$

Example: Einstein-Hilbert Lagrangian

The Einstein equations follow from the extended Lagrangian

$$\mathcal{L}_{ ext{e,EH}} = (\mathcal{L}_R + \mathcal{L}_{ ext{M}}) \det \Lambda, \qquad \mathcal{L}_R = rac{R}{2\kappa} = rac{1}{2\kappa} \, g^{\mu
u} R_{\mu
u},$$

wherein $R = g^{\mu\nu}R_{\mu\nu}$ denotes the Riemann curvature scalar, κ [Lenght]² a coupling constant, and \mathcal{L}_{M} the conventional Lagrangian of a given system. The Ricci tensor $R_{\mu\nu} = R^{\eta}_{\ \mu\eta\nu}$ is the contraction $\eta = \beta$ of the

Riemann-Christoffel curvature tensor

$$R^{\eta}_{\ \mu\beta\nu} = \frac{\partial\Gamma^{\eta}_{\mu\nu}}{\partial y^{\beta}} - \frac{\partial\Gamma^{\eta}_{\ \mu\beta}}{\partial y^{\nu}} + \Gamma^{\lambda}_{\ \mu\nu}\Gamma^{\eta}_{\ \lambda\beta} - \Gamma^{\lambda}_{\ \mu\beta}\Gamma^{\eta}_{\ \lambda\nu}.$$

In the Palatini approach, the metric and the connection coefficients are *a priori* independent quantities, hence the Euler-Lagrange equations are

$$\frac{\partial}{\partial y^{\beta}} \frac{\partial \mathcal{L}_{\mathrm{e,EH}}}{\partial \left(\frac{\partial x^{\mu}}{\partial y^{\beta}}\right)} - \frac{\partial \mathcal{L}_{\mathrm{e,EH}}}{\partial x^{\mu}} = 0, \qquad \frac{\partial}{\partial y^{\beta}} \frac{\partial \mathcal{L}_{\mathrm{e,EH}}}{\partial \left(\frac{\partial \Gamma^{\eta}}{\partial y^{\beta}}\right)} - \frac{\partial \mathcal{L}_{\mathrm{e,EH}}}{\partial \Gamma^{\eta}_{\alpha\xi}} = 0.$$

Example: Einstein-Hilbert Lagrangian

The Einstein equations follow from the extended Lagrangian

$$\mathcal{L}_{ ext{e,EH}} = (\mathcal{L}_R + \mathcal{L}_{ ext{M}}) \det \Lambda, \qquad \mathcal{L}_R = rac{R}{2\kappa} = rac{1}{2\kappa} \, g^{\mu
u} R_{\mu
u},$$

wherein $R = g^{\mu\nu}R_{\mu\nu}$ denotes the Riemann curvature scalar, κ [Lenght]² a coupling constant, and \mathcal{L}_{M} the conventional Lagrangian of a given system. The Ricci tensor $R_{\mu\nu} = R^{\eta}_{\ \mu\eta\nu}$ is the contraction $\eta = \beta$ of the

Riemann-Christoffel curvature tensor

$$R^{\eta}_{\ \mu\beta\nu} = \frac{\partial\Gamma^{\eta}_{\mu\nu}}{\partial y^{\beta}} - \frac{\partial\Gamma^{\eta}_{\mu\beta}}{\partial y^{\nu}} + \Gamma^{\lambda}_{\ \mu\nu}\Gamma^{\eta}_{\ \lambda\beta} - \Gamma^{\lambda}_{\ \mu\beta}\Gamma^{\eta}_{\ \lambda\nu}.$$

In the Palatini approach, the metric and the connection coefficients are *a priori* independent quantities, hence the Euler-Lagrange equations are

$$rac{\partial}{\partial y^{eta}}rac{\partial \mathcal{L}_{\mathrm{e,EH}}}{\partial \left(rac{\partial x^{\mu}}{\partial y^{eta}}
ight)} - rac{\partial \mathcal{L}_{\mathrm{e,EH}}}{\partial x^{\mu}} = 0, \qquad rac{\partial}{\partial y^{eta}}rac{\partial \mathcal{L}_{\mathrm{e,EH}}}{\partial \left(rac{\partial \Gamma^{\eta}}{\partial y^{eta}}
ight)} - rac{\partial \mathcal{L}_{\mathrm{e,EH}}}{\partial \Gamma^{\eta}_{\ lpha\xi}} = 0.$$

• The Einstein-Hilbert Lagrangian was postulated.

- Thus, the resulting theory is justified only inasmuch as it complies with experimental data.
- It perfectly describes the dynamics of our solar system.
- It is not compatible with the observed dynamics of remote galaxies.
- Possible solutions:
 - Introduce fictitious dark matter / dark energy to fit the observed dynamics to the dynamics following from Einstein's equations. So far, dark matter / dark energy have not been identified.
 - Consider an alternative GR that has the Einstein GR as the weak gravitational field limit. A reasonable candidate emerges from an extended gauge theory that provides a form-invariant Lagrangian of GR in analogy to the Yang-Mills theory.
- For option ② we need to set up a particular canonical transformation in the extended Hamiltonian formalism of classical field theory.

- The Einstein-Hilbert Lagrangian was postulated.
- Thus, the resulting theory is justified only inasmuch as it complies with experimental data.
- It perfectly describes the dynamics of our solar system.
- It is not compatible with the observed dynamics of remote galaxies.
- Possible solutions:
 - Introduce fictitious dark matter / dark energy to fit the observed dynamics to the dynamics following from Einstein's equations. So far, dark matter / dark energy have not been identified.
 - Consider an alternative GR that has the Einstein GR as the weak gravitational field limit. A reasonable candidate emerges from an extended gauge theory that provides a form-invariant Lagrangian of GR in analogy to the Yang-Mills theory.
- For option ② we need to set up a particular canonical transformation in the extended Hamiltonian formalism of classical field theory.

- The Einstein-Hilbert Lagrangian was postulated.
- Thus, the resulting theory is justified only inasmuch as it complies with experimental data.
- It perfectly describes the dynamics of our solar system.
- It is not compatible with the observed dynamics of remote galaxies.
- Possible solutions:
 - Introduce fictitious dark matter / dark energy to fit the observed dynamics to the dynamics following from Einstein's equations. So far, dark matter / dark energy have not been identified.
 - Consider an alternative GR that has the Einstein GR as the weak gravitational field limit. A reasonable candidate emerges from an extended gauge theory that provides a form-invariant Lagrangian of GR in analogy to the Yang-Mills theory.
- For option ② we need to set up a particular canonical transformation in the extended Hamiltonian formalism of classical field theory.

- The Einstein-Hilbert Lagrangian was postulated.
- Thus, the resulting theory is justified only inasmuch as it complies with experimental data.
- It perfectly describes the dynamics of our solar system.
- It is not compatible with the observed dynamics of remote galaxies.
- Possible solutions:
 - Introduce fictitious dark matter / dark energy to fit the observed dynamics to the dynamics following from Einstein's equations. So far, dark matter / dark energy have not been identified.
 - Consider an alternative GR that has the Einstein GR as the weak gravitational field limit. A reasonable candidate emerges from an extended gauge theory that provides a form-invariant Lagrangian of GR in analogy to the Yang-Mills theory.
- For option ② we need to set up a particular canonical transformation in the extended Hamiltonian formalism of classical field theory.

- The Einstein-Hilbert Lagrangian was postulated.
- Thus, the resulting theory is justified only inasmuch as it complies with experimental data.
- It perfectly describes the dynamics of our solar system.
- It is not compatible with the observed dynamics of remote galaxies.
- Possible solutions:
 - Introduce fictitious dark matter / dark energy to fit the observed dynamics to the dynamics following from Einstein's equations. So far, dark matter / dark energy have not been identified.
 - Consider an alternative GR that has the Einstein GR as the weak gravitational field limit. A reasonable candidate emerges from an extended gauge theory that provides a form-invariant Lagrangian of GR in analogy to the Yang-Mills theory.
- For option ② we need to set up a particular canonical transformation in the extended Hamiltonian formalism of classical field theory.

- The Einstein-Hilbert Lagrangian was postulated.
- Thus, the resulting theory is justified only inasmuch as it complies with experimental data.
- It perfectly describes the dynamics of our solar system.
- It is not compatible with the observed dynamics of remote galaxies.
- Possible solutions:
 - Introduce fictitious dark matter / dark energy to fit the observed dynamics to the dynamics following from Einstein's equations. So far, dark matter / dark energy have not been identified.
 - Consider an alternative GR that has the Einstein GR as the weak gravitational field limit. A reasonable candidate emerges from an extended gauge theory that provides a form-invariant Lagrangian of GR in analogy to the Yang-Mills theory.
- For option ② we need to set up a particular canonical transformation in the extended Hamiltonian formalism of classical field theory.

- The Einstein-Hilbert Lagrangian was postulated.
- Thus, the resulting theory is justified only inasmuch as it complies with experimental data.
- It perfectly describes the dynamics of our solar system.
- It is not compatible with the observed dynamics of remote galaxies.
- Possible solutions:
 - Introduce fictitious dark matter / dark energy to fit the observed dynamics to the dynamics following from Einstein's equations. So far, dark matter / dark energy have not been identified.
 - Consider an alternative GR that has the Einstein GR as the weak gravitational field limit. A reasonable candidate emerges from an extended gauge theory that provides a form-invariant Lagrangian of GR in analogy to the Yang-Mills theory.
- For option ② we need to set up a particular canonical transformation in the extended Hamiltonian formalism of classical field theory.

- The Einstein-Hilbert Lagrangian was postulated.
- Thus, the resulting theory is justified only inasmuch as it complies with experimental data.
- It perfectly describes the dynamics of our solar system.
- It is not compatible with the observed dynamics of remote galaxies.
- Possible solutions:
 - Introduce fictitious dark matter / dark energy to fit the observed dynamics to the dynamics following from Einstein's equations. So far, dark matter / dark energy have not been identified.
 - Consider an alternative GR that has the Einstein GR as the weak gravitational field limit. A reasonable candidate emerges from an extended gauge theory that provides a form-invariant Lagrangian of GR in analogy to the Yang-Mills theory.
- For option ② we need to set up a particular canonical transformation in the extended Hamiltonian formalism of classical field theory.

Extended (covariant) Hamiltonian

Corresponding to the π_I^{μ} , the tensor densities $\tilde{\pi}_I^{\mu} = \pi_I^{\mu} \det \Lambda$ are defined as the dual quantities of the derivatives of the fields for ext. Lagrangians

$$\pi^{\mu}_{I}(x) = rac{\partial \mathcal{L}}{\partial \left(rac{\partial \psi_{I}}{\partial x^{\mu}}
ight)}, \qquad ilde{\pi}^{\mu}_{I}(y) = rac{\partial \mathcal{L}_{\mathrm{e}}}{\partial \left(rac{\partial \psi_{I}}{\partial y^{\mu}}
ight)}.$$

Similarly, the canonical variables ${ ilde t}_
u^\mu$ define the dual quantity to $\partial x^
u/\partial y^\mu$

$$\tilde{t}_{\nu}^{\ \mu} = -\frac{\partial \mathcal{L}_{\mathrm{e}}}{\partial \left(\frac{\partial x^{\nu}}{\partial y^{\mu}}\right)} = \tilde{\theta}_{\alpha}^{\ \mu}(y) \frac{\partial y^{\alpha}}{\partial x^{\nu}} = \tilde{\theta}_{\nu}^{\ \alpha}(x) \frac{\partial y^{\mu}}{\partial x^{\alpha}}.$$

An extended Lagrangian $\mathcal{L}_{\mathrm{e}} = \mathcal{L} \, \mathsf{det} \, \Lambda$ is thus Legendre-transformed to the

Extended Hamiltonian $\mathcal{H}_{\rm e}$

$$\mathcal{H}_{\mathrm{e}} = \mathcal{H} \det \Lambda - \tilde{t}_{\alpha}^{\ \ eta} rac{\partial x^{lpha}}{\partial y^{eta}} \quad \Leftrightarrow \quad \mathcal{H}_{\mathrm{e}} = (\mathcal{H} - heta_{lpha}^{\ \ lpha}) \det \Lambda.$$

Extended (covariant) Hamiltonian

Corresponding to the π_I^{μ} , the tensor densities $\tilde{\pi}_I^{\mu} = \pi_I^{\mu} \det \Lambda$ are defined as the dual quantities of the derivatives of the fields for ext. Lagrangians

$$\pi^{\mu}_{I}(\mathbf{x}) = rac{\partial \mathcal{L}}{\partial \left(rac{\partial \psi_{I}}{\partial \mathbf{x}^{\mu}}
ight)}, \qquad ilde{\pi}^{\mu}_{I}(\mathbf{y}) = rac{\partial \mathcal{L}_{\mathrm{e}}}{\partial \left(rac{\partial \psi_{I}}{\partial \mathbf{y}^{\mu}}
ight)}.$$

Similarly, the canonical variables ${ ilde t}_
u^\mu$ define the dual quantity to $\partial x^
u/\partial y^\mu$

$$ilde{t}_{
u}{}^{\mu}=-rac{\partial\mathcal{L}_{\mathrm{e}}}{\partial\left(rac{\partial x^{
u}}{\partial y^{\mu}}
ight)}= ilde{ heta}_{lpha}{}^{\mu}(y)rac{\partial y^{lpha}}{\partial x^{
u}}= ilde{ heta}_{
u}{}^{lpha}(x)rac{\partial y^{\mu}}{\partial x^{lpha}}.$$

An extended Lagrangian $\mathcal{L}_{\mathrm{e}} = \mathcal{L}\,\mathsf{det}\,\Lambda$ is thus Legendre-transformed to the

