Search for new physics at the LHC & prospects for new discoveries

Géraldine Conti (CERN) on behalf of the ATLAS and CMS collaborations

Introduction

From LHC up to now (2010 - 2012), collision energies of 7 and 8 TeV (Run1):

- An **impressive amount of searches** have been carried out in various physics areas
 - Disclaimer : not possible to show them all !
- No observation of excesses "Beyond the Standard Model (BSM)" predictions observed
 - A few legacy 2-3 or discrepancies remaining

For LHC 2015 - 2018, collision energies of 13 TeV (Run2) :

• An **ambitious program** to test further the TeV energy frontier

LHC, ATLAS and CMS

- LHC is a 27km proton accelerator and colliding ring at CERN
- The LHC Run1 dataset consists of:
 - 2010 : **≈45 pb**⁻¹ of √s=7 TeV data
 - 2011 : ≈ 5 fb⁻¹ of √s=7 TeV data
 - 2012 : ≈ 20 fb⁻¹ of √s=8 TeV data
 Tevatron got 8 fb⁻¹ of √s~2 TeV data
- ATLAS and CMS are general purpose experiments

Particle Physics Objects

http://www.fnal.gov/pub/today/archive/archive_2011/today11-04-22.html

https://twiki.cern.ch/twiki/bin/view/AtlasPublic/EventDisplaysFromHiggsSearches

Run1 : BSM Higgs searches

• The main goal of Run1 to find the **Higgs boson** was reached:

 In the Higgs sector, searches for BSM physics were performed in :

1) New Higgs decays

- Higgs to invisible particles
- Higgs to μτ (lepton flavor violation)
- ..

2) Other Higgs bosons

- Two Higgs doublet model
- Di-Higgs resonances
- Exotic Higgs
- •

Two Higgs doublet model (2HDM): 2 CP-even neutral 1 CP-odd 2 charged Higgses: Higgs: Higgses: $(m_h, m_H, m_A, m_H \pm)$ Motivated by SUSY, axion models, possible to generate a baryon asymmetry of the universe of sufficient size

5

Search results in BSM Higgs (1)

Search results in BSM Higgs (2)

arXiv:1412.6663

Search results in BSM Higgs (3)

Run1 : SUSY searches

- Before Run1, supersymmetry (SUSY) was one of the most attractive BSM theories
 - Solves the hierarchy problem (m_H unstable at short distances)
 - Dark matter candidate (R-parity)
 - High-energy unification of weak, strong and EM couplings

SUPERSYMMETRY

EW-inos (χ **)** are linear combinations of these

- A natural SUSY scenario was favored because it involves a small tuning in the theory.
 - Stop needed to solve the hierarchy problem (by cancelling the top loop)
 - Gluinos and 3rd-generation squarks constrained to be quite light, O(TeV) (Higgs mass at ≈125 GeV)

- At LHC, the strategy was to look first for strongly-produced gluinos and 3rd-generation squarks
 - Should be **produced copiously** (hadron collider)

Search results in SUSY (1)

 Limits on gluino mass at ≈1.3 TeV (302 GeV pre-LHC), limits on stop mass at ≈750 GeV (for m(LSP) = 0 GeV and for the most sensitive scenario)

10

Run1 : SUSY searches

In the **absence** of strongly-produced SUSY particles in Run1, **two alternatives** became more popular :

Search results in SUSY (2)

Electroweak production : decays via W/Z bosons or sleptons

Search results in SUSY (3)

p

https://twiki.cern.ch/twiki/bin/view/AtlasPublic/SupersymmetryPublicResult

- Nice complementarity of searches covering different lifetimes
- Strongest limit on gluinos with the displaced vertices analysis (~1550 GeV)

13

Run1 : Exotics searches

Leptoquarks (carry both L and B quantum numbers) - Appear in various models	g upper q LQ e e	Long-lived particles - Appear in various models	Example given for SUSY in p.13	
RS gravitons - Randall-Sundrum (RS) model (explains hierarchy with a warped extra dimension)	$G_{\mathrm{RS}_1} o \gamma \gamma$ Di-boson mass distributions	Dark Matter - All the models try to accommodate for it	will be discussed in p.16	
Heavy gauge bosons (W',Z') - In models with extended gauge sectors to achieve gauge coupling unification	W' ightarrow WZ Di-boson mass distributions	Large Extra Dimensions - Appear in string theories (provides link to gravity missing in the SM)	Di-lepton mass distributions	
Excited fermions (couple to ordinary SM fermions) - in compositeness models	$l^* \to lZ$	Compositeness (Model) - quarks/leptons are made of more fundamental	high energy part of the di-lepton/ jet mass spectra (non-resonant)	
Multijet resonances - Appear in various models	Events with lots of jets	constituents (addresses the number of quark/lepton generation, charges and masses)		

+ searches for Higgs resonances (Vh with V=W,Z)

Search results in Exotics

https://twiki.cern.ch/twiki/pub/CMSPublic/PhysicsResultsCombined/exo-limits Moriond2015.pdf

Dark Matter Detection

Dark Matter creation

If WIMP interactions are sensitive to the spin of the nucleus, the cross section is **spin-dependent**. If not, the cross section is **spin**independent

At the LHC, look for an energetic object and missing energy

Energetic jet :

Effective Field Theory (EFT) approach

- SM-WIMP coupling via a contact interaction :
 - M_{med} = mass of the mediator
 - Q_{tr} = scale of the interaction (=invariant mass of the two χ)
- Condition : M_{med} > Q_{tr}
 - to ensure that the mediator cannot be produced directly in LHC collisions and can be integrated out with an EFT formalism
 - in the next slide : **truncated** = remove events that **do not satisfy** the condition
 - M_{med} depends on the **couplings** of the mediator to the SM/DM particles
- Interaction couplings : WIMPs-SM

