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I will discuss spherically symmetric solutions of hypothetical scalar field “galileon” models, first
in flat space-time, and then in the context of general relativity. For the latter, using numerical
methods, I find both censored and naked solutions arising from physically reasonable boundary
conditions. Both types of solutions are of comparable non-zero measure in terms of the initial con-
ditions. Censored solutions exhibit event horizons, more or less as expected, while naked solutions
have curvature singularities without horizons.

Based on work done in collaboration with David Fairlie, University of Durham.

Je n’ai fait celle-ci plus longue que parce que je n’ai pas eu le loisir de la faire plus courte.
B Pascal, Lettres Provinciales XVI (1656)



Simplest example

Galileon theories are a class of models for hypothetical scalar fields whose Lagrangians involve
multilinears of first and second derivatives, but whose nonlinear field equations are still only second
order. They may be important for the description of large-scale features in astrophysics as well as
for building models in elementary particle theory.
The simplest example involves a single field.

A2 = φαφα φββ d
nx (1)

where φ is the scalar galileon field, φα = ∂φ (x) /∂x
α, etc., and where repeated indices are summed

using the Lorentz metric δμν = diag (1,−1,−1, · · · ). Note that A2 is invariant, modulo boundary
effects, for δφ = c+ bμxμ, hence the name “galileon” field.
The field equations are

0 = E2 [φ] ≡ φααφββ − φαβφαβ (2)

So, obviously, E2 [c+ bμxμ] = 0.



Generalizations

There is a hierarchy for 1 ≤ k ≤ n.

Ak = φαφα Ek−1 [φ] dnx (3)

where E0 [φ] = 1, E1 [φ] = φαα, E2 [φ] is as above, and for other k only 2nd derivatives appear as

Ek [φ] = δα1α2···αkβ1β2···βk × φα1β1φα2β2 · · ·φαkβk (4)

where δα1α2···β1β2··· is a generalized Kronecker symbol. All Ak are invariant under “galileon" variations,
and all Ek = 0 for such configurations.

In fact, all these field equations follow from expanding a determinant,

det (1+ λ∂∂φ) =
n

k=0

λk

k!
Ek (∂∂φ) (5)

where by “∂∂φ” I mean the n× n Hessian matrix of second partial derivatives in n dimensions.



Duality

For any n× n matrix M , consider the expansion

det (1+ λM) =
n

k=0

λk

k!
Ek (M) , (6)

where E0 ≡ 1. From the elementary identity det (AB) = (detA) (detB) we have

det (1+ λM) = λn (detM) det 1+ λ−1M−1 , (7)

for an n× n nonsingular M . It follows for 0 ≤ k ≤ n that
1

k!
Ek (M) = (detM) 1

(n− k)! En−k M−1 . (8)

Or, to rewrite (8) more symmetrically, for n× n nonsingular M ,
1

det (M)

1

k!
Ek (M) = 1

det (M−1)
1

(n− k)! En−k M−1 . (9)



Legendre transformations

The standard form for a Legendre transformation φ, x←→ Φ, X is given by

φ (x) + Φ (X) =
n

α=1

xαXα , (10)

Xα (x) =
∂φ (x)

∂xα
≡ ∂αφ , xα (X) =

∂Φ (X)

∂Xα
≡ ∇αΦ . (11)

It follows that the Hessian matrices for φ and Φ, if nonsingular, are related by

(∂∂φ)
−1
= (∇∇Φ) . (12)

From this and the previous matrix identity (9) it follows in n dimensions that

1

det (∂∂φ)

1

k!
Ek (∂∂φ) = 1

det (∇∇Φ)
1

(n− k)! En−k (∇∇Φ) . (13)

So, field equations for Galileons φ and Φ are related by the Legendre tranform. The transformation
gives a one-to-one local map between solutions of the nonlinear equations. This provides a general,
implicit procedure for the construction of solutions to the equation Ek = 0 given solutions to En−k =
0. In practice it is challenging to find tractable, nonsingular examples where the procedure can be
fully realized.