Extended Hamiltonian \mathcal{H}_{e}

$$\mathcal{H}_{\mathrm{e}} = \mathcal{H} \det \Lambda - ilde{t}_{lpha}^{\ \ eta} rac{\partial x^{lpha}}{\partial y^{eta}} \quad \Leftrightarrow \quad \mathcal{H}_{\mathrm{e}} = (\mathcal{H} - heta_{lpha}^{\ \ lpha}) \det \Lambda.$$

Extended (covariant) Hamiltonian

Corresponding to the π_I^{μ} , the tensor densities $\tilde{\pi}_I^{\mu} = \pi_I^{\mu} \det \Lambda$ are defined as the dual quantities of the derivatives of the fields for ext. Lagrangians

$$\pi^{\mu}_{I}(\mathbf{x}) = rac{\partial \mathcal{L}}{\partial \left(rac{\partial \psi_{I}}{\partial \mathbf{x}^{\mu}}
ight)}, \qquad ilde{\pi}^{\mu}_{I}(\mathbf{y}) = rac{\partial \mathcal{L}_{\mathrm{e}}}{\partial \left(rac{\partial \psi_{I}}{\partial \mathbf{y}^{\mu}}
ight)}.$$

Similarly, the canonical variables ${ ilde t}_
u^\mu$ define the dual quantity to $\partial x^
u/\partial y^\mu$

$${ ilde t}_{
u}{}^{\mu}=-rac{\partial {\cal L}_{
m e}}{\partial \left(rac{\partial x^{
u}}{\partial y^{\mu}}
ight)}= ilde heta_{lpha}{}^{\mu}(y)rac{\partial y^{lpha}}{\partial x^{
u}}= ilde heta_{
u}{}^{lpha}(x)rac{\partial y^{\mu}}{\partial x^{lpha}}.$$

An extended Lagrangian $\mathcal{L}_{\rm e} = \mathcal{L}\,\text{det}\,\Lambda$ is thus Legendre-transformed to the

Extended Hamiltonian \mathcal{H}_e

$$\mathcal{H}_{\mathrm{e}} = \mathcal{H} \det \Lambda - ilde{t}_{lpha}{}^{eta} rac{\partial x^{lpha}}{\partial y^{eta}} \quad \Leftrightarrow \quad \mathcal{H}_{\mathrm{e}} = (\mathcal{H} - heta_{lpha}{}^{lpha}) \det \Lambda.$$

Form-invariance for the extended action principle

The extended action principle must be maintained for extended canonical transformations that also map $x^{\mu} \mapsto X^{\mu}$, $\tilde{t}_{\nu}^{\ \mu} \mapsto \tilde{T}_{\nu}^{\ \mu}$

Condition for extended canonical transformations

$$\begin{split} \delta \int_{R'} \left[\tilde{\pi}^{\alpha}_{I} \frac{\partial \psi_{I}}{\partial y^{\alpha}} - \tilde{t}_{\beta}^{\ \alpha} \frac{\partial x^{\beta}}{\partial y^{\alpha}} - \mathcal{H}_{e} \right] \mathsf{d}^{4} y \\ &= \delta \int_{R'} \left[\tilde{\Pi}^{\alpha}_{I} \frac{\partial \Psi_{I}}{\partial y^{\alpha}} - \tilde{T}_{\beta}^{\ \alpha} \frac{\partial X^{\beta}}{\partial y^{\alpha}} - \mathcal{H}_{e}^{\prime} \right] \mathsf{d}^{4} y. \end{split}$$

This condition implies that the integrands may differ by the divergence of a vector field \mathcal{F}_1^μ with $\delta \mathcal{F}_1^\mu|_{\partial R'} = 0$

$$\tilde{\pi}^{\alpha}_{I}\frac{\partial\psi_{I}}{\partial y^{\alpha}} - \tilde{t}_{\beta}^{\ \alpha}\frac{\partial x^{\beta}}{\partial y^{\alpha}} - \mathcal{H}_{\rm e} = \tilde{\Pi}^{\alpha}_{I}\frac{\partial\Psi_{I}}{\partial y^{\alpha}} - \tilde{T}_{\beta}^{\ \alpha}\frac{\partial X^{\beta}}{\partial y^{\alpha}} - \mathcal{H}_{\rm e}' + \frac{\partial\mathcal{F}_{1}^{\alpha}}{\partial y^{\alpha}}.$$

 \mathcal{F}_1^{μ} may be defined to depend on ψ_I , Ψ_I , x^{ν} , and X^{ν} only. This defines the extended generating function of type \mathcal{F}_1^{μ}

$$\mathcal{F}_1^{\mu} = \mathcal{F}_1^{\mu}(\psi_I, \Psi_I, x^{\nu}, X^{\nu}).$$

Form-invariance for the extended action principle

The extended action principle must be maintained for extended canonical transformations that also map $x^{\mu} \mapsto X^{\mu}$, $\tilde{t}_{\nu}^{\ \mu} \mapsto \tilde{T}_{\nu}^{\ \mu}$

Condition for extended canonical transformations

$$\begin{split} \delta \int_{\mathcal{R}'} \left[\tilde{\pi}^{\alpha}_{I} \frac{\partial \psi_{I}}{\partial y^{\alpha}} - \tilde{t}_{\beta}^{\ \alpha} \frac{\partial x^{\beta}}{\partial y^{\alpha}} - \mathcal{H}_{e} \right] \mathsf{d}^{4} y \\ &= \delta \int_{\mathcal{R}'} \left[\tilde{\Pi}^{\alpha}_{I} \frac{\partial \Psi_{I}}{\partial y^{\alpha}} - \tilde{T}_{\beta}^{\ \alpha} \frac{\partial X^{\beta}}{\partial y^{\alpha}} - \mathcal{H}_{e}^{\prime} \right] \mathsf{d}^{4} y. \end{split}$$

This condition implies that the integrands may differ by the divergence of a vector field \mathcal{F}_1^{μ} with $\delta \mathcal{F}_1^{\mu}|_{\partial R'} = 0$

$$\tilde{\pi}^{\alpha}_{I}\frac{\partial\psi_{I}}{\partial y^{\alpha}} - \tilde{t}_{\beta}^{\ \alpha}\frac{\partial x^{\beta}}{\partial y^{\alpha}} - \mathcal{H}_{\rm e} = \tilde{\Pi}^{\alpha}_{I}\frac{\partial\Psi_{I}}{\partial y^{\alpha}} - \tilde{\mathcal{T}}_{\beta}^{\ \alpha}\frac{\partial X^{\beta}}{\partial y^{\alpha}} - \mathcal{H}_{\rm e}' + \frac{\partial\mathcal{F}_{1}^{\alpha}}{\partial y^{\alpha}}.$$

 \mathcal{F}_1^{μ} may be defined to depend on ψ_I , Ψ_I , x^{ν} , and X^{ν} only. This defines the extended generating function of type \mathcal{F}_1^{μ} $\mathcal{F}^{\mu} - \mathcal{F}^{\mu}(\psi_I, \Psi_I, x^{\nu}, X^{\nu})$

Form-invariance for the extended action principle

The extended action principle must be maintained for extended canonical transformations that also map $x^{\mu} \mapsto X^{\mu}$, $\tilde{t}_{\nu}^{\ \mu} \mapsto \tilde{T}_{\nu}^{\ \mu}$

Condition for extended canonical transformations

$$\begin{split} \delta \int_{\mathcal{R}'} \left[\tilde{\pi}^{\alpha}_{I} \frac{\partial \psi_{I}}{\partial y^{\alpha}} - \tilde{t}_{\beta}^{\ \alpha} \frac{\partial x^{\beta}}{\partial y^{\alpha}} - \mathcal{H}_{e} \right] \mathsf{d}^{4} y \\ &= \delta \int_{\mathcal{R}'} \left[\tilde{\Pi}^{\alpha}_{I} \frac{\partial \Psi_{I}}{\partial y^{\alpha}} - \tilde{T}_{\beta}^{\ \alpha} \frac{\partial X^{\beta}}{\partial y^{\alpha}} - \mathcal{H}_{e}^{\prime} \right] \mathsf{d}^{4} y. \end{split}$$

This condition implies that the integrands may differ by the divergence of a vector field \mathcal{F}_1^{μ} with $\delta \mathcal{F}_1^{\mu}|_{\partial R'} = 0$

$$ilde{\pi}^{lpha}_{I}rac{\partial\psi_{I}}{\partial y^{lpha}} - ilde{t}_{eta}^{\ lpha}rac{\partial x^{eta}}{\partial y^{lpha}} - \mathcal{H}_{
m e} = ilde{\mathsf{\Pi}}^{lpha}_{I}rac{\partial\Psi_{I}}{\partial y^{lpha}} - ilde{\mathcal{T}}_{eta}^{\ lpha}rac{\partial X^{eta}}{\partial y^{lpha}} - \mathcal{H}_{
m e}^{\prime} + rac{\partial\mathcal{F}_{1}^{lpha}}{\partial y^{lpha}}.$$

 \mathcal{F}_1^{μ} may be defined to depend on ψ_I , Ψ_I , x^{ν} , and X^{ν} only. This defines the extended generating function of type \mathcal{F}_1^{μ}

$$\mathcal{F}_1^\mu = \mathcal{F}_1^\mu(\psi_I, \Psi_I, x^
u, X^
u).$$

Transformation rules for a generating function \mathcal{F}_1^μ

The divergence of a vector function $\mathcal{F}_1^\mu(\psi_I,\Psi_I,x^
u,X^
u)$ is

$$\frac{\partial \mathcal{F}_{1}^{\alpha}}{\partial y^{\alpha}} = \frac{\partial \mathcal{F}_{1}^{\alpha}}{\partial \psi_{I}} \frac{\partial \psi_{I}}{\partial y^{\alpha}} + \frac{\partial \mathcal{F}_{1}^{\alpha}}{\partial \Psi_{I}} \frac{\partial \Psi_{I}}{\partial y^{\alpha}} + \frac{\partial \mathcal{F}_{1}^{\alpha}}{\partial x^{\beta}} \frac{\partial x^{\beta}}{\partial y^{\alpha}} + \frac{\partial \mathcal{F}_{1}^{\alpha}}{\partial X^{\beta}} \frac{\partial X^{\beta}}{\partial y^{\alpha}}$$

Comparing the coefficients with the integrand condition yields the

Transformation rules for a generating function \mathcal{F}_1^{ι}

$$\tilde{\pi}_{I}^{\mu} = \frac{\partial \mathcal{F}_{1}^{\mu}}{\partial \psi_{I}}, \quad \tilde{\Pi}_{I}^{\mu} = -\frac{\partial \mathcal{F}_{1}^{\mu}}{\partial \Psi_{I}}, \quad \tilde{t}_{\nu}^{\ \mu} = -\frac{\partial \mathcal{F}_{1}^{\mu}}{\partial x^{\nu}}, \quad \tilde{T}_{\nu}^{\ \mu} = \frac{\partial \mathcal{F}_{1}^{\mu}}{\partial X^{\nu}}, \quad \mathcal{H}_{e}^{\prime} = \mathcal{H}_{e}.$$

The second derivatives of the generating function \mathcal{F}_1^{μ} yield the symmetry relations for canonical transformations from \mathcal{F}_1^{μ}

$$\frac{\partial \tilde{\pi}_{I}^{\mu}}{\partial \Psi_{J}} = \frac{\partial^{2} \mathcal{F}_{1}^{\mu}}{\partial \psi_{I} \partial \Psi_{J}} = -\frac{\partial \tilde{\Pi}_{J}^{\mu}}{\partial \psi_{I}}, \qquad \frac{\partial \tilde{t}_{\nu}{}^{\mu}}{\partial X^{\alpha}} = -\frac{\partial^{2} \mathcal{F}_{1}^{\mu}}{\partial x^{\nu} \partial X^{\alpha}} = -\frac{\partial \tilde{T}_{\alpha}{}^{\mu}}{\partial x^{\nu}}.$$

Transformation rules for a generating function \mathcal{F}_1^μ

The divergence of a vector function $\mathcal{F}_1^\mu(\psi_I,\Psi_I,x^
u,X^
u)$ is

$$\frac{\partial \mathcal{F}_{1}^{\alpha}}{\partial y^{\alpha}} = \frac{\partial \mathcal{F}_{1}^{\alpha}}{\partial \psi_{I}} \frac{\partial \psi_{I}}{\partial y^{\alpha}} + \frac{\partial \mathcal{F}_{1}^{\alpha}}{\partial \Psi_{I}} \frac{\partial \Psi_{I}}{\partial y^{\alpha}} + \frac{\partial \mathcal{F}_{1}^{\alpha}}{\partial x^{\beta}} \frac{\partial x^{\beta}}{\partial y^{\alpha}} + \frac{\partial \mathcal{F}_{1}^{\alpha}}{\partial X^{\beta}} \frac{\partial X^{\beta}}{\partial y^{\alpha}}$$

Comparing the coefficients with the integrand condition yields the

Transformation rules for a generating function \mathcal{F}_1^μ

$$\tilde{\pi}^{\mu}_{I} = \frac{\partial \mathcal{F}^{\mu}_{1}}{\partial \psi_{I}}, \quad \tilde{\Pi}^{\mu}_{I} = -\frac{\partial \mathcal{F}^{\mu}_{1}}{\partial \Psi_{I}}, \quad \tilde{t}_{\nu}^{\ \mu} = -\frac{\partial \mathcal{F}^{\mu}_{1}}{\partial x^{\nu}}, \quad \tilde{T}_{\nu}^{\ \mu} = \frac{\partial \mathcal{F}^{\mu}_{1}}{\partial X^{\nu}}, \quad \mathcal{H}'_{e} = \mathcal{H}_{e}.$$