WIMPs = scalars

WIMPs = Dirac fermions

Name	Initial state	Type	Operator	
C1	qq	scalar	$rac{m_q}{M_\star^2}\chi^\dagger\chiar q q$	~
C5	gg	scalar	$\frac{1}{4M_{\star}^2}\chi^{\dagger}\chi\alpha_{\rm s}(G^a_{\mu\nu})^2$	518
D1	qq	scalar	$rac{m_q}{M_\star^3} ar{\chi} \chi ar{q} q$	01
D5	qq	vector	$\frac{1}{M_\star^2} \bar{\chi} \gamma^\mu \chi \bar{q} \gamma_\mu q$	502
D8	qq	axial-vector	$\frac{1}{M_{\star}^2} \bar{\chi} \gamma^{\mu} \gamma^5 \chi \bar{q} \gamma_{\mu} \gamma^5 q$	v:15
D9	qq	tensor	$\frac{1}{M_\star^2} \bar{\chi} \sigma^{\mu\nu} \chi \bar{q} \sigma_{\mu\nu} q$	LX iv
D11	gg	scalar	$\frac{1}{4M_\star^3} \bar{\chi} \chi \alpha_{\rm s} (G^a_{\mu\nu})^2$	о Л

- EFT allows for direct comparison with (in)direct DM results
 - improvements expected for Run2 <u>http://moriond.in2p3.fr/QCD/2015/WednesdayAfternoon/Landsberg.pdf</u>

DM Search Results (1)

LHC allows for access to **low-mass WIMP scenario**, which is nicely **complementary** to other types of experiments

DM Search Results (2)

LHC has the best limits for **the whole range of WIMP masses**

DM Search Results (3)

From (Zh \rightarrow II invisible) analysis shown in page 6: arXiv:1402.3244

- WIMPs of different nature considered (scalar, vector or fermion)
- Direct detection : **spinindependent** results from searches for nuclei recoils from **elastic scattering of** WIMPs

LHC has the best limits for WIMP masses below $m_{H}/2$ (vector DM)

Run1 : A few small excesses left (1)

As of May 11th, 2015 :

Areas	ATLAS	CMS				
Higgs	- $H \rightarrow hh \rightarrow bb\gamma\gamma$ (back-up)	- Higgs to invisible (p.6)				
	- ttH	- ttH				
		- LVF H $ ightarrow au\mu$ (back-up)				
SUSY	- Z+MET	- Di-lepton mass edge				
		- Multilepton 3I+ $ au$ (back-up)				
Exotics	- Dark Matter (p.16)	- Di-jet mass search				
	- Same-sign + b-jets	- Di-lepton mass search				
	 Type III Seesaw heavy 	- Di-boson mass search				
	leptons (back-up)	 Heavy neutrinos and right-handed 				
		W bosons				

Analyses grouped together with color codes will be presented together in the following.
 For others, you can find information in the back-up slides.

SUSY Excesses (2)

2 leptons (on/off-Z) + jets + missing energy

 ATLAS has an excess ≈at the mass of the Z for the electron channel

ATLAS does not see an excess in the edge

Both experiments have excesses, but not at the same place in m_{II} mass !

Higgs/Exotics Excesses (3)

ATLAS/CMS ttH

and ATLAS exotic same-sign+b-jets

Exotics Excess (4)

Heavy neutrinos and W bosons with right-handed couplings

arXiv:1407.3683

Exotics Excesses (5)

Exotics Excesses (5bis)

LHC Run 2, ATLAS and CMS

- 18-month LHC shutdown to consolidate and add new components
- LHC main improvements :
 - centre of mass energy increased to Vs=13 TeV
- ATLAS main improvements :
 - Muon system completion with chambers in barrel/endcap transition
 - Additional innermost pixel layer (IBL) to improve tracking, vertexing and b-tagging for high pileup, and smaller radius Be beam pipe

CMS main improvements :

- new HCAL Outer Barrel photo-detectors
- Muon system completed (fourth disk for RPC endcap region) and 72 CSC chambers added (on top of the 468 existing ones)

≈10 fb⁻¹ of

data in 2015

Run2 (early data) : SUSY searches

 Gluino pair production : large production increase (factor ~15 for 2 TeV gluinos, ~50 for 3 TeV gluinos)

Run2 (early data) : Exotics searches

- Dijet resonances search
 - With 1 fb⁻¹ of 14 TeV data, 5 σ discovery potential for :
 - excited quarks up to ≈4 TeV
 - quantum black holes up to ≈7 TeV

Run2 (and further) : Higgs searches

- Still quite some room left from Run1 results for BSM decays of the Higgs
- Both $H^+ \rightarrow \tau \nu$ and $A \rightarrow \tau \tau$ will have better sensitivity with 2-5 fb⁻¹ of data

- Further into the future :
 - LHC Run3 planned in 2020-2022 (300 fb⁻¹ of data)
 - High-luminosity LHC (HL-LHC) in ≈2025-2035 (3000 fb⁻¹ of data)

Dark Matter further into the future

One order of magnitude gain in DM-nucleon cross section at m_{χ} =1 GeV 31

Alternatives : Intensity Frontier

400 GeV protons SHiP fixed target experiment at the SPS? from SPS SHiP ideal for $\nu^{}_{\tau}$ physics TT41 Target T40 $(D_s \rightarrow \tau v_{\tau})$ arXiv:1504.04956 TI 8 Mobile dum: LSS2 block (TED SPS $c \rightarrow D_{\circ}^{+}$ I HC $\bar{\nu}_{\tau}$ LSS1 Hidden Sector decay volume πio TI 2 Explore heavy neutral leptons (HNL) • Spectrometer with masses below O(10)GeV : Particle ID **CHARM** Target/ v_{τ} detecto hadron absorber HNL coupling to SM U² arXiv:1504.04855 Active muon shield NuTeV **PS191 BBN** SHiP μ Ds 10 μ Seesaw v_{μ} N_{2.3} 10⁻¹¹ υ^{'H} /H 10^{-1} HNL mass (GeV) 10 * Detector construction, 5 years of data taking D N_{2,3} (from 2022) and data analysis of 2*10²⁰ pot v_{μ} υ×́H H N_{22} 32 υ× Ve can be achieved in ~10 years

Conclusions

- New physics searched for in a lot of places during Run1
 - Not possible to highlight all of them today
- The Higgs boson seems to be the **one predicted by the SM**
 - Still room for new decays, new Higgses,...