Legendre dual actions

The Legendre transformation also provides a duality relation between actions:

1

k!
Ak [φ] = (−1)n

(n− k)! An−k [Φ] (14)

for Lorentzian spacetimes. [For Euclidean spacetimes, (−1)n in (14) should be replaced by −1.] In
principle the quantum theories for k and n− k are therefore related in n spacetime dimensions.

But integrations by parts are needed to show (14), and boundary terms have been dropped.
This is not obviously OK. Moreover, Legendre transformations are multi-valued, in general. The
relations (11) may therefore fold the spacetime manifold in such multi-valued cases, converting
infinite expanses into finite regions with nontrivial boundaries, and vice versa. Quantum effects can
be very exotic in such situations. This is beyond the scope of this talk.



Hidden symmetry

Hinterbichler and Joyce recently pointed out that Legendre self-(anti)dual combinations in four
dimensions

A±≡ A1 [φ]±A3 [φ]
realize (nonlinearly) a surprising amount of symmetry, namely, the semidirect sum of the Heisen-
berg and special linear algebras: h (4) ⊕s sl (4), although HJ do not identify the algebra by these
standard names. Moreover, HJ show that additional symmetries are also present if particular linear
combinations of Legendre dual galileon Lagrangians are considered in D spacetime dimensions.

The most succinct verbal description is just to say the HJ galileon symmetry algebra is isomorphic
to a semidirect sum of the Heisenberg algebra h (D) and sl (D). Thus,

h (D)⊕s sl (D)

Recall that h (D) is realized by {xa, pb, C} where C is the central charge appearing in [xa, pb] = δabC,
and sl (D) is realized by xapb − 1

Dxcpcδab .



Effects of φ Θ[φ] self-couplings

For the simplest example, in the flat spacetime limit, the galileon field may be coupled universally
to all other matter through the trace of the energy-momentum tensor, Θ(matter) . But surely, in a
self-consistent theory the galileon should also be coupled to its own energy-momentum trace.

The energy-momentum tensor

The symmetric energy-momentum tensor for (1) is

Θ(2)μν [φ] = φμφνφαα − φαφανφμ − φαφαμφν + δμνφαφβφαβ . (15)

As expected this is conserved,
∂μΘ

(2)
μν [φ] = φν E2 [φ] , (16)

upon using the field equation E2 [φ] = 0.



The trace Θ ≡ Θμμ
Θ
(2)
μν is not traceless. Consequently, the usual form of the scale current, xαΘ

(2)
αμ, is not conserved.

On the other hand, the action (1) is homogeneous in φ and its derivatives, and is clearly invariant
under the scale transformations x → sx and φ (x) → s(4−n)/3φ (sx). Hence the corresponding
Noether current must be conserved. This current is easily found, especially for n = 4, so let us
restrict our attention to four spacetime dimensions in the following.

For n = 4 the trace of Θ(2)μν is immediately seen to be a total divergence:

Θ(2) [φ] = ∂α φαφβφβ . (17)

That is to say, for n = 4 the virial is the trilinear Vα = φαφβφβ . So a conserved scale current is
given by the combination,

Sμ = xαΘ
(2)
αμ [φ]− φαφαφμ . (18)

Interestingly, here the virial is not a divergence modulo a conserved current, so a model with only A2
is not conformally invariant despite being scale invariant. Be that as it may, it is not my principal
concern here.



Self-coupling

Our interest here is that the nonzero trace suggests an additional interaction where φ couples directly
to its own Θ(2). This is similar to coupling a conventional massive scalar to the trace of its own
energy-momentum tensor. For that massive example, however, coupling the field to its trace required
an iteration to all orders in the coupling for consistency. Upon summing the iteration and making
a field redefinition, the Nambu-Goldstone model emerged.
But, for the simple galileon model in four spacetime dimensions as defined by (1), a consistent

coupling of field and trace is much easier to implement. No iteration is required. Here, the
first-order coupling alone is consistent.