The second derivatives of the generating function \mathcal{F}_1^μ yield the symmetry relations for canonical transformations from \mathcal{F}_1^μ

$$\frac{\partial \tilde{\pi}_{I}^{\mu}}{\partial \Psi_{J}} = \frac{\partial^{2} \mathcal{F}_{1}^{\mu}}{\partial \psi_{I} \partial \Psi_{J}} = -\frac{\partial \tilde{\Pi}_{J}^{\mu}}{\partial \psi_{I}}, \qquad \frac{\partial \tilde{t}_{\nu}{}^{\mu}}{\partial X^{\alpha}} = -\frac{\partial^{2} \mathcal{F}_{1}^{\mu}}{\partial x^{\nu} \partial X^{\alpha}} = -\frac{\partial \tilde{T}_{\alpha}{}^{\mu}}{\partial x^{\nu}}.$$

Transformation rules for a generating function \mathcal{F}_1^μ

The divergence of a vector function $\mathcal{F}_1^\mu(\psi_I,\Psi_I,x^
u,X^
u)$ is

$$\frac{\partial \mathcal{F}_{1}^{\alpha}}{\partial y^{\alpha}} = \frac{\partial \mathcal{F}_{1}^{\alpha}}{\partial \psi_{I}} \frac{\partial \psi_{I}}{\partial y^{\alpha}} + \frac{\partial \mathcal{F}_{1}^{\alpha}}{\partial \Psi_{I}} \frac{\partial \Psi_{I}}{\partial y^{\alpha}} + \frac{\partial \mathcal{F}_{1}^{\alpha}}{\partial x^{\beta}} \frac{\partial x^{\beta}}{\partial y^{\alpha}} + \frac{\partial \mathcal{F}_{1}^{\alpha}}{\partial X^{\beta}} \frac{\partial X^{\beta}}{\partial y^{\alpha}}$$

Comparing the coefficients with the integrand condition yields the

Transformation rules for a generating function \mathcal{F}_1^μ

$$\tilde{\pi}^{\mu}_{I} = \frac{\partial \mathcal{F}^{\mu}_{1}}{\partial \psi_{I}}, \quad \tilde{\Pi}^{\mu}_{I} = -\frac{\partial \mathcal{F}^{\mu}_{1}}{\partial \Psi_{I}}, \quad \tilde{t}_{\nu}^{\ \mu} = -\frac{\partial \mathcal{F}^{\mu}_{1}}{\partial x^{\nu}}, \quad \tilde{T}_{\nu}^{\ \mu} = \frac{\partial \mathcal{F}^{\mu}_{1}}{\partial X^{\nu}}, \quad \mathcal{H}'_{e} = \mathcal{H}_{e}.$$

The second derivatives of the generating function \mathcal{F}_1^μ yield the symmetry relations for canonical transformations from \mathcal{F}_1^μ

$$\frac{\partial \tilde{\pi}_{I}^{\mu}}{\partial \Psi_{J}} = \frac{\partial^{2} \mathcal{F}_{1}^{\mu}}{\partial \psi_{I} \partial \Psi_{J}} = -\frac{\partial \tilde{\Pi}_{J}^{\mu}}{\partial \psi_{I}}, \qquad \frac{\partial \tilde{t}_{\nu}{}^{\mu}}{\partial X^{\alpha}} = -\frac{\partial^{2} \mathcal{F}_{1}^{\mu}}{\partial x^{\nu} \partial X^{\alpha}} = -\frac{\partial \tilde{T}_{\alpha}{}^{\mu}}{\partial x^{\nu}}.$$
Extended generating function of type \mathcal{F}_2^μ

By means of a Legendre transformation

$$\mathcal{F}_{2}^{\mu}(\psi_{I},\tilde{\Pi}_{I}^{\mu},x^{\nu},\tilde{T}_{\nu}^{\ \mu})=\mathcal{F}_{1}^{\mu}(\psi_{I},\Psi_{I},x^{\nu},X^{\nu})+\Psi_{I}\tilde{\Pi}_{I}^{\mu}-X^{\alpha}\tilde{T}_{\alpha}^{\ \mu},$$

an equivalent set of transformation rules is encountered, hence the

Rules for an extended generating function \mathcal{F}_2^{μ}

$$\tilde{\pi}^{\mu}_{I} = \frac{\partial \mathcal{F}^{\mu}_{2}}{\partial \psi_{I}}, \quad \Psi_{I} \delta^{\mu}_{\nu} = \frac{\partial \mathcal{F}^{\mu}_{2}}{\partial \tilde{\Pi}^{\nu}_{I}}, \quad \tilde{t}^{\ \mu}_{\nu} = -\frac{\partial \mathcal{F}^{\mu}_{2}}{\partial x^{\nu}}, \quad X^{\alpha} \delta^{\mu}_{\nu} = -\frac{\partial \mathcal{F}^{\mu}_{2}}{\partial \tilde{T}^{\ \nu}_{\alpha}}, \quad \mathcal{H}^{\prime}_{e} = \mathcal{H}_{e}.$$

Symmetry relations for \mathcal{F}_2^{μ} :

$$\frac{\partial \tilde{\pi}_{I}^{\mu}}{\partial \tilde{\Pi}_{J}^{\nu}} = \frac{\partial^{2} \mathcal{F}_{2}^{\mu}}{\partial \psi_{I} \partial \tilde{\Pi}_{J}^{\nu}} = \delta_{\nu}^{\mu} \frac{\partial \Psi_{J}}{\partial \psi_{I}}, \qquad \frac{\partial \tilde{t}_{\beta}^{\ \mu}}{\partial \tilde{T}_{\alpha}^{\ \nu}} = -\frac{\partial^{2} \mathcal{F}_{2}^{\mu}}{\partial x^{\beta} \partial \tilde{T}_{\alpha}^{\ \nu}} = \delta_{\nu}^{\mu} \frac{\partial X^{\alpha}}{\partial x^{\beta}}.$$

Extended generating function of type \mathcal{F}_2^{μ}

By means of a Legendre transformation

$$\mathcal{F}_{2}^{\mu}(\psi_{I},\tilde{\Pi}_{I}^{\mu},x^{\nu},\tilde{T}_{\nu}^{\ \mu})=\mathcal{F}_{1}^{\mu}(\psi_{I},\Psi_{I},x^{\nu},X^{\nu})+\Psi_{I}\tilde{\Pi}_{I}^{\mu}-X^{\alpha}\tilde{T}_{\alpha}^{\ \mu},$$

an equivalent set of transformation rules is encountered, hence the

Rules for an extended generating function \mathcal{F}_2^{μ}

$$\tilde{\pi}^{\mu}_{I} = \frac{\partial \mathcal{F}^{\mu}_{2}}{\partial \psi_{I}}, \quad \Psi_{I} \delta^{\mu}_{\nu} = \frac{\partial \mathcal{F}^{\mu}_{2}}{\partial \tilde{\Pi}^{\nu}_{I}}, \quad \tilde{t}^{\ \mu}_{\nu} = -\frac{\partial \mathcal{F}^{\mu}_{2}}{\partial x^{\nu}}, \quad X^{\alpha} \delta^{\mu}_{\nu} = -\frac{\partial \mathcal{F}^{\mu}_{2}}{\partial \tilde{T}_{\alpha}{}^{\nu}}, \quad \mathcal{H}^{\prime}_{e} = \mathcal{H}_{e}.$$

Symmetry relations for \mathcal{F}_2^{μ} :

$$\frac{\partial \tilde{\pi}_{I}^{\mu}}{\partial \tilde{\Pi}_{J}^{\nu}} = \frac{\partial^{2} \mathcal{F}_{2}^{\mu}}{\partial \psi_{I} \partial \tilde{\Pi}_{J}^{\nu}} = \delta_{\nu}^{\mu} \frac{\partial \Psi_{J}}{\partial \psi_{I}}, \qquad \frac{\partial \tilde{t}_{\beta}^{\ \mu}}{\partial \tilde{T}_{\alpha}^{\ \nu}} = -\frac{\partial^{2} \mathcal{F}_{2}^{\mu}}{\partial x^{\beta} \partial \tilde{T}_{\alpha}^{\ \nu}} = \delta_{\nu}^{\mu} \frac{\partial X^{\alpha}}{\partial x^{\beta}}.$$

In Yang-Mills theories, gauge fields $a_{KJ\mu}$ had to be introduced to convert a system that is form-invariant under a global transformation group $\Psi_I = u_{IJ} \psi_J$ into a locally form-invariant system when $u_{IJ} = u_{IJ}(x)$.

homogeneous transformation rule for gauge bosons $A_{KJ\mu} = u_{KL} a_{LI\mu} u_{IJ}^* + \frac{1}{i\pi} \frac{\partial u_{KI}}{\partial u_{IJ}} u_{IJ}^*.$

We now set up the gauge formalism in order to convert a Lorentz-invariant system into a locally form-invariant system under a general metric. The connection coefficients $\Gamma^{\eta}_{\alpha\xi}$ act as gauge fields that convert a global (Lorentz) form-invariance into a local one under a transition $x^{\mu} \mapsto X^{\mu}$. Switching between general, non-inertial reference frames $x^{\mu} \mapsto X^{\mu}$ requires inhomogeneous transformation rule for the connection coefficients $\Gamma^{\eta}_{\alpha\xi}(X) = \gamma^{k}_{\ ij}(x) \frac{\partial x^{i}}{\partial X^{\alpha}} \frac{\partial x^{j}}{\partial X^{\xi}} \frac{\partial X^{\eta}}{\partial x^{k}} + \frac{\partial^{2}x^{k}}{\partial X^{\alpha} \partial X^{\xi}} \frac{\partial X^{\eta}}{\partial x^{k}}.$

In Yang-Mills theories, gauge fields $a_{KJ\mu}$ had to be introduced to convert a system that is form-invariant under a global transformation group $\Psi_I = u_{IJ} \psi_J$ into a locally form-invariant system when $u_{IJ} = u_{IJ}(x)$.

Inhomogeneous transformation rule for gauge bosons $A_{KJ\mu} = u_{KL} a_{LI\mu} u_{IJ}^* + \frac{1}{i\sigma} \frac{\partial u_{KI}}{\partial x^{\mu}} u_{IJ}^*.$

In Yang-Mills theories, gauge fields $a_{KJ\mu}$ had to be introduced to convert a system that is form-invariant under a global transformation group $\Psi_I = u_{IJ} \psi_J$ into a locally form-invariant system when $u_{IJ} = u_{IJ}(x)$.

Inhomogeneous transformation rule for gauge bosons

$$A_{KJ\mu} = u_{KL} a_{LI\mu} u_{IJ}^* + \frac{1}{ig} \frac{\partial u_{KI}}{\partial x^{\mu}} u_{IJ}^*.$$

We now set up the gauge formalism in order to convert a Lorentz-invariant system into a locally form-invariant system under a general metric.

The connection coefficients $\Gamma^{\eta}_{\alpha\xi}$ act as gauge fields that convert a global (Lorentz) form-invariance into a local one under a transition $x^{\mu} \mapsto X^{\mu}$. Switching between general, non-inertial reference frames $x^{\mu} \mapsto X^{\mu}$ requires inhomogeneous transformation rule for the connection coefficients $\Gamma^{\eta}_{\alpha\xi}(X) = \gamma^{k}_{\ ij}(x) \frac{\partial x^{i}}{\partial X^{\alpha}} \frac{\partial x^{j}}{\partial X^{\xi}} \frac{\partial X^{\eta}}{\partial x^{k}} + \frac{\partial^{2} x^{k}}{\partial X^{\alpha} \partial X^{\xi}} \frac{\partial X^{\eta}}{\partial x^{k}}.$

In Yang-Mills theories, gauge fields $a_{KJ\mu}$ had to be introduced to convert a system that is form-invariant under a global transformation group $\Psi_I = u_{IJ} \psi_J$ into a locally form-invariant system when $u_{IJ} = u_{IJ}(x)$.

Inhomogeneous transformation rule for gauge bosons

$$A_{KJ\mu} = u_{KL} a_{LI\mu} u_{IJ}^* + rac{1}{\mathsf{i}g} rac{\partial u_{KI}}{\partial x^{\mu}} u_{IJ}^*.$$

We now set up the gauge formalism in order to convert a Lorentz-invariant system into a locally form-invariant system under a general metric. The connection coefficients $\Gamma^{\eta}_{\alpha\xi}$ act as gauge fields that convert a global (Lorentz) form-invariance into a local one under a transition $x^{\mu} \mapsto X^{\mu}$. Switching between general, non-inertial reference frames $x^{\mu} \mapsto X^{\mu}$ requires inhomogeneous transformation rule for the connection coefficients $\Gamma^{\eta}_{\alpha\xi}(X) = \gamma^{k}_{ij}(x) \frac{\partial x^{i}}{\partial X^{\alpha}} \frac{\partial x^{j}}{\partial X^{\xi}} \frac{\partial X^{\eta}}{\partial x^{k}} + \frac{\partial^{2} x^{k}}{\partial X^{\alpha} \partial X^{\xi}} \frac{\partial X^{\eta}}{\partial x^{k}}.$

In Yang-Mills theories, gauge fields $a_{KJ\mu}$ had to be introduced to convert a system that is form-invariant under a global transformation group $\Psi_I = u_{IJ} \psi_J$ into a locally form-invariant system when $u_{IJ} = u_{IJ}(x)$.