- "Natural" SUSY has suffered a lot with Run1, split-SUSY is now gaining more attention for Run2
 - Analogy to EWSB model (by theorist N. Craig) ? minimal SU(2)xU(1) structure of the Glashow model (1961) is correct, but the model was missing a scalar field (Higgs) for EWSB (Weinberg in 1967) → non-minimal realization in nature
- A few excesses remaining, some of them reported by both ATLAS/CMS !
- **pp collisions at 13 TeV** of Run2 will happen very shortly.
 - confirm/rule out the Run1 excesses
 - Explore a new window in energy with the 2015 dataset, sensitivities will increase significantly in particular in high mass regions !
 33

Back-Up Slides

LHC, ATLAS and CMS

The LHC Program

LHC goal for 2015 and for Run 2 and 3

Integrated luminosity goal: 2015 : 10 fb⁻¹

Run2: ~100-120 fb⁻¹ (better estimation by end of 2015)

300 fb⁻¹ before LS3

ATLAS and CMS : More details

• The main differences between the ATLAS and CMS detectors are:

	ATLAS	CMS
B-field	2T solenoid (Inner Tracker inside, HCAL outside of B-field) + toroid: 0.5T (barrel), 1T (endcap) → good for jet resolution, worse for e/γ	4T solenoid + return yoke (ECAL and part of HCAL inside) → good for e/γ resolution, worse for jet
Tracker π with pT=1GeV a with pT=5GeV	Si pixels and strips + transition radiation tracker \rightarrow high resolution, granularity, "continuous" tracking at large radii $\sigma/p_T \sim 5 \times 10^{-4}p_T + 0.01$ 84% reco efficiency (material budget, B-field) 90% reco efficiency	Si pixels and strips (fully Silicon) \rightarrow high resolution, granularity $\sigma/p_T \sim 1.5 \times 10^{-4} p_T + 0.005$ 80% reco efficiency 85% reco efficiency
EIVI CAIO	Liquid argon + Pb absorbers \rightarrow high granularity	PDWO ₄ crystals \rightarrow high resolution $\alpha/E \sim 3\%/\sqrt{E + 0.003}$
100 GeV γ 50 GeV e	1.0 - 1.5% E resolution 1.3 - 2.3% E resolution	0.8% E resolution 2.0% E resolution
Had calo	Fe + scintillator / Cu+Lar (10λ) σ /Ε ~ 50%/VE + 0.03 GeV	Brass + scintillator (7λ + catcher) σ/Ε ~ 100%/VE + 0.05 GeV
1000 GeV jets	2% 20 GeV	5% 40 CoV
	20 Gev	40 Gev
Muon	σ/p_T~2% at 50 GeV to 10% at 1 TeV (Inner Tracker + muon system)	σ/p _T ~1% at 50 GeV to 10% at 1 TeV (Inner Tracker + muon system) 37

The ATLAS Detector

The CMS Detector

Particle Physics Object Detection

Searches for SM Deviations

Run1 : Search for deviations from the SM

In the **Standard Model**,

 WW production cross section that was puzzling during Run1

> NNLO theory calculations could explain the discrepancy observed

Run1 : Standard Model results

Anomalous couplings :

Quartic couplings in the SM :

• Add anomalous quartic couplings via effective Lagrangian (independent of the SM ones)

More material on mono-object searches

Dark Matter Searches at LHC (3)

DM annihilation rate :

Mono-photon : Limits on SUSY

General search

Susy Exotics

Run1 : Model-Independent General Search

Data 2012

Events

102

Triboson

Z+γ₁

ATLAS Preliminary

W+light jets

Diboson

L dt

= 20.3 fb⁻¹. \s = 8 Te\

single top+Z

fake leptons

tt+V

Higgs (125 GeV)

W+v²

- 697 final states put together
- Compare data to backgrounds
 - Number of events
 - Distributions, like missing energy

More material on excesses

2 leptons (on/off-Z) + jets + missing energy (ATLAS)

CMS ttH

Majorana Neutrinos

No excess observed in ATLAS nor CMS

CMS Exotics

Searches for resonances

VV Combined Results

Full combination of X→VV results in the Bulk Graviton model

- Improves sensitivity to new physics!
- Best sensitivity from lepton+ET^{miss}+V-jet channel over the whole mass range, followed by the allhadronic channel at higher masses
- Good sensitivity from the 2 leptons+V-jet channel at low masses
- Interesting deviation from expected background (1.3o) in all channels at M ~ 1.8 - 2 TeV!

https://indico.cern.ch/event/364031/session/30/contribution/58/material/slides/0.pdf

CMS Higgs excess

ATLAS result in preparation

ATLAS Exotics Excess

Type III See-Saw heavy leptons in 2L+2J final state :

To appear soon on arXiv

No excess observed by CMS (3L final state):

CMS PAS EXO-14-001

ATLAS Higgs excess

• Di-Higgs resonances $G^* \to HH \to bbbb(\text{or } bb\gamma\gamma)$

bbyy final state :