− 1
4 φ Θ(2) [φ] d4x = − 1

4 φ ∂α φαφβφβ d4x = 1
4 φαφαφβφβ d

4x , (19)

upon assuming there are no boundary contributions.
Consistency follows because (19) gives an additional contribution to the energy-momentum tensor

which is traceless, in 4D spacetime:

Θ(3)μν [φ] = φμφνφαφα − 1
4δμνφαφαφβφβ (20)

Θ(3) = 0 . (21)



A model

Based on these elementary observations, let us consider a model with action

A = 1
2φαφα − 1

2λφαφαφββ − 1
4κφαφαφβφβ d4x , (22)

where for the Lagrangian L we take a mixture of three terms: the standard bilinear, the trilinear
galileon, and its corresponding quadrilinear trace-coupling. The quadrilinear is reminiscent of the
Skyrme term in nonlinear σ models although here the topology is trivial.
The second and third terms in A are logically connected, as we have indicated. But why include

in A the standard bilinear term? The reasons for including this term are to soften the behavior
of solutions at large distances, as will be evident below, and also to satisfy Derrick’s criterion for
classical stability under the rescaling of x. Without the bilinear term in L the energy within a spatial
volume would be neutrally stable under a uniform rescaling of x, and therefore able to disperse.
Similarly, for positive κ, the last term in A ensures the energy density of static solutions is always

bounded below under a rescaling of the field φ, a feature that would not be true if κ = 0 but λ �= 0.
So, we only consider κ > 0 in the following.



Aside: Before discussing the complete Θμν for the model, we note that we did not include in A
a term coupling φ to the trace of the energy-momentum due to the standard bilinear term, namely,
φΘ(1)d4x, where

Θ(1)μν = φμφν − 1
2δμνφαφα , Θ(1) = −φαφα . (23)

We have omitted such an additional term in A solely as a matter of taste, thereby ensuring that L
is still invariant under constant shifts of the field. Among other things, this greatly simplifies the
task of finding solutions to the equations of motion.

Another aside: Very recently, Trincherini et al. have studied the model (22) as an example of
“Weakly Broken Galileon Symmetry” with emphasis on the quantum corrections around de Sitter
backgrounds, and build novel cosmological models with interesting phenomenology, relevant for both
inflation and late-time acceleration of the universe.



Field equation

The equation of motion for the model is now E [φ] = 0, where

E [φ] ≡ φαα − λ φααφββ − φαβφαβ − κ φαφβφβ α
. (24)

As expected, this field equation is second-order, albeit nonlinear. Also note, under a rescaling of
both x and φ, nonzero parameters λ and κ can be scaled out of the equation. Define

φ (x) =
λ

κ
ψ

κ

λ2
x . (25)

Then the field equation for ψ (z) becomes

ψαα − ψααψββ − ψαβψαβ − ψαψβψβ α
= 0 , (26)

where ψα = ∂ψ (z) /∂z
α, etc. In effect then, if both λ and κ do not vanish, it is only necessary to

solve the model’s field equation for λ = κ = 1.



Static solutions

For static, spherically symmetric solutions, φ = φ (r), the field equation becomes

0 =
1

r2
d

dr
r2 φ� + λ

2

r
φ� 2 + κ φ� 3 . (27)

where φ� = dφ/dr. This is immediately integrated once to obtain a cubic equation,

r2φ� + 2λr φ� 2 + κr2 φ� 3 = C , (28)

where C is the constant of integration. Now, without loss of generality (cf. (25) and (26)) we may
choose λ > 0.



If C = 0, either φ� vanishes, or else there are two solutions that are real only within a finite

sphere of radius r = λ2/κ. These two C = 0 “interior” solutions are given exactly by

φ�± = −
1

rκ
λ± λ2 − r2κ . (29)

Note that these solutions always have φ� < 0 within the finite sphere.