Inhomogeneous transformation rule for gauge bosons

$$A_{KJ\mu} = u_{KL} a_{LI\mu} u_{IJ}^* + rac{1}{\mathsf{i}g} rac{\partial u_{KI}}{\partial x^{\mu}} u_{IJ}^*.$$

We now set up the gauge formalism in order to convert a Lorentz-invariant system into a locally form-invariant system under a general metric. The connection coefficients $\Gamma^{\eta}_{\ \alpha\xi}$ act as gauge fields that convert a global (Lorentz) form-invariance into a local one under a transition $x^{\mu} \mapsto X^{\mu}$. Switching between general, non-inertial reference frames $x^{\mu} \mapsto X^{\mu}$ requires

inhomogeneous transformation rule for the connection coefficients

$${}^{-\eta}{}_{\alpha\xi}(X) = \gamma^{k}{}_{ij}(x) \frac{\partial x'}{\partial X^{\alpha}} \frac{\partial x^{j}}{\partial X^{\xi}} \frac{\partial X^{\eta}}{\partial x^{k}} + \frac{\partial^{2} x^{k}}{\partial X^{\alpha} \partial X^{\xi}} \frac{\partial X^{\eta}}{\partial x^{k}}.$$

- The description of physics must be form-invariant under the transition to another, possibly non-inertial frame of reference.
- For a physical theory derived from an action principle, the principle must be maintained in its form.
- The generating function is set up to yield the required transformation rule for the connection coefficients $\gamma^{\eta}_{\alpha \epsilon}$.
- The canonical transformation formalism yields simultaneously the rules for for their conjugates, $\tilde{r}_{\eta}^{\alpha\xi\mu}$, and for the Hamiltonian.
- The transformation rule for the Hamiltonian then uniquely defines the particular Hamiltonian that is form-invariant under the given transformation rule $\gamma^{\eta}_{\alpha\xi}(x) \mapsto \Gamma^{\eta}_{\alpha\xi}(X)$.

- The description of physics must be form-invariant under the transition to another, possibly non-inertial frame of reference.
- For a physical theory derived from an action principle, the principle must be maintained in its form.
- ~> The transition must be a canonical transformation, hence must be described by a generating function in the Hamiltonian formalism.
- The generating function is set up to yield the required transformation rule for the connection coefficients $\gamma^{\eta}_{\ \alpha \varepsilon}$.
- The canonical transformation formalism yields simultaneously the rules for for their conjugates, $\tilde{r}_{\eta}^{\ \alpha\xi\mu}$, and for the Hamiltonian.
- The transformation rule for the Hamiltonian then uniquely defines the particular Hamiltonian that is form-invariant under the given transformation rule $\gamma^{\eta}_{\ \alpha\xi}(x) \mapsto \Gamma^{\eta}_{\ \alpha\xi}(X)$.

- The description of physics must be form-invariant under the transition to another, possibly non-inertial frame of reference.
- For a physical theory derived from an action principle, the principle must be maintained in its form.
- ~> The transition must be a canonical transformation, hence must be described by a generating function in the Hamiltonian formalism.
- The generating function is set up to yield the required transformation rule for the connection coefficients $\gamma^{\eta}_{\ \alpha \varepsilon}$.
- The canonical transformation formalism yields simultaneously the rules for for their conjugates, $\tilde{r}_{\eta}^{\ \alpha\xi\mu}$, and for the Hamiltonian.
- The transformation rule for the Hamiltonian then uniquely defines the particular Hamiltonian that is form-invariant under the given transformation rule $\gamma^{\eta}_{\ \alpha\xi}(x) \mapsto \Gamma^{\eta}_{\ \alpha\xi}(X)$.

- The description of physics must be form-invariant under the transition to another, possibly non-inertial frame of reference.
- For a physical theory derived from an action principle, the principle must be maintained in its form.
- ~> The transition must be a canonical transformation, hence must be described by a generating function in the Hamiltonian formalism.
- The generating function is set up to yield the required transformation rule for the connection coefficients $\gamma^{\eta}_{\ \alpha \varepsilon}$.
- The canonical transformation formalism yields simultaneously the rules for for their conjugates, $\tilde{r}_{\eta}^{\ \alpha\xi\mu}$, and for the Hamiltonian.
- The transformation rule for the Hamiltonian then uniquely defines the particular Hamiltonian that is form-invariant under the given transformation rule $\gamma^{\eta}_{\ \alpha\xi}(x) \mapsto \Gamma^{\eta}_{\ \alpha\xi}(X)$.

- The description of physics must be form-invariant under the transition to another, possibly non-inertial frame of reference.
- For a physical theory derived from an action principle, the principle must be maintained in its form.
- ~> The transition must be a canonical transformation, hence must be described by a generating function in the Hamiltonian formalism.
- The generating function is set up to yield the required transformation rule for the connection coefficients $\gamma^{\eta}_{\ \alpha \varepsilon}$.
- The canonical transformation formalism yields simultaneously the rules for for their conjugates, $\tilde{r}_{\eta}^{\ \alpha\xi\mu}$, and for the Hamiltonian.
- The transformation rule for the Hamiltonian then uniquely defines the particular Hamiltonian that is form-invariant under the given transformation rule $\gamma^{\eta}_{\alpha\xi}(x) \mapsto \Gamma^{\eta}_{\alpha\xi}(X)$.

- The description of physics must be form-invariant under the transition to another, possibly non-inertial frame of reference.
- For a physical theory derived from an action principle, the principle must be maintained in its form.
- ~> The transition must be a canonical transformation, hence must be described by a generating function in the Hamiltonian formalism.
- The generating function is set up to yield the required transformation rule for the connection coefficients $\gamma^{\eta}_{\ \alpha \varepsilon}$.
- The canonical transformation formalism yields simultaneously the rules for for their conjugates, $\tilde{r}_n^{\alpha\xi\mu}$, and for the Hamiltonian.
- The transformation rule for the Hamiltonian then uniquely defines the particular Hamiltonian that is form-invariant under the given transformation rule $\gamma^{\eta}_{\alpha\xi}(x) \mapsto \Gamma^{\eta}_{\alpha\xi}(X)$.

- The description of physics must be form-invariant under the transition to another, possibly non-inertial frame of reference.
- For a physical theory derived from an action principle, the principle must be maintained in its form.
- ~> The transition must be a canonical transformation, hence must be described by a generating function in the Hamiltonian formalism.
- The generating function is set up to yield the required transformation rule for the connection coefficients $\gamma^{\eta}_{\alpha\xi}$.
- The canonical transformation formalism yields simultaneously the rules for for their conjugates, $\tilde{r}_{\eta}^{\alpha\xi\mu}$, and for the Hamiltonian.
- The transformation rule for the Hamiltonian then uniquely defines the particular Hamiltonian that is form-invariant under the given transformation rule $\gamma^{\eta}_{\alpha\xi}(x) \mapsto \Gamma^{\eta}_{\alpha\xi}(X)$.

Generating function for the CT $\gamma^{\eta}_{\ \alpha\xi}(x) \mapsto \Gamma^{\eta}_{\ \alpha\xi}(X)$

$$\begin{split} \mathcal{F}_{2}^{\mu}(\gamma^{\eta}_{\ \alpha\xi}, \tilde{R}_{\eta}^{\ \alpha\xi\nu}, x^{\alpha}, \tilde{T}_{\alpha}^{\ \nu}) &= -\tilde{T}_{\alpha}^{\ \mu}h^{\alpha}(x) \\ &+ \tilde{R}_{\eta}^{\ \alpha\xi\lambda}\frac{\partial y^{\mu}}{\partial X^{\lambda}} \left(\gamma^{k}_{\ ij}\frac{\partial X^{\eta}}{\partial x^{k}}\frac{\partial x^{i}}{\partial X^{\alpha}}\frac{\partial x^{j}}{\partial X^{\xi}} + \frac{\partial X^{\eta}}{\partial x^{k}}\frac{\partial^{2}x^{k}}{\partial X^{\alpha}\partial X^{\xi}} \right) \end{split}$$

The subsequent transformation rules are:

$$\begin{split} \Gamma^{\eta}{}_{\alpha\xi}\delta^{\mu}_{\nu} &= \frac{\partial \mathcal{F}_{2}^{\kappa}}{\partial \tilde{R}_{\eta}{}^{\alpha\xi\nu}} \frac{\partial X^{\mu}}{\partial y^{\kappa}} = \delta^{\mu}_{\nu} \left(\gamma^{k}{}_{ij} \frac{\partial X^{\eta}}{\partial x^{k}} \frac{\partial x^{i}}{\partial X^{\alpha}} \frac{\partial x^{j}}{\partial X^{\xi}} + \frac{\partial X^{\eta}}{\partial x^{k}} \frac{\partial^{2}x^{k}}{\partial X^{\alpha}\partial X^{\xi}} \right) \\ \tilde{r}_{k}{}^{ij\mu} &= \frac{\partial \mathcal{F}_{2}^{\kappa}}{\partial \gamma^{k}{}_{ij}} \frac{\partial x^{\mu}}{\partial y^{\kappa}} = \tilde{R}_{\eta}{}^{\alpha\xi\lambda} \frac{\partial X^{\eta}}{\partial x^{k}} \frac{\partial x^{i}}{\partial X^{\alpha}} \frac{\partial x^{j}}{\partial X^{\xi}} \frac{\partial x^{\mu}}{\partial X^{\lambda}}, \quad X^{\alpha}\delta^{\mu}_{\nu} = -\frac{\partial \mathcal{F}_{2}^{\mu}}{\partial \tilde{\tau}_{\alpha}{}^{\nu}} = \delta^{\mu}_{\nu}h^{\alpha} \\ \tilde{t}_{\nu}{}^{\mu} &= -\frac{\partial \mathcal{F}_{2}^{\mu}}{\partial x^{\nu}} = \tilde{T}_{\alpha}{}^{\mu}\frac{\partial h^{\alpha}}{\partial x^{\nu}} \\ &- \tilde{R}_{\eta}{}^{\alpha\xi\lambda}\frac{\partial y^{\mu}}{\partial X^{\lambda}} \left[\gamma^{k}{}_{ij}\frac{\partial}{\partial x^{\nu}} \left(\frac{\partial X^{\eta}}{\partial x^{k}} \frac{\partial x^{i}}{\partial X^{\alpha}} \frac{\partial x^{j}}{\partial X^{\xi}} \right) + \frac{\partial}{\partial x^{\nu}} \left(\frac{\partial X^{\eta}}{\partial x^{k}} \frac{\partial^{2}x^{k}}{\partial X^{\alpha}\partial X^{\xi}} \right) \right] \end{split}$$

Generating function for the CT $\gamma^{\eta}_{\ \alpha\xi}(x) \mapsto \Gamma^{\eta}_{\ \alpha\xi}(X)$

$$\begin{aligned} \mathcal{F}_{2}^{\mu}(\gamma^{\eta}_{\alpha\xi},\tilde{R}_{\eta}^{\alpha\xi\nu},x^{\alpha},\tilde{T}_{\alpha}^{\nu}) &= -\tilde{T}_{\alpha}^{\mu}h^{\alpha}(x) \\ &+ \tilde{R}_{\eta}^{\alpha\xi\lambda}\frac{\partial y^{\mu}}{\partial X^{\lambda}} \left(\gamma^{k}_{ij}\frac{\partial X^{\eta}}{\partial x^{k}}\frac{\partial x^{i}}{\partial X^{\alpha}}\frac{\partial x^{j}}{\partial X^{\xi}} + \frac{\partial X^{\eta}}{\partial x^{k}}\frac{\partial^{2}x^{k}}{\partial X^{\alpha}\partial X^{\xi}}\right) \end{aligned}$$

The subsequent transformation rules are:

$$\begin{split} \Gamma^{\eta}{}_{\alpha\xi}\delta^{\mu}_{\nu} &= \frac{\partial \mathcal{F}_{2}^{\kappa}}{\partial \tilde{R}_{\eta}{}^{\alpha\xi\nu}} \frac{\partial X^{\mu}}{\partial y^{\kappa}} = \delta^{\mu}_{\nu} \left(\gamma^{k}{}_{ij} \frac{\partial X^{\eta}}{\partial x^{k}} \frac{\partial x^{i}}{\partial X^{\alpha}} \frac{\partial x^{j}}{\partial X^{\xi}} + \frac{\partial X^{\eta}}{\partial x^{k}} \frac{\partial^{2}x^{k}}{\partial X^{\alpha}\partial X^{\xi}} \right) \\ \tilde{r}_{k}{}^{ij\mu} &= \frac{\partial \mathcal{F}_{2}^{\kappa}}{\partial \gamma^{k}{}_{ij}} \frac{\partial x^{\mu}}{\partial y^{\kappa}} = \tilde{R}_{\eta}{}^{\alpha\xi\lambda} \frac{\partial X^{\eta}}{\partial x^{k}} \frac{\partial x^{i}}{\partial X^{\alpha}} \frac{\partial x^{j}}{\partial X^{\xi}} \frac{\partial x^{\mu}}{\partial X^{\lambda}}, \quad X^{\alpha}\delta^{\mu}_{\nu} = -\frac{\partial \mathcal{F}_{2}^{\mu}}{\partial \tilde{T}_{\alpha}{}^{\nu}} = \delta^{\mu}_{\nu}h^{\alpha} \\ \tilde{t}_{\nu}{}^{\mu} &= -\frac{\partial \mathcal{F}_{2}^{\mu}}{\partial x^{\nu}} = \tilde{T}_{\alpha}{}^{\mu}\frac{\partial h^{\alpha}}{\partial x^{\nu}} \\ &- \tilde{R}_{\eta}{}^{\alpha\xi\lambda}\frac{\partial y^{\mu}}{\partial X^{\lambda}} \bigg[\gamma^{k}{}_{ij}\frac{\partial}{\partial x^{\nu}} \left(\frac{\partial X^{\eta}}{\partial x^{k}} \frac{\partial x^{i}}{\partial X^{\alpha}} \frac{\partial x^{j}}{\partial X^{\xi}} \right) + \frac{\partial}{\partial x^{\nu}} \left(\frac{\partial X^{\eta}}{\partial x^{k}} \frac{\partial^{2}x^{k}}{\partial X^{\alpha}\partial X^{\xi}} \right) \bigg] \end{split}$$

