Braking index of Young Neutron Stars

Rodrigo Negreiros – Federal Fluminense University Cristian Bernal – Federal Fluminense University

Acknowledgements

Fundação Carlos Chagas Filho de Amparo à Pesquisa do Estado do Rio de Janeiro

Universidade Federal Fluminense

Conselho Nacional de Desenvolvimento Científico e Tecnológico

Some advertising....

Universidade Federal Fluminense

INSTITUTO DE FÍSICA

The microscopic "Zoo"

Neutron Stars Zoo

Neutron Star Diversity

Neutron Star Population

Neutron Star Population

Magnetic Braking Model

$$\dot{E} = \frac{d}{dt} \left(\frac{1}{2} I \Omega^2 \right) = -C \Omega^{n+1}$$

For magnetic dipole radiation (n =3)

$$-\frac{dE}{dt} = -\frac{d}{dt} \left(\frac{1}{2}I\Omega^2\right) = \frac{2}{3}R^6B^2\Omega^4\sin^2\alpha$$

Characteristic age

$$\tau = \frac{\Omega}{(n-1)\dot{\Omega}} \left[\left(\frac{\Omega}{\Omega_0}\right)^{n-1} - 1 \right] = \frac{P}{(n-1)\dot{P}} \left[1 - \left(\frac{P_0}{P}\right)^{n-1} \right]$$

Observed Data

Pulsar name	Supernova remnant	Period P(s)	Period derivative $\dot{P}(s s^{-1})$	Characteristic age $\tau(yr)$	Age t(yr)	Braking index n _{obs}	References
B0531+21	Crab	0.0331	4.23×10^{-13}	1240	960	2.51(1)	Lyne et al. 1988
J05376910	N157B	0.0161	5.18×10^{-14}	4930	2000^{+3000}_{-1000}	-1.5(1)	Middleditch et al. 2006
B0540-69	0540-69.3	0.0505	4.79×10^{-13}	1670	1000^{+660}_{-240}	2.140(9)	Nagase et al. 1990
B083345	Vela	0.0893	1.25×10^{-13}	11300	$11000\substack{+5000\\-5600}$	1.4(2)	Lyne et al. 1996
J11/196127	G292.2-0.5	0.408	4.02×10^{-12}	1610	$7100\substack{+500\\-2900}$	2.684(2)	Weltevrede et at. 2011
B150958	G320.4-1.2	0.151	1.54×10^{-12}	1550	< 21000	2.839(3)	Kaspi et al. 1994
J18460258	Kesteven 75	0.325	$7.08 imes10^{-12}$	729	1000^{+3300}_{-100}	2.65(1)	Livingstone et al. 2007
J17343333	G354.8-0.8	1.17	2.28×10^{-12}	8120	> 1300	0.9(2)	Espinoza et al. 2011

Deviations from the standard oblique rotator model

- Multipolar electromagnetic radiation ($n \ge 5$)
- Quadrupolar gravitational radiation (n = 5)
- Decay of the magnetic field, n > 3
- Radial deformation of the magnetic field lines, $1 \le n \ge 3$,
- Relativistic winds n < 3,
- Growth of an intense magnetic field submerged on neutron star crust in the hypercritical accretion phase, which re-emerge by ohmic diffusion, n < 3 (Muslimov & Page 1996, Bernal et al. 2010, 2013, Pons et al. 2012)
- Changes in the moment of inertia of the neutron star, n < 3 (Glendenning 2003, F. Weber 2010)

Deviations from the standard oblique rotator model

- Multipolar electromagnetic radiation ($n \ge 5$)
- Quadrupolar gravitational radiation (n = 5)
- Decay of the magnetic field, n > 3
- Radial deformation of the magnetic field lines, $1 \le n \ge 3$,
- Relativistic winds n < 3,
- Growth of an intense magnetic field submerged on neutron star crust in the hypercritical accretion phase, which re-emerge by ohmic diffusion, n < 3 (Muslimov & Page 1996, Bernal et al. 2010, 2013, Pons et al. 2012)</p>
- Changes in the moment of inertia of the neutron star, n < 3 (Glendenning 2003, F. Weber 2010)</p>

- A newborn neutron star may be exposed to a hyper accretion phase few moments after the supernova explosion that originated it.
- In the core-collapse scenario, the shock wave sweeps the outer layers of the progenitor until it encounters a discontinuity in density. At this point, a reverse shock is generated leading to a fallback episode which allows to deposite large amounts of material on the stellar surface.
- The magnetic field can be <u>submerged</u> on the new crust of the neutron star during such phase.
- Following these ideas it is possible to study the growth of the magnetic field, when it re-emerge from the neutron star crust, and to follow its consequences on the pulsar <u>spindown</u>