Otherwise, if C �= 0, then examination of the cubic equation for small and large φ� determines
the asymptotic behavior of φ� for large and small r. In particular, there is only one type of
asymptotic behavior for large r:

φ� ∼
r→∞

C

r2
for either sign of C . (30)



But there are two types of behavior for large φ� , corresponding to small r. The solutions which
are real for all r > 0 have small and large r behavior given by either

φ� ∼
r→0

C

2λr
and φ� ∼

r→∞
C

r2
for C > 0, (31)

or else

φ� ∼
r→0

−2λ
κr

and φ� ∼
r→∞

C

r2
for C < 0. (32)

From further inspection of the cubic equation to determine the behavior of φ� for intermediate
values of r, when C > 0 it turns out that φ� is a single-valued, positive function for all r > 0, joining
smoothly with the asymptotic behaviors given in (31).



It is interesting that there is an additional complication when C < 0. In this case there is a
critical value κ3/2/λ2 Ccritical = −4√3/27 ≈ −0.2566 such that, if C ≤ Ccritical < 0 then φ� is a
single-valued, negative function for all r > 0, while

if Ccritical < C < 0 then φ
� is triple-valued for an open interval in r > 0.

It is not completely clear to us what physics underlies this multi-valued-ness for some negative
C. But in any case, when C < 0 it is also true that φ� joins smoothly with the asymptotic behaviors
given in (32). All this is illustrated in Figures 1 and 2, for λ = κ = 1.



ψ� (r) for C = +1/4N , with N = 0, 1, 2, 3 for top to bottom curves, respectively.



ψ� (r) for C = −1/2N , with N = 6, 5, 4, 3, 2, 1, 0 from left to right, respectively. The thin black
curve is a union of the two C = 0 solutions in (29).



Energy considerations

For the solutions described by (31) and (32), the total energy outside any large radius is obviously
finite for both C > 0 and C < 0. And if C > 0, the total energy within a small sphere surrounding
the origin is also manifestly finite.

But if C < 0 the energy within that same small sphere could be infinite unless there is a
cancellation between the galileon term and the trace interaction term. Remarkably, this cancellation
does occur. So both C > 0 and C < 0 static solutions for the model have finite total energy.
For more details, please see A Galileon Primer.



Possible observable consequences?

A test particle coupled by φΘ(matter) to any of these galileon field configurations would see an effective
potential which is not 1/r, for intermediate and small r. Therefore its orbit would show deviations
from the usual Kepler laws, including precession that is possibly at variance with the predictions of
conventional general relativity. It would be interesting to search for such effects, say, by considering
stars orbiting around the galactic center. In fact, experimenters have been engaged in searches of
this type for some time ... e.g. the UCLA Galactic Center Group.

Webpage



From Ghez et al., The Shortest-Known—Period Star Orbiting Our Galaxy’s Supermassive Black
Hole, Science 5 October 2012: vol. 338 no. 6103 pp 84-87. The orbits of S0-2 (black) and S0-102
(red). RA, right ascension; DEC, declination. Both stars orbit clockwise. The data points for S0-2
range from the year 1995 to 2012, and S0-102’s detections range from 2000 to 2012. Although the
best-fit orbits are not closing, the statistically allowed sets of orbital trajectories are consistent
with a closed orbit. S0-102 has an orbital period of 11.5 years, 30% shorter than that of S0-2.

Science article
Supplementary material
d = 0.4

360×60×60 × 2π × 27000 = 0.05 ly





General relativistic effects

If the simple trace-coupled Galileon model is coupled minimally to gravitation (GR) the resulting
system easily admits spherically symmetric static solutions with naked spacetime curvature singular-
ities.

There is an open set of physically acceptable scalar field data for which curvature singularities
are not hidden inside event horizons. (So, in this class of models, so much for the cosmic censorship
conjecture of Penrose.) It is worthwhile to note that, in general, naked singularities have observable
classical consequences that differ from those due to black holes. Not to mention possible quantum
effects ...



Minimal coupling to gravity

The scalar field part of the action in curved space is

A =
1

2
gαβφαφβ 1− 1√−g ∂μ

√−ggμνφν − 1
2
gμνφμφν

√−g d4x . (33)

This gives a symmetric energy-momentum tensor Θαβ for φ upon variation of the metric.