We observe:

- The required transformation rule for the connection coefficients $\gamma^{\eta}_{\ \alpha\xi}$ is reproduced.
- The formally introduced quantity $\tilde{r}_{\eta}^{\ lpha \xi \mu}$ transforms as a tensor!
- The canonical formalism also defines the transformation rule for the Hamiltonians, namely

$$\mathcal{H}_{\rm e}' = \mathcal{H}_{\rm e} \quad \Leftrightarrow \quad \mathcal{H}' \det \Lambda' - \mathcal{H} \det \Lambda = \tilde{\mathcal{T}}_{\beta}{}^{\alpha} \frac{\partial X^{\beta}}{\partial y^{\alpha}} - \tilde{t}_{\beta}{}^{\alpha} \frac{\partial x^{\beta}}{\partial y^{\alpha}}.$$

$$\begin{split} \ell' \det \Lambda' - \mathcal{H} \det \Lambda &= \tilde{R}_{\eta}^{\alpha \xi \mu} \Big[\gamma^{k}_{ij} \Big(\frac{\partial^{2} X^{\eta}}{\partial x^{k} \partial x^{\nu}} \frac{\partial x^{\nu}}{\partial X^{\mu}} \frac{\partial x^{i}}{\partial X^{\alpha}} \frac{\partial x^{j}}{\partial X^{\xi}} \\ &+ \frac{\partial^{2} x^{i}}{\partial X^{\alpha} \partial X^{\mu}} \frac{\partial X^{\eta}}{\partial x^{k}} \frac{\partial x^{j}}{\partial X^{\xi}} + \frac{\partial^{2} x^{j}}{\partial X^{\xi} \partial X^{\mu}} \frac{\partial X^{\eta}}{\partial x^{k}} \frac{\partial x^{i}}{\partial X^{\alpha}} \Big) \\ &+ \frac{\partial^{2} X^{\eta}}{\partial x^{k} \partial x^{\nu}} \frac{\partial^{2} x^{k}}{\partial X^{\alpha} \partial X^{\xi}} \frac{\partial x^{\nu}}{\partial X^{\mu}} + \frac{\partial^{3} x^{k}}{\partial X^{\alpha} \partial X^{\xi} \partial X^{\mu}} \frac{\partial X^{\eta}}{\partial x^{k}} \Big]. \end{split}$$

We observe:

- The required transformation rule for the connection coefficients $\gamma^{\eta}_{\ \alpha\xi}$ is reproduced.
- The formally introduced quantity $\tilde{r}_{\eta}^{\ \alpha\xi\mu}$ transforms as a tensor!
- The canonical formalism also defines the transformation rule for the Hamiltonians, namely

$$\mathcal{H}_{\rm e}' = \mathcal{H}_{\rm e} \quad \Leftrightarrow \quad \mathcal{H}' \det \Lambda' - \mathcal{H} \det \Lambda = \tilde{T}_{\beta}{}^{\alpha} \frac{\partial X^{\beta}}{\partial y^{\alpha}} - \tilde{t}_{\beta}{}^{\alpha} \frac{\partial x^{\beta}}{\partial y^{\alpha}}.$$

$$\begin{aligned} \mathcal{L}' \det \Lambda' - \mathcal{H} \det \Lambda &= \tilde{R}_{\eta}^{\alpha \xi \mu} \bigg[\gamma^{k}{}_{ij} \bigg(\frac{\partial^{2} X^{\eta}}{\partial x^{k} \partial x^{\nu}} \frac{\partial x^{\nu}}{\partial X^{\mu}} \frac{\partial x^{i}}{\partial X^{\alpha}} \frac{\partial x^{j}}{\partial X^{\xi}} \\ &+ \frac{\partial^{2} x^{i}}{\partial X^{\alpha} \partial X^{\mu}} \frac{\partial X^{\eta}}{\partial x^{k}} \frac{\partial x^{j}}{\partial X^{\xi}} + \frac{\partial^{2} x^{j}}{\partial X^{\xi} \partial X^{\mu}} \frac{\partial X^{\eta}}{\partial x^{k}} \frac{\partial x^{i}}{\partial X^{\alpha}} \bigg) \\ &+ \frac{\partial^{2} X^{\eta}}{\partial x^{k} \partial x^{\nu}} \frac{\partial^{2} x^{k}}{\partial X^{\alpha} \partial X^{\xi}} \frac{\partial x^{\nu}}{\partial X^{\mu}} + \frac{\partial^{3} x^{k}}{\partial X^{\alpha} \partial X^{\xi} \partial X^{\mu}} \frac{\partial X^{\eta}}{\partial x^{k}} \bigg]. \end{aligned}$$

We observe:

- The required transformation rule for the connection coefficients $\gamma^{\eta}_{\ \alpha\xi}$ is reproduced.
- The formally introduced quantity $\tilde{r}_{\eta}^{\ \alpha\xi\mu}$ transforms as a tensor!
- The canonical formalism also defines the transformation rule for the Hamiltonians, namely

$$\mathcal{H}_{\mathrm{e}}' = \mathcal{H}_{\mathrm{e}} \quad \Leftrightarrow \quad \mathcal{H}' \det \Lambda' - \mathcal{H} \det \Lambda = \tilde{\mathcal{T}}_{\beta}{}^{\alpha} \frac{\partial X^{\beta}}{\partial y^{\alpha}} - \tilde{t}_{\beta}{}^{\alpha} \frac{\partial x^{\beta}}{\partial y^{\alpha}}.$$

$$\begin{split} \ell' \det \Lambda' - \mathcal{H} \det \Lambda &= \tilde{R}_{\eta}^{\alpha \xi \mu} \bigg[\gamma^{k}{}_{ij} \bigg(\frac{\partial^{2} X^{\eta}}{\partial x^{k} \partial x^{\nu}} \frac{\partial x^{\nu}}{\partial X^{\mu}} \frac{\partial x^{i}}{\partial X^{\alpha}} \frac{\partial x^{j}}{\partial X^{\xi}} \\ &+ \frac{\partial^{2} x^{i}}{\partial X^{\alpha} \partial X^{\mu}} \frac{\partial X^{\eta}}{\partial x^{k}} \frac{\partial x^{j}}{\partial X^{\xi}} + \frac{\partial^{2} x^{j}}{\partial X^{\xi} \partial X^{\mu}} \frac{\partial X^{\eta}}{\partial x^{k}} \frac{\partial x^{i}}{\partial X^{\alpha}} \bigg) \\ &+ \frac{\partial^{2} X^{\eta}}{\partial x^{k} \partial x^{\nu}} \frac{\partial^{2} x^{k}}{\partial X^{\alpha} \partial X^{\xi}} \frac{\partial x^{\nu}}{\partial X^{\mu}} + \frac{\partial^{3} x^{k}}{\partial X^{\alpha} \partial X^{\xi} \partial X^{\mu}} \frac{\partial X^{\eta}}{\partial x^{k}} \bigg]. \end{split}$$

We observe:

- The required transformation rule for the connection coefficients $\gamma^{\eta}_{\ \alpha\xi}$ is reproduced.
- The formally introduced quantity $\tilde{r}_{\eta}^{\ \alpha\xi\mu}$ transforms as a tensor!
- The canonical formalism also defines the transformation rule for the Hamiltonians, namely

$$\mathcal{H}_{\mathrm{e}}' = \mathcal{H}_{\mathrm{e}} \quad \Leftrightarrow \quad \mathcal{H}' \det \Lambda' - \mathcal{H} \det \Lambda = \tilde{\mathcal{T}}_{\beta}{}^{lpha} rac{\partial X^{eta}}{\partial y^{lpha}} - \tilde{t}_{eta}{}^{lpha} rac{\partial x^{eta}}{\partial y^{lpha}}.$$

$$\begin{split} \ell' \det \Lambda' - \mathcal{H} \det \Lambda &= \tilde{R}_{\eta}^{\alpha \xi \mu} \bigg[\gamma^{k}{}_{ij} \bigg(\frac{\partial^{2} X^{\eta}}{\partial x^{k} \partial x^{\nu}} \frac{\partial x^{\nu}}{\partial X^{\mu}} \frac{\partial x^{i}}{\partial X^{\alpha}} \frac{\partial x^{j}}{\partial X^{\xi}} \\ &+ \frac{\partial^{2} x^{i}}{\partial X^{\alpha} \partial X^{\mu}} \frac{\partial X^{\eta}}{\partial x^{k}} \frac{\partial x^{j}}{\partial X^{\xi}} + \frac{\partial^{2} x^{j}}{\partial X^{\xi} \partial X^{\mu}} \frac{\partial X^{\eta}}{\partial x^{k}} \frac{\partial x^{i}}{\partial X^{\alpha}} \bigg) \\ &+ \frac{\partial^{2} X^{\eta}}{\partial x^{k} \partial x^{\nu}} \frac{\partial^{2} x^{k}}{\partial X^{\alpha} \partial X^{\xi}} \frac{\partial x^{\nu}}{\partial X^{\mu}} + \frac{\partial^{3} x^{k}}{\partial X^{\alpha} \partial X^{\xi} \partial X^{\mu}} \frac{\partial X^{\eta}}{\partial x^{k}} \bigg]. \end{split}$$

We observe:

7

- The required transformation rule for the connection coefficients $\gamma^{\eta}_{\ \alpha\xi}$ is reproduced.
- The formally introduced quantity $\tilde{r}_{\eta}^{\ \alpha\xi\mu}$ transforms as a tensor!
- The canonical formalism also defines the transformation rule for the Hamiltonians, namely

$$\mathcal{H}_{\mathrm{e}}' = \mathcal{H}_{\mathrm{e}} \quad \Leftrightarrow \quad \mathcal{H}' \det \Lambda' - \mathcal{H} \det \Lambda = \tilde{\mathcal{T}}_{\beta}{}^{lpha} rac{\partial X^{eta}}{\partial y^{lpha}} - \tilde{t}_{eta}{}^{lpha} rac{\partial x^{eta}}{\partial y^{lpha}}.$$

$$\begin{aligned} \mathcal{A}' \det \Lambda' - \mathcal{H} \det \Lambda &= \tilde{R}_{\eta}^{\alpha \xi \mu} \bigg[\gamma^{k}_{\ ij} \bigg(\frac{\partial^{2} X^{\eta}}{\partial x^{k} \partial x^{\nu}} \frac{\partial x^{\nu}}{\partial X^{\mu}} \frac{\partial x^{i}}{\partial X^{\alpha}} \frac{\partial x^{j}}{\partial X^{\xi}} \\ &+ \frac{\partial^{2} x^{i}}{\partial X^{\alpha} \partial X^{\mu}} \frac{\partial X^{\eta}}{\partial x^{k}} \frac{\partial x^{j}}{\partial X^{\xi}} + \frac{\partial^{2} x^{j}}{\partial X^{\xi} \partial X^{\mu}} \frac{\partial X^{\eta}}{\partial x^{k}} \frac{\partial x^{i}}{\partial X^{\alpha}} \bigg) \\ &+ \frac{\partial^{2} X^{\eta}}{\partial x^{k} \partial x^{\nu}} \frac{\partial^{2} x^{k}}{\partial X^{\alpha} \partial X^{\xi}} \frac{\partial x^{\nu}}{\partial X^{\mu}} + \frac{\partial^{3} x^{k}}{\partial X^{\alpha} \partial X^{\xi} \partial X^{\mu}} \frac{\partial X^{\eta}}{\partial x^{k}} \bigg]. \end{aligned}$$

Recipe to derive the physical Hamiltonian

The task is now to express all derivatives of the X^{μ} and x^{μ} in terms of the connection coefficients $\gamma^{\eta}_{\ \alpha\xi}$ and $\Gamma^{\eta}_{\ \alpha\xi}$, and their conjugates, $\tilde{r}_{\eta}^{\ \alpha\xi\mu}$ and $\tilde{R}_{n}^{\ \alpha\xi\mu}$ according to the 1st and 2nd canonical transformation rules.

Remarkably, this works perfectly. The result is:

$$\mathcal{H}' \det \Lambda' - \mathcal{H} \det \Lambda = \frac{1}{2} \tilde{R}_{\eta}^{\ \alpha \xi \mu} \left(\frac{\partial \Gamma^{\eta}_{\ \alpha \xi}}{\partial X^{\mu}} + \frac{\partial \Gamma^{\eta}_{\ \alpha \mu}}{\partial X^{\xi}} - \Gamma^{i}_{\ \alpha \xi} \Gamma^{\eta}_{\ i\mu} + \Gamma^{i}_{\ \alpha \mu} \Gamma^{\eta}_{\ i\xi} \right) \\ - \frac{1}{2} \tilde{r}_{\eta}^{\ \alpha \xi \mu} \left(\frac{\partial \gamma^{\eta}_{\ \alpha \xi}}{\partial x^{\mu}} + \frac{\partial \gamma^{\eta}_{\ \alpha \mu}}{\partial x^{\xi}} - \gamma^{i}_{\ \alpha \xi} \gamma^{\eta}_{\ i\mu} + \gamma^{i}_{\ \alpha \mu} \gamma^{\eta}_{\ i\xi} \right)$$

 The terms emerge in a symmetric form in the original and the transformed dynamical variables.