CMS SUSY Excess

Multilepton 3I+ τ

• Right-handed stau lepton is (N)NLSP

57

•	• Signal regions with off-shell Z,	Missing energy (GeV)	H _T >200 GeV, observed	H _T >200GeV, expected	H _T <200 GeV, observed	H _T <200 GeV, expected
		> 100	1	0.25±0.11	3	0.60±0.24
Ŵ	without h-jets	[50,100]	1	0.29±0.13	4	2.1±0.5
		[0,50]	0	0.27±0.12	15	7.5±2.0

 3σ for NLSP case

 2σ for NNLSP case

Run1 : ATLAS SUSY searches

ATLAS SUSY Searches* - 95% CL Lower Limits

Status: Feb 2015

Model	e, μ, τ, γ	/ Jets	$E_{\mathrm{T}}^{\mathrm{miss}}$	∫ <i>L dt</i> [fb	⁻¹] Mass limit	Reference
$\begin{array}{c} \text{MSUGRA/CMSSM}\\ \overline{q}\bar{q}, \overline{q} \rightarrow q \overline{k}_{1}^{0} \\ \overline{q} q \overline{\gamma}, \overline{q} \rightarrow q \overline{k}_{1}^{0} \\ (\text{com}_{1} \overline{q} \overline{\gamma}, \overline{q} \rightarrow q \overline{k}_{1}^{0} \\ \overline{q} \overline{q} \overline{\gamma}, \overline{q} \rightarrow q \overline{k}_{1}^{0} \\ \overline{g} \overline{g}, \overline{g} \rightarrow q q \overline{k}_{1}^{1} \rightarrow q \overline{q} W \\ \mathcal{G} \qquad \overline{g} \overline{g}, \overline{g} \rightarrow q q \overline{k}_{1}^{1} \rightarrow q \overline{q} W \\ \mathcal{G} \qquad \overline{g} \overline{g}, \overline{g} \rightarrow q q \overline{k}_{1}^{1} \rightarrow q \overline{q} W \\ \mathcal{G} \qquad \overline{G} M (\text{bino NLSP}) \\ \overline{G} GM (\text{higgsino-bin} \\ GGM (\text{higgsino-bin} \\ GGM (\text{higgsino NLSP} \\ GGM (\text{higgsino NLSP} \\ \overline{G} \overline{q} \overline{q} W \\ \overline{q} \overline{q} \overline{q} \overline{q} \overline{q} \overline{q} \overline{q} \overline{q}$	$ \begin{array}{cccc} & & & & & & & & \\ & & & & & & & \\ & & & & & & \\ & & & & & & \\ \rho_{i} \xi_{i}^{0} & & & & & \\ \rho_{i} \xi_{i}^{0} & & & & & \\ & & & & & & \\ \rho_{i} \xi_{i}^{0} & & & & & \\ & & & & & \\ \rho_{i} \xi_{i}^{0} & & \\ \rho_{i} \xi_{i}^{0} & & & \\ \rho_{i} \xi_{i}^{0} & & \\$	2-6 jets 2-6 jets 0-1 jet 2-6 jets 3-6 jets 0-3 jets ℓ 0-2 jets 1 b 0-3 jets mono-je	Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes	20.3 20.3 20.3 20 20 20.3 20.3 20.3 20.3	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	1405.7875 1405.7875 1411.1559 1405.7875 1501.03555 1501.03555 1407.0603 ATLAS-CONF-2012-144 1211.1167 ATLAS-CONF-2012-152 1502.01518
$\begin{array}{c} \widetilde{\mathcal{A}}_{1} \widetilde{\mathcal{A}}_{1}$	0 0 0-1 <i>e</i> , µ 0-1 <i>e</i> , µ	3 <i>b</i> 7-10 jets 3 <i>b</i> 3 <i>b</i>	Yes Yes Yes Yes	20.1 20.3 20.1 20.1	\$\vec{k}\$ 1.25 TeV m(\$\vec{k}^1\$)<400 GeV \$\vec{k}\$ 1.1 TeV m(\$\vec{k}^1\$)<350 GeV \$\vec{k}\$ 1.34 TeV m(\$\vec{k}^1\$)<400 GeV \$\vec{k}\$ 1.34 TeV m(\$\vec{k}^1\$)<300 GeV	1407.0600 1308.1841 1407.0600 1407.0600
$\begin{array}{c} \bar{b}_1\bar{b}_1, \bar{b}_1 {\rightarrow} b\bar{x}_1^0\\ \bar{b}_1\bar{b}_1, \bar{b}_1 {\rightarrow} b\bar{x}_1^1\\ \bar{b}_1\bar{b}_1, \bar{b}_1 {\rightarrow} b\bar{x}_1^1\\ \bar{t}_1\bar{t}_1, \bar{t}_1 {\rightarrow} b\bar{x}_1^1\\ \bar{t}_1\bar{t}_1, \bar{t}_1 {\rightarrow} b\bar{x}_1^0\\ \bar{t}_1\bar{t}_1, \bar{t}_1, \bar{t}_1\bar{t}_1, \bar{t}_1\bar{t}_1, \bar{t}_1, \bar{t}_1\bar{t}_$	$ \begin{array}{c} 0 \\ 2 \ e, \mu \ (SS) \\ 1-2 \ e, \mu \\ \tilde{\chi}_1^0 \\ 2 \ e, \mu \\ 0 \\ -1 \ e, \mu \\ 0 \\ 0 \\ 0 \\ 2 \ e, \mu \ (Z) \\ 3 \ e, \mu \ (Z) \end{array} $	2 b 0-3 b 1-2 b 0-2 jets 1-2 b mono-jet/c- 1 b 1 b	Yes Yes Yes Yes tag Yes Yes Yes	20.1 20.3 4.7 20.3 20 20.3 20.3 20.3 20.3	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	1308.2631 1404.2500 1209.2102, 1407.0583 1403.4853, 1412.4742 1407.0583,1406.1122 1407.0608 1403.5222 1403.5222