Θαβ [φ] = φαφβ 1− gμνφμφν − 1
2gαβ g

μνφμφν 1− 1
2g
ρσφρφσ

−φαφβ 1√−g∂μ
√−ggμνφν + 1

2∂α gμνφμφν φβ +
1
2∂β gμνφμφν φα − 1

2gαβ∂ρ gμνφμφν gρσφσ .

(34)

It also gives the field equation for φ upon variation of the scalar field, E [φ] = 0, where

E [φ] = ∂α gαβφβ
√−g − gαβφβ gμνφμφν

√−g − gαβφβ∂μ
√−ggμνφν + 1

2

√−ggαβ∂β gμνφμφν .
(35)

Since E [φ] is a total divergence, it easily admits a first integral for static, spherically symmetric
configurations. Consider only those situations in the following.



Static spherical solutions

For such configurations the metric in Schwarzschild coordinates is

(ds)
2
= eN(r) (dt)

2 − eL(r) (dr)2 − r2 (dθ)2 − r2 sin2 θ (dϕ)2 . (36)

Thus for static, spherically symmetric φ, with covariantly conserved energy-momentum tensor (34),
Einstein’s equations reduce to just a pair of coupled 1st-order nonlinear equations:

r2Θ t
t = e

−L (rL� − 1) + 1 , (37)

r2Θ r
r = e

−L (−rN � − 1) + 1 . (38)

These are to be combined with the first integral of the φ field equation in this situation.



Defining
η (r) ≡ e−L(r)/2 , � (r) ≡ η (r)φ� (r) , (39)

the first integral of the φ field equation becomes

Ce−N/2

r2
= � 1 +�2 +

1

2
N � +

4

r
η�2 , (40)

where for asymptotically flat spacetime the constant C is given by limr→∞ r2φ� (r) = C. Then
upon using

Θ t
t = Θ

θ
θ = Θ

ϕ
ϕ = 1

2�
2 1 + 1

2�
2 − η�2�� , (41)

Θ r
r = − 1

2�
2 1 + 3

2�
2 − 1

2η�
3 N � + 4

r , (42)

the remaining steps to follow are clear.



First, for C �= 0, one can eliminate N � from (38) and (40) to obtain an exact expression for N in
terms of η, �, and C:

eN/2 =
8C

r�

η − 1
2r�

3

(4� − 2r2�3 − r2�5 + 8rη + 12�η2 + 8r�2η) . (43)

(cf. the lapse function, N = eN/2) If the numerator of this last expression vanishes there is an event
horizon, otherwise not. When η = 1

2r�
3 the denominator of (43) is positive definite.

Next, in addition to (37) one can now eliminate N from either (38) or (40) to obtain two coupled
first-order nonlinear equations for η and �. These can be integrated, at least numerically.



Or they can be used to determine analytically the large and small r behaviors, hence to see if
the energy and curvature are finite. For example, again for asymptotically flat spacetime, it follows
that

eL/2 ∼
r→∞ 1 +

M

r
+
1

4
6M2 − C2 1

r2
+
1

2
M 5M2 − 2C2 1

r3
+O

1

r4
, (44)

eN/2 ∼
r→∞ 1− M

r
− 1
2
M2 1

r2
+
1

12
M C2 − 6M2 1

r3
+O

1

r4
, (45)

� ∼
r→∞

C

r2
1 +

M

r
+
3

2
M2 1

r2
+O

1

r5
, (46)

for constant C and M .



To date the details of the two remaining first-order ordinary differential equations are not pretty,
but the equations are numerically tractable. In terms of the variables defined in (39), in light of
(43), Einstein’s equation (38) becomes

F (r,�, η) r
d

dr
� +G (r,�, η) r

d

dr
η = H (r,�, η) , (47)

while Einstein’s equation (37) becomes

I (r,�, η) r
d

dr
� + J (r,�, η) r

d

dr
η = K (r,�, η) , (48)

These first-order equations are not too ugly, until the coefficient functions are written out.