 We encounter unambiguously the particular Hamiltonian that is form-invariant under the transformation of the connection coefficients.

Recipe to derive the physical Hamiltonian

The task is now to express all derivatives of the X^{μ} and x^{μ} in terms of the connection coefficients $\gamma^{\eta}_{\ \alpha\xi}$ and $\Gamma^{\eta}_{\ \alpha\xi}$, and their conjugates, $\tilde{r}_{\eta}^{\ \alpha\xi\mu}$ and $\tilde{R}_{n}^{\ \alpha\xi\mu}$ according to the 1st and 2nd canonical transformation rules.

Remarkably, this works perfectly. The result is:

$$\begin{aligned} \mathcal{H}' \det \Lambda' - \mathcal{H} \det \Lambda &= \frac{1}{2} \tilde{R}_{\eta}^{\ \alpha \xi \mu} \left(\frac{\partial \Gamma^{\eta}_{\ \alpha \xi}}{\partial X^{\mu}} + \frac{\partial \Gamma^{\eta}_{\ \alpha \mu}}{\partial X^{\xi}} - \Gamma^{i}_{\ \alpha \xi} \Gamma^{\eta}_{\ i \mu} + \Gamma^{i}_{\ \alpha \mu} \Gamma^{\eta}_{\ i \xi} \right) \\ &- \frac{1}{2} \tilde{r}_{\eta}^{\ \alpha \xi \mu} \left(\frac{\partial \gamma^{\eta}_{\ \alpha \xi}}{\partial x^{\mu}} + \frac{\partial \gamma^{\eta}_{\ \alpha \mu}}{\partial x^{\xi}} - \gamma^{i}_{\ \alpha \xi} \gamma^{\eta}_{\ i \mu} + \gamma^{i}_{\ \alpha \mu} \gamma^{\eta}_{\ i \xi} \right) \end{aligned}$$

 The terms emerge in a symmetric form in the original and the transformed dynamical variables.

 We encounter unambiguously the particular Hamiltonian that is form-invariant under the transformation of the connection coefficients.

Recipe to derive the physical Hamiltonian

The task is now to express all derivatives of the X^{μ} and x^{μ} in terms of the connection coefficients $\gamma^{\eta}_{\ \alpha\xi}$ and $\Gamma^{\eta}_{\ \alpha\xi}$, and their conjugates, $\tilde{r}_{\eta}^{\ \alpha\xi\mu}$ and $\tilde{R}_{\eta}^{\ \alpha\xi\mu}$ according to the 1st and 2nd canonical transformation rules.

Remarkably, this works perfectly. The result is:

$$\begin{aligned} \mathcal{H}' \det \Lambda' - \mathcal{H} \det \Lambda &= \frac{1}{2} \tilde{R}_{\eta}^{\ \alpha \xi \mu} \left(\frac{\partial \Gamma^{\eta}_{\ \alpha \xi}}{\partial X^{\mu}} + \frac{\partial \Gamma^{\eta}_{\ \alpha \mu}}{\partial X^{\xi}} - \Gamma^{i}_{\ \alpha \xi} \Gamma^{\eta}_{\ i \mu} + \Gamma^{i}_{\ \alpha \mu} \Gamma^{\eta}_{\ i \xi} \right) \\ &- \frac{1}{2} \tilde{r}_{\eta}^{\ \alpha \xi \mu} \left(\frac{\partial \gamma^{\eta}_{\ \alpha \xi}}{\partial x^{\mu}} + \frac{\partial \gamma^{\eta}_{\ \alpha \mu}}{\partial x^{\xi}} - \gamma^{i}_{\ \alpha \xi} \gamma^{\eta}_{\ i \mu} + \gamma^{i}_{\ \alpha \mu} \gamma^{\eta}_{\ i \xi} \right) \end{aligned}$$

- The terms emerge in a symmetric form in the original and the transformed dynamical variables.
- ~ We encounter unambiguously the particular Hamiltonian that is form-invariant under the transformation of the connection coefficients.

Recipe to derive the physical Hamiltonian

The task is now to express all derivatives of the X^{μ} and x^{μ} in terms of the connection coefficients $\gamma^{\eta}_{\ \alpha\xi}$ and $\Gamma^{\eta}_{\ \alpha\xi}$, and their conjugates, $\tilde{r}_{\eta}^{\ \alpha\xi\mu}$ and $\tilde{R}_{n}^{\ \alpha\xi\mu}$ according to the 1st and 2nd canonical transformation rules.

Remarkably, this works perfectly. The result is:

$$\begin{aligned} \mathcal{H}' \det \Lambda' - \mathcal{H} \det \Lambda &= \frac{1}{2} \tilde{R}_{\eta}^{\ \alpha \xi \mu} \left(\frac{\partial \Gamma^{\eta}_{\ \alpha \xi}}{\partial X^{\mu}} + \frac{\partial \Gamma^{\eta}_{\ \alpha \mu}}{\partial X^{\xi}} - \Gamma^{i}_{\ \alpha \xi} \Gamma^{\eta}_{\ i\mu} + \Gamma^{i}_{\ \alpha \mu} \Gamma^{\eta}_{\ i\xi} \right) \\ &- \frac{1}{2} \tilde{r}_{\eta}^{\ \alpha \xi \mu} \left(\frac{\partial \gamma^{\eta}_{\ \alpha \xi}}{\partial x^{\mu}} + \frac{\partial \gamma^{\eta}_{\ \alpha \mu}}{\partial x^{\xi}} - \gamma^{i}_{\ \alpha \xi} \gamma^{\eta}_{\ i\mu} + \gamma^{i}_{\ \alpha \mu} \gamma^{\eta}_{\ i\xi} \right) \end{aligned}$$

- The terms emerge in a symmetric form in the original and the transformed dynamical variables.
- ~> We encounter unambiguously the particular Hamiltonian that is form-invariant under the transformation of the connection coefficients.

Final form-invariant Hamiltonian

Similar to conventional gauge theory, the final form-invariant Hamiltonian must contain in addition a dynamics term

$$\mathcal{H}_{\mathrm{e,dyn}}^{\prime} = -rac{1}{4} \tilde{R}_{\eta}^{\ lpha \xi \mu} R^{\eta}_{\ lpha \xi \mu}, \qquad \mathcal{H}_{\mathrm{e,dyn}} = -rac{1}{4} \tilde{r}_{\eta}^{\ lpha \xi \mu} r^{\eta}_{\ lpha \xi \mu}$$

 $\mathcal{H}'_{e,dyn} = \mathcal{H}_{e,dyn}$ must hold in order for the final extended Hamiltonians to maintain the required transformation rule $\mathcal{H}'_e = \mathcal{H}_e$. This is ensured if det $\Lambda' = \det \Lambda$, hence if $h^{\mu}(x)$ in \mathcal{F}_2^{μ} satisfies

$$\frac{\partial \left(X^{0}, \dots, X^{3}\right)}{\partial \left(x^{0}, \dots, x^{3}\right)} = \frac{\partial \left(h^{0}(x), \dots, h^{3}(x)\right)}{\partial \left(x^{0}, \dots, x^{3}\right)} = 1.$$

The final form-invariant extended Hamiltonian that is compatible with the canonical transformation rules now writes for the x reference frame

$$\begin{aligned} \mathcal{H}_{\mathrm{e,GR}}\left(\tilde{r},\gamma,\tilde{t}\right) &= -\tilde{t}_{\alpha}^{\ \beta} \frac{\partial x^{\alpha}}{\partial y^{\beta}} - \frac{1}{4} \tilde{r}_{\eta}^{\ \alpha\xi\mu} r^{\eta}_{\ \alpha\xi\mu} \\ &+ \frac{1}{2} \tilde{r}_{\eta}^{\ \alpha\xi\mu} \left(\frac{\partial \gamma^{\eta}_{\ \alpha\mu}}{\partial x^{\xi}} + \frac{\partial \gamma^{\eta}_{\ \alpha\xi}}{\partial x^{\mu}} + \gamma^{k}_{\ \alpha\mu} \gamma^{\eta}_{\ k\xi} - \gamma^{k}_{\ \alpha\xi} \gamma^{\eta}_{\ k\mu} \right) \end{aligned}$$

Final form-invariant Hamiltonian

Similar to conventional gauge theory, the final form-invariant Hamiltonian must contain in addition a dynamics term

$$\mathcal{H}_{
m e,dyn}^{\prime} = -rac{1}{4} \tilde{R}_{\eta}^{\ lpha \xi \mu} R^{\eta}_{\ lpha \xi \mu}, \qquad \mathcal{H}_{
m e,dyn} = -rac{1}{4} \tilde{r}_{\eta}^{\ lpha \xi \mu} r^{\eta}_{\ lpha \xi \mu}$$

 $\mathcal{H}_{e,dyn}' = \mathcal{H}_{e,dyn} \text{ must hold in order for the final extended Hamiltonians to} \\ \text{maintain the required transformation rule } \mathcal{H}_e' = \mathcal{H}_e.$

This is ensured if det $\Lambda' = \det \Lambda$, hence if $h^{\mu}(x)$ in \mathcal{F}_{2}^{μ} satisfies

$$rac{\partial \left(X^0,\ldots,X^3
ight)}{\partial \left(x^0,\ldots,x^3
ight)}=rac{\partial \left(h^0(x),\ldots,h^3(x)
ight)}{\partial \left(x^0,\ldots,x^3
ight)}=1.$$

The final form-invariant extended Hamiltonian that is compatible with the canonical transformation rules now writes for the *x* reference frame

$$\begin{aligned} \mathcal{H}_{\mathrm{e,GR}}\left(\tilde{r},\gamma,\tilde{t}\right) &= -\tilde{t}_{\alpha}^{\ \beta} \frac{\partial x^{\alpha}}{\partial y^{\beta}} - \frac{1}{4} \tilde{r}_{\eta}^{\ \alpha\xi\mu} r^{\eta}_{\ \alpha\xi\mu} \\ &+ \frac{1}{2} \tilde{r}_{\eta}^{\ \alpha\xi\mu} \left(\frac{\partial \gamma^{\eta}_{\ \alpha\mu}}{\partial x^{\xi}} + \frac{\partial \gamma^{\eta}_{\ \alpha\xi}}{\partial x^{\mu}} + \gamma^{k}_{\ \alpha\mu} \gamma^{\eta}_{\ k\xi} - \gamma^{k}_{\ \alpha\xi} \gamma^{\eta}_{\ k\mu} \right) \end{aligned}$$

Final form-invariant Hamiltonian

Similar to conventional gauge theory, the final form-invariant Hamiltonian must contain in addition a dynamics term

$$\mathcal{H}_{\mathrm{e,dyn}}^{\prime} = -rac{1}{4} \tilde{R}_{\eta}^{\ lpha \xi \mu} R^{\eta}_{\ lpha \xi \mu}, \qquad \mathcal{H}_{\mathrm{e,dyn}} = -rac{1}{4} \tilde{r}_{\eta}^{\ lpha \xi \mu} r^{\eta}_{\ lpha \xi \mu}$$

 $\mathcal{H}_{e,dyn}' = \mathcal{H}_{e,dyn} \text{ must hold in order for the final extended Hamiltonians to} \\ \text{maintain the required transformation rule } \mathcal{H}_e' = \mathcal{H}_e.$

This is ensured if det $\Lambda' = \det \Lambda$, hence if $h^{\mu}(x)$ in \mathcal{F}_{2}^{μ} satisfies

$$\frac{\partial \left(X^{0},\ldots,X^{3}\right)}{\partial \left(x^{0},\ldots,x^{3}\right)}=\frac{\partial \left(h^{0}(x),\ldots,h^{3}(x)\right)}{\partial \left(x^{0},\ldots,x^{3}\right)}=1.$$

The final form-invariant extended Hamiltonian that is compatible with the canonical transformation rules now writes for the x reference frame

$$\begin{aligned} \mathcal{H}_{\mathrm{e,GR}}\left(\tilde{r},\gamma,\tilde{t}\right) &= -\tilde{t}_{\alpha}^{\ \beta} \frac{\partial x^{\alpha}}{\partial y^{\beta}} - \frac{1}{4} \tilde{r}_{\eta}^{\ \alpha\xi\mu} r^{\eta}_{\ \alpha\xi\mu} \\ &+ \frac{1}{2} \tilde{r}_{\eta}^{\ \alpha\xi\mu} \left(\frac{\partial \gamma^{\eta}_{\alpha\mu}}{\partial x^{\xi}} + \frac{\partial \gamma^{\eta}_{\alpha\xi}}{\partial x^{\mu}} + \gamma^{k}_{\ \alpha\mu} \gamma^{\eta}_{\ k\xi} - \gamma^{k}_{\ \alpha\xi} \gamma^{\eta}_{\ k\mu} \right) \end{aligned}$$

The canonical equation for the connection coefficients follows as

$$\frac{\partial \gamma^{\eta}_{\ \alpha\xi}}{\partial x^{\mu}} = \frac{\partial \mathcal{H}_{\mathrm{e,GR}}}{\partial \tilde{r}_{\eta}^{\ \alpha\xi\mu}} = -\frac{1}{2} r^{\eta}_{\ \alpha\xi\mu} + \frac{1}{2} \left(\frac{\partial \gamma^{\eta}_{\ \alpha\mu}}{\partial x^{\xi}} + \frac{\partial \gamma^{\eta}_{\ \alpha\xi}}{\partial x^{\mu}} + \gamma^{k}_{\ \alpha\mu} \gamma^{\eta}_{\ k\xi} - \gamma^{k}_{\ \alpha\xi} \gamma^{\eta}_{\ k\mu} \right)$$

Solved for $r^{\eta}_{\alpha \xi \mu}$ one finds exactly the representation of the

Riemann curvature tensor

$$r^{\eta}_{\ \alpha\xi\mu} = \frac{\partial\gamma^{\eta}_{\ \alpha\mu}}{\partial x^{\xi}} - \frac{\partial\gamma^{\eta}_{\ \alpha\xi}}{\partial x^{\mu}} + \gamma^{k}_{\ \alpha\mu}\gamma^{\eta}_{\ k\xi} - \gamma^{k}_{\ \alpha\xi}\gamma^{\eta}_{\ k\mu}$$

It is manifestly skew-symmetric in the indices ξ and $\mu.$

We observe:

The quantity rⁿ_{αξµ} — that was formally introduced setting up the generating function F^μ₂ — turns out to be the Riemann tensor.
 The CT requirement for rⁿ_{αξµ} to constitute a tensor is satisfied.