$\begin{array}{c} \overbrace{\begin{array}{c} {\scriptstyle \begin{array}{c} {\scriptstyle \begin{array}{c} {\scriptstyle \begin{array}{c} {\scriptstyle \begin{array}{c} {\scriptstyle \left\{ {\scriptstyle \begin{array}{c} {\scriptstyle \left\{ {\scriptstyle {\scriptstyle \left\{ {\scriptstyle {\scriptstyle \left\{ {\scriptstyle {\scriptstyle \left\{ {\scriptstyle \left\{ {\scriptstyle {\scriptstyle }} {\scriptstyle \left\{ {\scriptstyle }} \right\} } \right. \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ $	$\begin{array}{c} 2 \ e, \mu \\ 2 \ e, \mu \\ 2 \ r, \mu \\ 3 \ e, \mu \\ 2 \ 3 \ e, \mu \\ 4 \ e, \mu \end{array}$	0 0 - 0-2 jets 0-2 <i>b</i> 0	Yes Yes Yes Yes Yes Yes Yes	20.3 20.3 20.3 20.3 20.3 20.3 20.3 20.3	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	1403.5294 1403.5294 1407.0350 1402.7029 1403.5294,1402.7029 1501.07110 1405.5086
Direct $\tilde{X}_{1}^{+}\tilde{X}_{1}^{-}$ prod., Stable, stopped \tilde{g} Stable \tilde{g} R-hadron GMSB, stable \tilde{r}, \tilde{X} GMSB, $\tilde{X}_{1}^{0} \rightarrow \gamma \tilde{G}$, lc $\tilde{q}\tilde{q}, \tilde{X}_{1}^{0} \rightarrow q q \mu$ (RPV	$ \begin{array}{ll} \text{long-lived} \ \tilde{\chi}_1^{\pm} & \text{Disapp. tr}^1 \\ \text{R-hadron} & 0 \\ & \text{trk} \\ 0 \\ \stackrel{0}{\rightarrow} \tilde{\tau}(\tilde{e}, \tilde{\mu}) + \tau(e, \mu) & 1{-}2 \\ \text{ng-lived} \ \tilde{\chi}_1^0 & 2 \\ \gamma \\ 0 & 1 \\ \mu, \ \text{displ. v} \end{array} $	< 1 jet 1-5 jets - - - tx -	Yes Yes - Yes -	20.3 27.9 19.1 19.1 20.3 20.3	x ⁺ ₁ 270 GeV m(x ⁺ ₁)-m(x ⁰ ₁)=160 MeV, r(x ⁺ ₁)=0.2 ns m(x ⁺ ₁)=100 GeV, 10 μs <r(x<sup>+)=100 GeV, 10 μs<r(x<sup>+)=100 GeV, 10 μs x⁺η 537 GeV 10 <tarµs< th=""> 2 2 2 10 = 100 GeV 10 = 100 GeV</tarµs<></r(x<sup></r(x<sup></r(x<sup></r(x<sup></r(x<sup></r(x<sup></r(x<sup></r(x<sup></r(x<sup></r(x<sup></r(x<sup></r(x<sup></r(x<sup></r(x<sup></r(x<sup></r(x<sup></r(x<sup></r(x<sup></r(x<sup></r(x<sup></r(x<sup>	1310.3675 1310.6584 1411.6795 1411.6795 1409.5542 ATLAS-CONF-2013-092
$\begin{array}{c} LFV pp \rightarrow \tilde{v}_{\tau} + X, \tilde{v} \\ LFV pp \rightarrow \tilde{v}_{\tau} + X, \tilde{v} \\ Bilinear RPV CMS \\ \tilde{\chi}^{\dagger}_{1}\tilde{\chi}^{-1}_{1}, \tilde{\chi}^{\dagger}_{1} \rightarrow W \tilde{\chi}^{0}_{1}, \tilde{\chi} \\ \tilde{\chi}^{\dagger}_{1}\tilde{\chi}^{-1}_{1}, \tilde{\chi}^{\dagger}_{1} \rightarrow W \tilde{\chi}^{0}_{1}, \tilde{\chi} \\ \tilde{g} \rightarrow qq \\ \tilde{g} \rightarrow \tilde{i}_{1}t, \tilde{i}_{1} \rightarrow bs \end{array}$	$ \begin{array}{ccc} & \tau \rightarrow e + \mu & 2 \ e, \mu \\ & \tau \rightarrow e(\mu) + \tau & 1 \ e, \mu + \tau \\ \mathrm{SM} & 2 \ e, \mu \left(\mathrm{SS} \right) \\ & 0 \\ \rightarrow e e \tilde{\nu}_{\mu}, e \mu \tilde{\nu}_{e} & 4 \ e, \mu \\ & 0 \\ \rightarrow \tau \tau \tilde{\nu}_{e}, e \tau \tilde{\nu}_{\tau} & 3 \ e, \mu + \tau \\ & 0 \\ & 2 \ e, \mu \left(\mathrm{SS} \right) \end{array} $	- - 0 -3 <i>b</i> - - 6-7 jets 0 -3 <i>b</i>	- Yes Yes Yes - Yes	4.6 4.6 20.3 20.3 20.3 20.3 20.3 20.3	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	1212.1272 1212.1272 1404.2500 1405.5086 1405.5086 ATLAS-CONF-2013-091 1404.250
Other Scalar charm, $\tilde{c} \rightarrow \sqrt{s} = $	$c\tilde{\chi}_1^0$ 0 7 TeV $\sqrt{s} = 8$ TeV data partial data	2 c $\sqrt{s} =$	Yes 8 TeV data	20.3 1	ē 490 GeV m(𝔅¹)<200 GeV 0 ^{−1} 1 Mass scale [TeV]	1501.01325

ATLAS Preliminary $\sqrt{s} = 7, 8 \text{ TeV}$

*Only a selection of the available mass limits on new states or phenomena is shown. All limits quoted are observed minus 1 σ theoretical signal cross section uncertainty.