I (r,�, η) = rη�2 , (49)

J (r,�, η) = −2η , (50)

K (r,�, η) = 1
2r
2�2 1 + 1

2�
2 + η2 − 1 . (51)

F (r,�, η) = −4η 2r3�6 + 3r3�8 + 16�η + 4r�4

+16rη2 + 48�η3 + 48r�2η2 + 12r�4η2 − 12r2�5η , (52)

G (r,�, η) = 8η�2 2r2�2 + 3r2�4 − 12η2 + 12r�3η + 4 , (53)

H (r,�, η) = � 8η� 4r�3 − 4η + 2r2�2η + 3r2�4η + 12r�3η2 − 12η3
+ 4 + 3r2�4 + 2r2�2 + 12η2 4� − r2�5 − 2r2�3 + 8r�2η + 8rη + 12�η2 ,

(54)



Numerical results

As a representative example with � > 0, (48) and (47) were integrated numerically to obtain the
results shown in the Figure, for data initialized as �|r=1 = 0.5 and η|r=1 = 1.
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For initial values �(s)|s=0 = 0.5 and η(s)|s=0 = 1.0, dφ/dr = �/η is shown in red, eL = 1/η2 in
green, and the lapse eN in blue, where r = es. For comparison, Schwarzschild eL and eN are also

shown as resp. green and blue dashed curves for the same M ≈ 0.21.



Evidently it is true that η (r) �= 1
2r�

3 (r) for this case, so the lapse eN(r) does not vanish for any
r > 0 and there is no event horizon.

However, there is a geometric singularity at r = 0 with divergent scalar curvature: limr→0 r
3/2R =

const. Since R = −Θ μ
μ , and limr→0� is finite, this divergence in R comes from the last term in

(42), which in turn comes from the second term in A, i.e. the covariant ∂φ∂φ∂2φ in (33). In fact,
it it not difficult to establish analytically for a class of solutions of the model, for which the example
in the Figure is representative, the following limiting behavior holds.

lim
r→0

eL/2/
√
r = ' , lim

r→0

√
reN/2 = n , lim

r→0
� = p , lim

r→0
φ�/
√
r = p' , (55)

where ', n, and p are constants related to the constant C in (40):

2C = 3np2/' . (56)

It follows that for solutions in this class,

lim
r→0

r3/2R = pC/n . (57)

For the example shown in the Figure: ' ≈ 1.5, n ≈ 0.086, p ≈ 3.3, C ≈ 0.94, and pC/n ≈ 36.



Other numerical examples

For the same η|r=1 = 1, further numerical results show there are also curvature singularities without
horizons for smaller �|r=1 > 0, but event horizons are present for larger scalar fields (roughly when
�|r=1 > 2/3). A more precise and complete characterization of the data set {�|r=1 , η|r=1} for
which there are naked singularities is given below, but it is already evident from the preceding
remarks that the set has nonzero measure. Here are additional plots for η(s)|s=0 = 1.0 and various
initial values �(s)|s=0. As before, dφ/dr = �/η is shown in red, eL = 1/η2 in green, and eN in
blue, where r = es. For comparison, Schwarzschild eL and eN are also shown as resp. green and
blue dashed curves for the same M , as given in the Figure labels.

“ ... an exotic type of matter with which human science is entirely unfamiliar is required for such
a geometry to exist.” – B K Tippett [40]
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Initial values �(s)|s=0 = 0.100 and η(s)|s=0 = 1.00
corresponding to M = 0.00358 and C = 0.121
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Initial values �(s)|s=0 = 0.200 and η(s)|s=0 = 1.00
corresponding to M = 0.0191 and C = 0.283
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Initial values �(s)|s=0 = 0.300 and η(s)|s=0 = 1.00
corresponding to M = 0.0546 and C = 0.484
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Initial values �(s)|s=0 = 0.400 and η(s)|s=0 = 1.00
corresponding to M = 0.117 and C = 0.710
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Initial values �(s)|s=0 = 0.500 and η(s)|s=0 = 1.00
corresponding to M = 0.209 and C = 0.936
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Initial values �(s)|s=0 = 0.600 and η(s)|s=0 = 1.00
corresponding to M = 0.326 and C = 1.13
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Initial values �(s)|s=0 = 0.700 and η(s)|s=0 = 1.00
corresponding to M = 0.453 and C = 1.26
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Initial values �(s)|s=0 = 0.800 and η(s)|s=0 = 1.00
corresponding to M = 0.573 and C = 1.32