The canonical equation for the connection coefficients follows as

$$\frac{\partial \gamma^{\eta}_{\ \alpha\xi}}{\partial x^{\mu}} = \frac{\partial \mathcal{H}_{\mathrm{e,GR}}}{\partial \tilde{r}_{\eta}^{\ \alpha\xi\mu}} = -\frac{1}{2} r^{\eta}_{\ \alpha\xi\mu} + \frac{1}{2} \left(\frac{\partial \gamma^{\eta}_{\ \alpha\mu}}{\partial x^{\xi}} + \frac{\partial \gamma^{\eta}_{\ \alpha\xi}}{\partial x^{\mu}} + \gamma^{k}_{\ \alpha\mu} \gamma^{\eta}_{\ k\xi} - \gamma^{k}_{\ \alpha\xi} \gamma^{\eta}_{\ k\mu} \right)$$

Solved for $r^\eta_{\ lpha\xi\mu}$ one finds exactly the representation of the

Riemann curvature tensor

$$r^{\eta}_{\alpha\xi\mu} = \frac{\partial\gamma^{\eta}_{\alpha\mu}}{\partial x^{\xi}} - \frac{\partial\gamma^{\eta}_{\alpha\xi}}{\partial x^{\mu}} + \gamma^{k}_{\ \alpha\mu}\gamma^{\eta}_{\ k\xi} - \gamma^{k}_{\ \alpha\xi}\gamma^{\eta}_{\ k\mu}$$

It is manifestly skew-symmetric in the indices ξ and μ .

We observe:

The quantity r^η_{αξµ} — that was formally introduced setting up the generating function F^μ₂ — turns out to be the Riemann tensor.
 The CT requirement for r^η — to constitute a tensor is satisfied.

The canonical equation for the connection coefficients follows as

$$\frac{\partial \gamma^{\eta}_{\ \alpha\xi}}{\partial x^{\mu}} = \frac{\partial \mathcal{H}_{\mathrm{e,GR}}}{\partial \tilde{r}_{\eta}^{\ \alpha\xi\mu}} = -\frac{1}{2} r^{\eta}_{\ \alpha\xi\mu} + \frac{1}{2} \left(\frac{\partial \gamma^{\eta}_{\ \alpha\mu}}{\partial x^{\xi}} + \frac{\partial \gamma^{\eta}_{\ \alpha\xi}}{\partial x^{\mu}} + \gamma^{k}_{\ \alpha\mu} \gamma^{\eta}_{\ k\xi} - \gamma^{k}_{\ \alpha\xi} \gamma^{\eta}_{\ k\mu} \right)$$

Solved for $r^\eta_{\ lpha\xi\mu}$ one finds exactly the representation of the

Riemann curvature tensor

$$r^{\eta}_{\ \alpha\xi\mu} = \frac{\partial\gamma^{\eta}_{\ \alpha\mu}}{\partial x^{\xi}} - \frac{\partial\gamma^{\eta}_{\ \alpha\xi}}{\partial x^{\mu}} + \gamma^{k}_{\ \alpha\mu}\gamma^{\eta}_{\ k\xi} - \gamma^{k}_{\ \alpha\xi}\gamma^{\eta}_{\ k\mu}$$

It is manifestly skew-symmetric in the indices ξ and $\mu.$

We observe:

The quantity r^η_{αξμ} — that was formally introduced setting up the generating function F^μ₂ — turns out to be the Riemann tensor.
 The CT requirement for r^η_{αξμ} to constitute a tensor is satisfied.

The canonical equation for the connection coefficients follows as

$$\frac{\partial \gamma^{\eta}_{\ \alpha\xi}}{\partial x^{\mu}} = \frac{\partial \mathcal{H}_{\mathrm{e,GR}}}{\partial \tilde{r}_{\eta}^{\ \alpha\xi\mu}} = -\frac{1}{2} r^{\eta}_{\ \alpha\xi\mu} + \frac{1}{2} \left(\frac{\partial \gamma^{\eta}_{\ \alpha\mu}}{\partial x^{\xi}} + \frac{\partial \gamma^{\eta}_{\ \alpha\xi}}{\partial x^{\mu}} + \gamma^{k}_{\ \alpha\mu} \gamma^{\eta}_{\ k\xi} - \gamma^{k}_{\ \alpha\xi} \gamma^{\eta}_{\ k\mu} \right)$$

Solved for $r^{\eta}_{\ \alpha\xi\mu}$ one finds exactly the representation of the

Riemann curvature tensor

$$r^{\eta}_{\ \alpha\xi\mu} = \frac{\partial\gamma^{\eta}_{\ \alpha\mu}}{\partial x^{\xi}} - \frac{\partial\gamma^{\eta}_{\ \alpha\xi}}{\partial x^{\mu}} + \gamma^{k}_{\ \alpha\mu}\gamma^{\eta}_{\ k\xi} - \gamma^{k}_{\ \alpha\xi}\gamma^{\eta}_{\ k\mu}$$

It is manifestly skew-symmetric in the indices ξ and $\mu.$

We observe:

- The quantity $r^{\eta}_{\alpha\xi\mu}$ that was formally introduced setting up the generating function \mathcal{F}^{μ}_2 turns out to be the Riemann tensor.
- The CT requirement for $r^{\eta}_{\alpha\xi\mu}$ to constitute a tensor is satisfied.

The canonical equation for the connection coefficients follows as

$$\frac{\partial \gamma^{\eta}_{\ \alpha\xi}}{\partial x^{\mu}} = \frac{\partial \mathcal{H}_{\mathrm{e,GR}}}{\partial \tilde{r}_{\eta}^{\ \alpha\xi\mu}} = -\frac{1}{2}r^{\eta}_{\ \alpha\xi\mu} + \frac{1}{2} \left(\frac{\partial \gamma^{\eta}_{\ \alpha\mu}}{\partial x^{\xi}} + \frac{\partial \gamma^{\eta}_{\ \alpha\xi}}{\partial x^{\mu}} + \gamma^{k}_{\ \alpha\mu}\gamma^{\eta}_{\ k\xi} - \gamma^{k}_{\ \alpha\xi}\gamma^{\eta}_{\ k\mu} \right)$$

Solved for $r^\eta_{\ lpha\xi\mu}$ one finds exactly the representation of the

Riemann curvature tensor

$$r^{\eta}_{\ \alpha\xi\mu} = \frac{\partial\gamma^{\eta}_{\ \alpha\mu}}{\partial x^{\xi}} - \frac{\partial\gamma^{\eta}_{\ \alpha\xi}}{\partial x^{\mu}} + \gamma^{k}_{\ \alpha\mu}\gamma^{\eta}_{\ k\xi} - \gamma^{k}_{\ \alpha\xi}\gamma^{\eta}_{\ k\mu}$$

It is manifestly skew-symmetric in the indices ξ and $\mu.$

We observe:

- The quantity $r^{\eta}_{\alpha\xi\mu}$ that was formally introduced setting up the generating function \mathcal{F}^{μ}_2 turns out to be the Riemann tensor.
- The CT requirement for $r^{\eta}_{\alpha\xi\mu}$ to constitute a tensor is satisfied.

Second canonical equation

The second canonical equation follows as

$$\frac{\partial \tilde{r}_{\kappa}{}^{\tau\sigma\alpha}}{\partial x^{\alpha}} = -\frac{\partial \mathcal{H}_{\mathrm{e,GR}}}{\partial \gamma^{\kappa}{}_{\tau\sigma}} = \gamma^{\beta}{}_{\kappa\alpha} \tilde{r}_{\beta}{}^{\tau\sigma\alpha} - \gamma^{\tau}{}_{\alpha\beta} \tilde{r}_{\kappa}{}^{\beta\sigma\alpha}.$$

This equation is actually a tensor equation

$$\begin{split} (\tilde{r}_{\kappa}{}^{\tau\sigma\alpha})_{;\alpha} &= \gamma^{\sigma}{}_{\alpha\beta}\tilde{r}_{\kappa}{}^{\tau\beta\alpha} \\ &= \frac{1}{2} \left(\gamma^{\sigma}{}_{\alpha\beta} - \gamma^{\sigma}{}_{\beta\alpha} \right) \tilde{r}_{\kappa}{}^{\tau\beta\alpha} \\ &= s^{\sigma}{}_{\alpha\beta}\tilde{r}_{\kappa}{}^{\tau\beta\alpha} \end{split}$$

with $s^{\sigma}_{\alpha\beta}$ the torsion tensor.

 ↔ For a torsion-free space-time, the canonical equation states that the covariant divergence of the Riemann tensor vanishes

$$(r_{\kappa}^{\ \tau\sigma\alpha})_{;\alpha}=0.$$

Second canonical equation

The second canonical equation follows as

$$\frac{\partial \tilde{r}_{\kappa}{}^{\tau\sigma\alpha}}{\partial x^{\alpha}} = -\frac{\partial \mathcal{H}_{\mathrm{e,GR}}}{\partial \gamma^{\kappa}{}_{\tau\sigma}} = \gamma^{\beta}{}_{\kappa\alpha} \tilde{r}_{\beta}{}^{\tau\sigma\alpha} - \gamma^{\tau}{}_{\alpha\beta} \tilde{r}_{\kappa}{}^{\beta\sigma\alpha}.$$

This equation is actually a tensor equation

$$\begin{split} (\tilde{r}_{\kappa}{}^{\tau\sigma\alpha})_{;\alpha} &= \gamma^{\sigma}{}_{\alpha\beta}\tilde{r}_{\kappa}{}^{\tau\beta\alpha} \\ &= \frac{1}{2} \left(\gamma^{\sigma}{}_{\alpha\beta} - \gamma^{\sigma}{}_{\beta\alpha} \right) \tilde{r}_{\kappa}{}^{\tau\beta\alpha} \\ &= s^{\sigma}{}_{\alpha\beta}\tilde{r}_{\kappa}{}^{\tau\beta\alpha} \end{split}$$

with $s^{\sigma}_{\alpha\beta}$ the torsion tensor.

 ↔ For a torsion-free space-time, the canonical equation states that the covariant divergence of the Riemann tensor vanishes

$$(r_{\kappa}^{\ \tau\sigma\alpha})_{;\alpha}=0.$$

Second canonical equation

The second canonical equation follows as

$$\frac{\partial \tilde{r}_{\kappa}{}^{\tau\sigma\alpha}}{\partial x^{\alpha}} = -\frac{\partial \mathcal{H}_{\mathrm{e,GR}}}{\partial \gamma^{\kappa}{}_{\tau\sigma}} = \gamma^{\beta}{}_{\kappa\alpha} \tilde{r}_{\beta}{}^{\tau\sigma\alpha} - \gamma^{\tau}{}_{\alpha\beta} \tilde{r}_{\kappa}{}^{\beta\sigma\alpha}.$$

This equation is actually a tensor equation

$$\begin{split} (\tilde{r}_{\kappa}{}^{\tau\sigma\alpha})_{;\alpha} &= \gamma^{\sigma}{}_{\alpha\beta}\tilde{r}_{\kappa}{}^{\tau\beta\alpha} \\ &= \frac{1}{2} \left(\gamma^{\sigma}{}_{\alpha\beta} - \gamma^{\sigma}{}_{\beta\alpha} \right) \tilde{r}_{\kappa}{}^{\tau\beta\alpha} \\ &= s^{\sigma}{}_{\alpha\beta}\tilde{r}_{\kappa}{}^{\tau\beta\alpha} \end{split}$$

with $s^{\sigma}_{\alpha\beta}$ the torsion tensor.