Run1 : CMS SUSY searches (1)

Probe *up to* the quoted mass limit

Run1 : CMS SUSY searches (2)

Run1 : ATLAS Exotics searches (1)

ATLAS Exotics Searches* - 95% CL Exclusion

Status: March 2015

ATLAS Preliminary

 $\int \mathcal{L} dt = (1.0 - 20.3) \text{ fb}^{-1} \quad \sqrt{s} = 7, 8 \text{ TeV}$

	Model	<i>ℓ</i> ,γ	Jets	E_{T}^{miss}	∫£ dt[fb	⁻¹] Mass limit		Reference
Extra dimensions	$\begin{array}{l} \mbox{ADD} \ G_{K/K} + g/q \\ \mbox{ADD} \ \mbox{non-resonant} \ \ell\ell \\ \mbox{ADD} \ \mbox{OBH} \ \rightarrow \ell q \\ \mbox{ADD} \ \mbox{OBH} \ \mbox{high} \ \ N_{t/k} \\ \mbox{ADD} \ \mbox{BH} \ \mbox{high} \ \ N_{t/k} \\ \mbox{ADD} \ \ \mbox{BH} \ \ \mbox{high} \ \ N_{t/k} \\ \mbox{ADD} \ \ \mbox{BH} \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$	$\begin{array}{c} - \\ 2e, \mu \\ 1 e, \mu \\ - \\ 2 \mu (SS) \\ \geq 1 e, \mu \\ - \\ 2 e, \mu \\ 2 \gamma \\ 2 e, \mu \\ 1 e, \mu \\ - \\ 1 e, \mu \\ \geq 2 e, \mu (SS) \end{array}$	$ \geq 1 j \\ - \\ 1 j \\ 2 j \\ - \\ \geq 2 j \\ - \\ 2 j / 1 J \\ 2 j / 1 J \\ 4 b \\ \geq 1 b, \geq 1 J \\ \geq 1 b, \geq 1 $	Yes - - - - Yes j Yes	20.3 20.3 20.3 20.3 20.3 20.3 20.3 20.3	Mo 5.25 TeV Ms 4.7 TeV Min 5.2 TeV Min 5.82 TeV Min 5.82 TeV Min 5.82 TeV Min 5.82 TeV Min 5.8 TeV GKK mass 2.66 TeV GKK mass 740 GeV W' mass 700 GeV GKK mass 590-710 GeV KK mass 960 GeV	$\begin{array}{l} n=2\\ n=3 \ \text{HLZ}\\ n=6\\ n=6\\ n=6, \ M_D=3 \ \text{TeV}, \ \text{non-rot BH}\\ n=6, \ M_D=3 \ \text{TeV}, \ \text{non-rot BH}\\ n=6, \ M_D=3 \ \text{TeV}, \ \text{non-rot BH}\\ k/\overline{M}_{Pl}=0.1\\ k/\overline{M}_{Pl}=0.1\\ k/\overline{M}_{Pl}=1.0\\ k/\overline{M}_{Pl}=1.0\\ R\overline{M}_{Pl}=1.0\\ R\overline{M}_{Pl}=1.0$	1502.01518 1407.2410 1311.2006 1407.1376 1308.4075 1405.4254 Preliminary 1405.4123 Preliminary 1409.6190 1503.04677 ATLAS-CONF-2014-005 ATLAS-CONF-2015-009 Preliminary
Gauge bosons	$\begin{array}{l} \text{SSM } Z' \to \ell\ell \\ \text{SSM } Z' \to \tau\tau \\ \text{SSM } W' \to \ell\nu \\ \text{EGM } W' \to WZ \to \ell\nu \ \ell'\ell' \\ \text{EGM } W' \to WZ \to qq\ell\ell \\ \text{HVT } W' \to WH \to \ell\nu bb \\ \text{LRSM } W_R' \to t\overline{b} \\ \text{LRSM } W_R' \to t\overline{b} \\ \end{array}$	$2 e, \mu 2 \tau 1 e, \mu 3 e, \mu 2 e, \mu 1 e, \mu 1 e, \mu 0 e, \mu $	- - 2 j / 1 J 2 b 2 b, 0-1 j ≥ 1 b, 1 s	- Yes Yes - Yes J -	20.3 19.5 20.3 20.3 20.3 20.3 20.3 20.3 20.3 20.3	Z' mass 2.9 TeV Z' mass 2.02 TeV W' mass 3.24 TeV W' mass 1.52 TeV W' mass 1.59 TeV W' mass 1.59 TeV W' mass 1.75 TeV W' mass 1.76 TeV W' mass 1.76 TeV	$g_V = 1$	1405.4123 1502.07177 1407.7494 1406.4456 1409.6190 Preliminary 1410.4103 1408.0886 Preliminary
CI	Cl qqll Cl uutt	2 e, μ 2 e, μ (SS)	≥ 1 b, ≥ 1	j Yes	20.3 20.3	Λ 12.0 Λ 4.35 TeV	$\begin{array}{c} \eta_{LL} = -1 \\ \hline \mathbf{21.6 \ TeV} \\ C_{LL} = 1 \end{array} \eta_{LL} = -1 \\ \end{array}$	1407.2410 Preliminary
DM	EFT D5 operator (Dirac) EFT D9 operator (Dirac)	0 e, μ 0 e, μ	$\geq 1 \text{ j}$ 1 J, $\leq 1 \text{ j}$	Yes Yes	20.3 20.3	M. 974 GeV M. 2.4 TeV	at 90% CL for $m(\chi) < 100 \text{ GeV}$ at 90% CL for $m(\chi) < 100 \text{ GeV}$	1502.01518 1309.4017