Hyper-Accretion Simulations

Hyper-Accretion Simulations

Time (s) = 0

Hyper-Accretion Simulations

$$\dot{\Omega} = -k(t)\Omega^n, \quad k(t) = kf(t)$$

$$\tau = \frac{1}{f(t)} \left[\tau_0 + \int_0^t f(t) dt \right]$$

$$n = n_* + \frac{\dot{f}(t)}{f(t)}\frac{\Omega}{\dot{\Omega}} = n_* - \frac{\dot{f}(t)}{f(t)}\frac{P}{\dot{P}}$$

$$f(t) = \epsilon + \left[1 - \exp\left(-\frac{t}{\tau_B}\right)\right]$$

Braking Index

Superfluid Decoupling*

$$rac{d}{dt}(I\Omega) = -eta\Omega^3 - N_{
m pin} - N_{
m min}$$
 $rac{d}{dt}(I_{
m sf}\Omega_{
m sf}) = N_{
m pin} + N_{
m mf},$

Superfluid Decoupling*

$$\frac{d}{dt}(I\Omega) = -\beta\Omega^3 - N_{\text{pin}} - N_{\text{mf}} \longrightarrow \text{Mutual friction}$$

$$\frac{d}{dt}(I_{\text{sf}}\Omega_{\text{sf}}) = N_{\text{pin}} + N_{\text{mf}},$$

Superfluid Decoupling*

$$\frac{\frac{d}{dt}(I\Omega) = -\beta\Omega^3 - N_{\text{pin}} - N_{\text{mf}}}{V \text{ortex Pinning}}$$

$$\frac{\frac{d}{dt}(I_{\text{sf}}\Omega_{\text{sf}}) = N_{\text{pin}} + N_{\text{mf}},$$

$$\downarrow \text{Moment of Inertia of unpaired matter}$$

$$\downarrow \text{Moment of Inertia of SF matter}$$

Superfluid Decoupling*

$$\frac{d}{dt}(I\Omega) = -\beta\Omega^3 - N_{\text{pin}} - N_{\text{mf}}$$

$$Vortex Pinning$$

$$\frac{d}{dt}(I_{\text{sf}}\Omega_{\text{sf}}) = N_{\text{pin}} + N_{\text{mf}},$$

$$\downarrow \text{Moment of Inertia of unpaired matter}$$

$$\downarrow \text{Moment of Inertia of SF matter}$$

• Considering the case in which pinning leads to: $\Omega_{sf} = 0 *$

$$\frac{l\Omega}{dt} = (\Omega_{\rm sf} - \Omega) \frac{1}{I} \frac{dI}{dt} - \beta \frac{\Omega^3}{I}$$

 To keep track of the moment of inertia changes, one need to investigate the thermal evolution.

$$\frac{\partial (Le^{2\phi})}{\partial m} = -\frac{1}{\epsilon\sqrt{1-2m/r}} \left(\epsilon_{\nu}e^{2\phi} + c_{\nu}\frac{\partial (Te^{\phi})}{\partial t}\right)$$
$$\frac{\partial (Te^{\phi})}{\partial m} = -\frac{(le^{-\phi})}{16\pi^2 r^4 \kappa \epsilon \sqrt{1-2m/r}},$$

Two neutron star modelos studied

Mass = 1.55 Msun

Superfluidity model

Superfluidity model adopted

Thermal Evolution

Collins of thestudied stars under current superfluidity model

Moment of Inertia Evolution

Coupled momen inertia evolution

Spin Evolution Hadronic Star Hybrid Star 700 450 -Canonical 650· $-\Omega_{d} = 0 \text{ hz}$ 600 $\Omega_{e} = 50 \text{ hz}$ 400 550 $\Omega_{s} = 100 \text{ hz}$ $\Omega_{st} = 150 \text{ hz}$ 500 350 $\Omega_{e} = 200 \text{ hz}$ 450 $\Omega_{s} = 250 \text{ hz}$ 400 -Canonical 300 $\Omega_{st} = 300 \text{ hz}$ $-\Omega_{\rm sf} = 0 \, \rm hz$ Ω(hz) Ω(hz) 350 $\Omega_{\rm sf} = 50 \, \rm hz$ 250 300 $-\Omega_{sf} = 100 \text{ hz}$ 250 200 $\Omega_{sf} = 150 \text{ hz}$ 200 - $\Omega_{sf} = 200 \text{ hz}$ 150 - $\Omega_{sf} = 250 \text{ hz}$ 150 100 - $-\Omega_{sf} = 300 \text{ hz}$ 50 100 -0 -10⁰ 10³ 10² 10⁴ 10-1 10¹ 10⁰ 10² 10⁻¹ 10¹ 10³ 10⁴ Age (years) Age (years)

Spin Evolution

P (s)

P-Pdot diagram

Next Steps

Include rotation and magnetic field effects

Negreiros, Schramm and Weber, Phys.Rev. D85 (2012) 104019

Conclusions

- Submerged magnetic fields may explain the existence of braking indices smaller than one.
- Superfluidity effects may also play a role in the spin-evolution of the object.
- Observation of spin properties may be used to constrain the inner composition.
- Need to explore further pairing patterns and microscopic models.

Next Steps

Include rotation and magnetic field effects

Conclusions and outlook

- There is something missing in the traditional Braking model....
- One can hope to explain the observed data by either changes in the magnetic field or the moment of inertia of the star.
- We believe that the most likely scenario involves a growing magnetic field together with changes in the moment of inertia.
- Changes in the moment of inertia may be triggered by cooling and/or spin evolution.
- Next: Include a self-consistente spin-magneto-hydro-thermal evolution.