 ✓→ For a torsion-free space-time, the canonical equation states that the covariant divergence of the Riemann tensor vanishes

$$(r_{\kappa}^{\ \tau\sigma\alpha})_{;\alpha}=0.$$
Form-invariant extended Lagrangian $\mathcal{L}_{\rm e,GR}$

With $r^{\eta}_{\alpha\xi\mu}$ expressed in terms of the $\gamma^{\eta}_{\alpha\mu}$ and their derivatives, the extended Lagrangian $\mathcal{L}_{e,GR}$ can be set up as the Legendre transform

Form-invariant extended Lagrangian in classical vacuum

$$\begin{split} \mathcal{L}_{\mathrm{e,GR}} \left(\gamma^{\eta}_{\ \alpha\xi}, \frac{\partial \gamma^{\eta}_{\ \alpha\xi}}{\partial x^{\nu}}, \frac{\partial x^{\mu}}{\partial y^{\nu}} \right) &= \tilde{r}_{\eta}^{\ \alpha\xi\mu} \frac{\partial \gamma^{\eta}_{\ \alpha\xi}}{\partial x^{\mu}} - \tilde{t}_{\alpha}^{\ \beta} \frac{\partial x^{\alpha}}{\partial y^{\beta}} - \mathcal{H}_{\mathrm{e,GR}} \\ &= \frac{1}{4} \tilde{r}_{\eta}^{\ \alpha\xi\mu} r^{\eta}_{\ \alpha\xi\mu} - \frac{1}{2} \tilde{r}_{\eta}^{\ \alpha\xi\mu} \left(\frac{\partial \gamma^{\eta}_{\ \alpha\mu}}{\partial x^{\xi}} - \frac{\partial \gamma^{\eta}_{\ \alpha\xi}}{\partial x^{\mu}} + \gamma^{k}_{\ \alpha\mu} \gamma^{\eta}_{\ k\xi} - \gamma^{k}_{\ \alpha\xi} \gamma^{\eta}_{\ k\mu} \right) \\ &= -\frac{1}{4} r_{\eta}^{\ \alpha\xi\mu} r^{\eta}_{\ \alpha\xi\mu} \det \Lambda \\ &= -\frac{1}{4} g_{\kappa\eta} g^{\beta\alpha} g^{\lambda\xi} g^{\zeta\mu} \left(r^{\kappa}_{\ \beta\lambda\zeta} r^{\eta}_{\ \alpha\xi\mu} \right) \det \Lambda \end{split}$$

 $\rightsquigarrow \mathcal{L}_{e,GR}$ is a particular quadratic function of the Riemann tensor.

Form-invariant extended Lagrangian $\mathcal{L}_{\rm e,GR}$

With $r^{\eta}_{\alpha\xi\mu}$ expressed in terms of the $\gamma^{\eta}_{\alpha\mu}$ and their derivatives, the extended Lagrangian $\mathcal{L}_{e,GR}$ can be set up as the Legendre transform

Form-invariant extended Lagrangian in classical vacuum

$$\begin{split} \mathcal{L}_{\mathrm{e,GR}} \left(\gamma^{\eta}_{\ \alpha\xi}, \frac{\partial \gamma^{\eta}_{\ \alpha\xi}}{\partial x^{\nu}}, \frac{\partial x^{\mu}}{\partial y^{\nu}} \right) &= \tilde{r}_{\eta}^{\ \alpha\xi\mu} \frac{\partial \gamma^{\eta}_{\ \alpha\xi}}{\partial x^{\mu}} - \tilde{t}_{\alpha}^{\ \beta} \frac{\partial x^{\alpha}}{\partial y^{\beta}} - \mathcal{H}_{\mathrm{e,GR}} \\ &= \frac{1}{4} \tilde{r}_{\eta}^{\ \alpha\xi\mu} r^{\eta}_{\ \alpha\xi\mu} - \frac{1}{2} \tilde{r}_{\eta}^{\ \alpha\xi\mu} \left(\frac{\partial \gamma^{\eta}_{\ \alpha\mu}}{\partial x^{\xi}} - \frac{\partial \gamma^{\eta}_{\ \alpha\xi}}{\partial x^{\mu}} + \gamma^{k}_{\ \alpha\mu} \gamma^{\eta}_{\ k\xi} - \gamma^{k}_{\ \alpha\xi} \gamma^{\eta}_{\ k\mu} \right) \\ &= -\frac{1}{4} r_{\eta}^{\ \alpha\xi\mu} r^{\eta}_{\ \alpha\xi\mu} \det \Lambda \\ &= -\frac{1}{4} g_{\kappa\eta} g^{\beta\alpha} g^{\lambda\xi} g^{\zeta\mu} \left(r^{\kappa}_{\ \beta\lambda\zeta} r^{\eta}_{\ \alpha\xi\mu} \right) \det \Lambda \end{split}$$

 $\rightsquigarrow \mathcal{L}_{e,GR}$ is a particular quadratic function of the Riemann tensor.

- The gauge principle can be applied as well to theories that are (globally) form-invariant under Lorentz transformations
- The theories can be rendered form-invariant under the corresponding local group by introducing connection coefficients $\gamma^{\eta}_{\ \alpha\xi}$ as the respective gauge quantities.
- The canonical formalism yields unambiguously a Hamiltonian that describes the dynamics of the "displacement fields" $\gamma^{\eta}_{\ \alpha \epsilon}$
- The resulting theories maintain the
 - action principle
 - general principle of relativity
 - principle of scale invariance, hence the theories are form-invariant under transformations of the local scales of the space time manifold.

- The gauge principle can be applied as well to theories that are (globally) form-invariant under Lorentz transformations
- The theories can be rendered form-invariant under the corresponding local group by introducing connection coefficients $\gamma^{\eta}_{\ \alpha\xi}$ as the respective gauge quantities.
- The canonical formalism yields unambiguously a Hamiltonian that describes the dynamics of the "displacement fields" γ^η_{αξ}
 The resulting theories maintain the
 - action principle
 - general principle of relativity.
 - principle of scale invariance, hence the theories are form-invariant under transformations of the local scales of the space time manifold.

- The gauge principle can be applied as well to theories that are (globally) form-invariant under Lorentz transformations
- The theories can be rendered form-invariant under the corresponding local group by introducing connection coefficients $\gamma^{\eta}_{\ \alpha\xi}$ as the respective gauge quantities.
- The canonical formalism yields unambiguously a Hamiltonian that describes the dynamics of the "displacement fields" γ^η_{αξ}
 The resulting theories maintain the
 - action principle
 - general principle of relativity.
 - principle of scale invariance, hence the theories are form-invariant under transformations of the local scales of the space time manifold.

- The gauge principle can be applied as well to theories that are (globally) form-invariant under Lorentz transformations
- The theories can be rendered form-invariant under the corresponding local group by introducing connection coefficients $\gamma^{\eta}_{\ \alpha\xi}$ as the respective gauge quantities.
- The canonical formalism yields unambiguously a Hamiltonian that describes the dynamics of the "displacement fields" $\gamma^{\eta}_{\alpha\epsilon}$.
- The resulting theories maintain the
 - action principle
 - general principle of relativity
 - principle of scale invariance, hence the theories are form-invariant under transformations of the length scales of the space-time manifold.

- The gauge principle can be applied as well to theories that are (globally) form-invariant under Lorentz transformations
- The theories can be rendered form-invariant under the corresponding local group by introducing connection coefficients $\gamma^{\eta}_{\ \alpha\xi}$ as the respective gauge quantities.
- The canonical formalism yields unambiguously a Hamiltonian that describes the dynamics of the "displacement fields" $\gamma^{\eta}_{\ \alpha\epsilon}$.
- The resulting theories maintain the
 - action principle
 - general principle of relativity
 - principle of scale invariance, hence the theories are form-invariant under transformations of the length scales of the space-time manifold.

- The gauge principle can be applied as well to theories that are (globally) form-invariant under Lorentz transformations
- The theories can be rendered form-invariant under the corresponding local group by introducing connection coefficients $\gamma^{\eta}_{\ \alpha\xi}$ as the respective gauge quantities.
- The canonical formalism yields unambiguously a Hamiltonian that describes the dynamics of the "displacement fields" $\gamma^{\eta}_{\ \alpha\epsilon}$.
- The resulting theories maintain the
 - action principle
 - general principle of relativity
 - principle of scale invariance, hence the theories are form-invariant under transformations of the length scales of the space-time manifold.

- The gauge principle can be applied as well to theories that are (globally) form-invariant under Lorentz transformations
- The theories can be rendered form-invariant under the corresponding local group by introducing connection coefficients $\gamma^{\eta}_{\ \alpha\xi}$ as the respective gauge quantities.
- The canonical formalism yields unambiguously a Hamiltonian that describes the dynamics of the "displacement fields" $\gamma^{\eta}_{\alpha\epsilon}$.
- The resulting theories maintain the
 - action principle
 - general principle of relativity
 - principle of scale invariance, hence the theories are form-invariant under transformations of the length scales of the space-time manifold.

- The gauge principle can be applied as well to theories that are (globally) form-invariant under Lorentz transformations
- The theories can be rendered form-invariant under the corresponding local group by introducing connection coefficients $\gamma^{\eta}_{\ \alpha\xi}$ as the respective gauge quantities.
- The canonical formalism yields unambiguously a Hamiltonian that describes the dynamics of the "displacement fields" $\gamma^{\eta}_{\alpha\epsilon}$.
- The resulting theories maintain the
 - action principle
 - general principle of relativity
 - principle of scale invariance, hence the theories are form-invariant under transformations of the length scales of the space-time manifold.

- The theories are unambiguous in the sense that no other functions of the Riemann tensor emerge from the canonical transformation formalism.
- In contrast to standard GR that is based on the postulated Einstein-Hilbert action, the Lagrangian $\mathcal{L}_{e,GR}$ is derived.
- For the source-free case ($\mathcal{L}_{M} \equiv 0$), the theories are compatible with standard GR as they possess the Schwarzschild metric as a solution. For $\mathcal{L}_{M} \neq 0$, the solutions differ from that of standard GR.
- A quantized theory that is based on the Lagrangian $\mathcal{L}_{e,\mathrm{GR}}$ is renormalizable as the coupling constant to \mathcal{L}_M is dimensionless.

- The theories are unambiguous in the sense that no other functions of the Riemann tensor emerge from the canonical transformation formalism.
- In contrast to standard GR that is based on the postulated Einstein-Hilbert action, the Lagrangian $\mathcal{L}_{e,\mathrm{GR}}$ is derived.
- For the source-free case ($\mathcal{L}_{\mathrm{M}} \equiv 0$), the theories are compatible with standard GR as they possess the Schwarzschild metric as a solution. For $\mathcal{L}_{\mathrm{M}} \neq 0$, the solutions differ from that of standard GR.
- A quantized theory that is based on the Lagrangian $\mathcal{L}_{e,\mathrm{GR}}$ is renormalizable as the coupling constant to \mathcal{L}_M is dimensionless.

- The theories are unambiguous in the sense that no other functions of the Riemann tensor emerge from the canonical transformation formalism.
- In contrast to standard GR that is based on the postulated Einstein-Hilbert action, the Lagrangian $\mathcal{L}_{e,\mathrm{GR}}$ is derived.
- For the source-free case ($\mathcal{L}_{\mathrm{M}} \equiv 0$), the theories are compatible with standard GR as they possess the Schwarzschild metric as a solution. For $\mathcal{L}_{\mathrm{M}} \neq 0$, the solutions differ from that of standard GR.
- A quantized theory that is based on the Lagrangian $\mathcal{L}_{e,GR}$ is renormalizable as the coupling constant to \mathcal{L}_M is dimensionless.

- The theories are unambiguous in the sense that no other functions of the Riemann tensor emerge from the canonical transformation formalism.
- In contrast to standard GR that is based on the postulated Einstein-Hilbert action, the Lagrangian $\mathcal{L}_{e,\mathrm{GR}}$ is derived.
- For the source-free case ($\mathcal{L}_{\mathrm{M}} \equiv 0$), the theories are compatible with standard GR as they possess the Schwarzschild metric as a solution. For $\mathcal{L}_{\mathrm{M}} \neq 0$, the solutions differ from that of standard GR.
- A quantized theory that is based on the Lagrangian $\mathcal{L}_{e,GR}$ is renormalizable as the coupling constant to \mathcal{L}_M is dimensionless.

- The theories are unambiguous in the sense that no other functions of the Riemann tensor emerge from the canonical transformation formalism.
- In contrast to standard GR that is based on the postulated Einstein-Hilbert action, the Lagrangian $\mathcal{L}_{e,\mathrm{GR}}$ is derived.
- For the source-free case ($\mathcal{L}_{\mathrm{M}} \equiv 0$), the theories are compatible with standard GR as they possess the Schwarzschild metric as a solution. For $\mathcal{L}_{\mathrm{M}} \neq 0$, the solutions differ from that of standard GR.
- A quantized theory that is based on the Lagrangian $\mathcal{L}_{e,GR}$ is renormalizable as the coupling constant to \mathcal{L}_M is dimensionless.

- The theories are unambiguous in the sense that no other functions of the Riemann tensor emerge from the canonical transformation formalism.
- In contrast to standard GR that is based on the postulated Einstein-Hilbert action, the Lagrangian $\mathcal{L}_{e,\mathrm{GR}}$ is derived.
- For the source-free case ($\mathcal{L}_{\mathrm{M}} \equiv 0$), the theories are compatible with standard GR as they possess the Schwarzschild metric as a solution. For $\mathcal{L}_{\mathrm{M}} \neq 0$, the solutions differ from that of standard GR.
- A quantized theory that is based on the Lagrangian $\mathcal{L}_{e,GR}$ is renormalizable as the coupling constant to \mathcal{L}_M is dimensionless.

References

- Struckmeier, J., Redelbach, A., *Covariant Hamiltonian Field Theory*, Int. J. Mod. Phys. E 17 (2008), arXiv:0811.0508 [math-ph]
- Struckmeier, J., Reichau, H., General U(N) gauge transformations in the realm of covariant Hamiltonian field theory, in Exciting Interdisciplinary Physics, W. Greiner (ed.), Springer (2013), arXiv:1205.5754 [hep-th]
- Struckmeier, J., Generalized U(N) gauge transformations in the realm of the extended covariant Hamilton formalism of field theory, J. Phys. G: Nucl. Part. Phys. 40, 015007 (2013), arXiv:1206.4452 [nucl-th]
- Struckmeier, J., *General relativity as an extended canonical gauge theory*, Phys. Rev. D **91**, 085030 (2015), arXiv:1411.1558 [gr-qc]
- Struckmeier, J., Greiner, W., *Extended Lagrange and Hamilton Formalism for Point Mechanics and Covariant Hamilton Field Theory*, to be published by World Scientific, ISBN: 9789814578417