ГQ	Scalar LQ 1 st gen Scalar LQ 2 nd gen Scalar LQ 3 rd gen	2 e 2 μ 1 e, μ, 1 τ	≥2j ≥2j 1 b,1j		1.0 1.0 4.7	LQ mass 660 GeV LQ mass 685 GeV LQ mass 534 GeV	$\begin{array}{l} \beta = 1 \\ \beta = 1 \\ \beta = 1 \end{array}$	1112.4828 1208.3172 1303.0526
Heavy quarks	$ \begin{array}{l} VLQ \ TT \rightarrow Ht + X, Wb + X \\ VLQ \ TT \rightarrow Zt + X \\ VLQ \ BB \rightarrow Zb + X \\ VLQ \ BB \rightarrow Wt + X \\ T_{5/3} \rightarrow Wt \end{array} $	$\begin{array}{c} 1 \ e, \mu \\ 2l \geq 3 \ e, \mu \\ 2l \geq 3 \ e, \mu \\ 1 \ e, \mu \\ 1 \ e, \mu \end{array}$	$ \begin{array}{l} \geq 1 \hspace{0.1cm} \text{b}, \geq 3 \\ \geq 2 / \geq 1 \hspace{0.1cm} \text{b} \\ \geq 2 / \geq 1 \hspace{0.1cm} \text{b} \\ \geq 1 \hspace{0.1cm} \text{b}, \geq 5 \\ \geq 1 \hspace{0.1cm} \text{b}, \geq 5 \end{array} $	j Yes — — j Yes j Yes	20.3 20.3 20.3 20.3 20.3 20.3	T mass 785 GeV T mass 735 GeV B mass 755 GeV B mass 640 GeV T _{5/3} mass 840 GeV	isospin singlet T in (T,B) doublet B in (B,Y) doublet isospin singlet	ATLAS-CONF-2015-012 1409.5500 1409.5500 Preliminary Preliminary
Excited fermions	Excited quark $q^* \rightarrow q\gamma$ Excited quark $q^* \rightarrow qg$ Excited quark $b^* \rightarrow Wt$ Excited quark $b^* \rightarrow Wt$ Excited lepton $t^* \rightarrow \ell\gamma$ Excited lepton $v^* \rightarrow \ell W$, vZ	1γ $-$ $1 \text{ or } 2 e, \mu$ $2 e, \mu, 1 \gamma$ $3 e, \mu, \tau$	1 j 2 j 1 b, 2 j or – –	- - 1jYes - -	20.3 20.3 4.7 13.0 20.3	q' mass 3,5 TeV q' mass 4.09 TeV b' mass 870 GeV '' mass 2.2 TeV v' mass 1.6 TeV	only u^* and d^* , $\Lambda = m(q^*)$ only u^* and d^* , $\Lambda = m(q^*)$ left-handed coupling $\Lambda = 2.2 \text{ TeV}$ $\Lambda = 1.6 \text{ TeV}$	1309.3230 1407.1376 1301.1583 1308.1364 1411.2921
Other	LSTC $a_T \rightarrow W\gamma$ LRSM Majorana γ Higgs triplet $H^{\pm\pm} \rightarrow \ell \ell$ Higgs triplet $H^{\pm\pm} \rightarrow \ell \tau$ Monotop (nor-res prod) Multi-charged particles Magnetic monopoles	$ \frac{1}{1} \frac{e, \mu, 1}{2} \frac{\gamma}{2} \frac{e, \mu}{e, \mu} (SS) \\ \frac{3}{3} \frac{e, \mu, \tau}{e, \mu} \\ - \\ \frac{-}{\sqrt{s}} = \frac{1}{\sqrt{s}} \frac{1}{\sqrt{s}} \frac{e}{\sqrt{s}} = \frac{1}{\sqrt{s}} \frac{1}{\sqrt{s}} \frac{e}{\sqrt{s}} \frac{1}{\sqrt{s}} \frac{1}{\sqrt{s}}$	- 2 j - 1 b - - 7 TeV	Yes Yes 	20.3 2.1 20.3 20.3 20.3 20.3 20.3 2.0 8 TeV	ar mass 960 GeV N ⁴ mass 1.5 TeV H ^{2±} mass 551 GeV H ^{2±} mass 400 GeV spin-1 invisible particle mass 657 GeV multi-charged particle mass 785 GeV monopode mass 862 GeV 10 ⁻¹ 1	$m(W_{R}) = 2 \text{ TeV, no mixing}$ DY production, BR($H_{L}^{\pm\pm} \rightarrow \ell \ell$)=1 DY production, BR($H_{L}^{\pm\pm} \rightarrow \ell \tau$)=1 $a_{\text{doon-res}} = 0.2$ DY production, $ q = 5e$ DY production, $ g = 1_{g_D}$ 0	1407.8150 1203.5420 1412.0237 1411.2921 1410.5404 Preliminary 1207.6411
							wass scale [16V]	

*Only a selection of the available mass limits on new states or phenomena is shown.

Run1 : ATLAS Exotics searches (2)

A Sta	TLAS Exotics	s Long-live	d Pa	rticle	Searches* - 95%	6 CL Exclus	ion	ATLA	S Preliminary
0.0	Model	Signature	∫£ dt[fb	-1]	Lifetime limit	t		$j\mathcal{L}at = (19.5 - 20.3)$ ID	Reference
	Hidden Valley $H \to \pi_{ m V} \pi_{ m V}$	2 low-EMF trackless jets	20.3	$\pi_{\rm v}$ lifetime	•••••		0.41-7.57 m	$m(\pi_{ m v})=25~{ m GeV}$	1501.04020
= 10%	Hidden Valley $H o \pi_{ m v} \pi_{ m v}$	2 ID/MS vertices	19.5	$\pi_{\rm v}$ lifetime		-	0.31-25.4 m	$m(\pi_{ m V})=25{ m GeV}$	Preliminary
js BR	FRVZ $H ightarrow 2\gamma_d + X$	2 <i>e</i> -, μ-, π-jets	20.3	γ _d l <mark>ifetime</mark>	14-140 mm			$H \rightarrow 2\gamma_d + X, \ m(\gamma_d) = 400 \text{ MeV}$	1409.0746
Hig	FRVZ $H ightarrow 4 \gamma_d + X$	2 <i>e</i> -, μ-, π-jets	20.3	γ _ð lif <mark>etime</mark>	15-260 mm			$H ightarrow 4\gamma_d + X, \ m(\gamma_d) = 400 \ { m MeV}$	1409.0746
	Hidden Valley $H \to \pi_{ m v} \pi_{ m v}$	2 low-EMF trackless jets	20.3	$\pi_{\rm v}$ lifetime			0.6-5.0 m	$m(\pi_{ m v})=25~{ m GeV}$	1501.04020
BR = 5%	Hidden Valley $H o \pi_{ m v} \pi_{ m v}$	2 ID/MS vertices	19.5	$\pi_{\rm v}$ lifetime		-	0.43-18.1 m	$m(\pi_{ m v})=25~{ m GeV}$	Preliminary
Higgs	FRVZ $H ightarrow 4 \gamma_d + X$	2 <i>e−, μ−, π−</i> jets	20.3	$\gamma_{\rm d}$ lifetime	28-160 mm			$H ightarrow 4\gamma_d + X, \ m(\gamma_d) = 400 \ { m MeV}$	1409.0746
θV	Hidden Valley $\Phi \to \pi_{\scriptscriptstyle V} \pi_{\scriptscriptstyle V}$	2 low-EMF trackless jets	20.3	$\pi_{\rm v}$ lifetime		_	0.29-7.9 m	$\sigma \times BR = 1 \text{ pb}, m(\pi_{\vee}) = 50 \text{ GeV}$	1501.04020
ф 300 G	Hidden Valley $\Phi o \pi_{ m v} \pi_{ m v}$	2 ID/MS vertices	19.5	$\pi_{\rm v}$ lifetime	-	-	0.19-31.9 ($\sigma \times BR = 1 \text{ pb}, m(\pi_v) = 50 \text{ GeV}$	Preliminary
eV	Hidden Valley $\Phi \to \pi_{\scriptscriptstyle V} \pi_{\scriptscriptstyle V}$	2 low-EMF trackless jets	20.3	$\pi_{\rm v}$ lifetime		0.1	5-4.1 m	$\sigma imes BR$ = 1 pb, $m(\pi_{\mathrm{v}}) = 50 \mathrm{GeV}$	1501.04020
ф <i>900</i> G	Hidden Valley $\Phi o \pi_{ m v} \pi_{ m v}$	2 ID/MS vertices	19.5	$\pi_{\rm v}$ lifetime	_	-	0.11-18.3 m	$\sigma imes \mathrm{BR}$ = 1 pb, $m(\pi_{\mathrm{v}}) = 50~\mathrm{GeV}$	Preliminary
	GMSB	non-pointing or delayed γ	20.3	χ^0_1 lifetime		_	0.08-5.4 m	SPS8 with $\Lambda=200~\text{TeV}$	1409.5542
ler	Stealth SUSY	2 ID/MS vertices	19.5	Ŝ lifetime	_	-		0.12-90.6 m $m(\tilde{g}) = 500 \text{ GeV}$	Preliminary
Of	HV Z' (1 TeV) $ ightarrow q_{ m V} q_{ m V}$	2 ID/MS vertices	20.3	$\pi_{\rm v}$ lifetime			0.1-4.9 m	$\sigma imes BR$ = 1 pb, $m(\pi_{\mathrm{V}}) = 50 \ \mathrm{GeV}$	Preliminary
	HV Z' (2 TeV) $ ightarrow q_{ m V} q_{ m v}$	2 ID/MS vertices	20.3	$\pi_{\rm v}$ lifetime			0.1-10.1 m	$\sigma imes BR$ = 1 pb, $m(\pi_{\mathrm{v}}) = 50~\mathrm{GeV}$	Preliminary
			0	.01	0.1	1	10	¹⁰⁰ cτ [m]	
				- 0 T-V					

*Only a selection of the available lifetime limits on new states is shown.

Run1 : CMS Exotics searches (2)

CMS Searches for New Physics Beyond Two Generations (B2G)

95% CL Exclusions (TeV)

Run1 : Limits on SUSY (1)

• Strong production

CMS Exotic Discovery Reach : Run3/HL-LHC

For the EFT description of pair-produced dark matter, the interesting parameter is the cut-off scale $\Lambda = M/sqrt(g_{DM} g_{SM})$ with M being the mediator mass (assumed to be high) and g being the DM and SM couplings, respectively. The chosen dark matter monolepton channel allows to study potentially different couplings to up- and down-type quarks parametrized by xi.

Projected performance of selected BSM searches with an upgraded CMS detector at the LHC and HL-LHC (arXiv: 1307.7135).

Except for dark matter, the 5 sigma discovery reach in terms of particle mass is shown. Selected models include new resonances Z' and W', heavy stable charged particles (HSCP) such as gluino or stau, and pairproduced T-quarks.

Run2 (and further) : Higgs searches