For each of the last two plots, the numerical integration of the coupled galileon-GR equations
has encountered a mathematical (as opposed to physical?) singularity and terminated, resp. at
r ≈ e−2.5 = 0.082 and r ≈ e−1.3 = 0.27, as is indicative of an horizon for which eN = 0. This
feature persists for initial data with larger values of �(s)|s=0, when η(s)|s=0 = 1.
Here are two more cases, just below and just above the point where horizons are formed. Again,

for the second of these plots, the numerical integration of the coupled galileon-GR equations has
encountered a mathematical singularity, and terminated at the point where eN(r) (blue curve) van-
ishes.
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Initial values �(s)|s=0 = 0.645 and η(s)|s=0 = 1.00 corresponding to M = 0.383 and C = 1.199
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Initial values �(s)|s=0 = 0.652 and η(s)|s=0 = 1.00 corresponding to M = 0.392 and C = 1.209



A useful test for an horizon is provided by the numerator of eN in (43). Define the discriminant

disc (r) = 1− r � (r)
3

2 η (r)
. (58)

Should this vanish at some radius for which η (r) is finite, then at that radius eN(r) = 0, thereby
indicating an horizon at that radius.
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The discriminant disc = 1− 1
2r�

3/η versus s = ln r for various �|r=1 (namely, 0.4, 0.5, 0.6, 0.64,
critical, 0.66, and 0.7) with η|r=1 = 1. The critical initial value for the separatrix, for which

disc ∼
r→0

1/2, is �|r=1 = 0.6500 · · · .

For initial data giving rise to naked singularities, disc > 1/2 (cf. the upper curves in the figure
above), while for data leading to horizons, eN vanishes at the horizon radius, and therefore at that
radius disc = 0 (cf. the lower two curves in the figure).



The critical case, separating solutions with naked singularities from those with event horizons,
has the small r limiting behavior η (r) ∼

r→0
r �3 (r), such that the discriminant disc ∼

r→0

1
2 as

illustrated here for specific data.
When the limiting critical behavior η (r) ∼

r→0
r �3 (r) is inserted into the differential equations

(48) and (47) we find the power law behavior:

ηcritical (r) ∼
r→0

c3r−4/5 , �critical (r) ∼
r→0

cr−3/5 , φ�critical (r) ∼
r→0

r1/5

c2
. (59)

Moreover, critical cases are easily determined numerically for various initial data, {�(s)|s=0 , η(s)|s=0},
thereby allowing determination of a curve that separates the open set of initial data that exhibits
naked singularities from the set that exhibits event horizons.



Censored and naked phases

The situation for a portion of the initial data plane is as follows, as determined by numerical analysis.
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(�|r=1 , η|r=1) boundary separating initial data that exhibit naked singularities from data that
exhibit horizons. The curve is a fourth-order polynomial fit to the numerically computed critical

points (dots), namely, ηfit (�) = 1 + 0.0255538� − 1.34405�2 + 2.20589�3 − 0.304933�4.
This shows naked singularities for the model exist for an initial data set of non-zero measure, and
are actually encountered for a significant portion of the initial data plane.



A similar demarcation between naked/censored solutions can be presented in terms of asymptotic
r → ∞ data instead of initial r = 1 data. With M and C defined as in (44), (45), and (46), we
find the following curve separating the two types of solutions. Solutions for points above the curve
have naked singularities, while solutions for points below the curve have event horizons.
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Computed r →∞ asymptotic data points (small circles) and an interpolating curve separating
solutions with naked singularities from solutions with event horizons.



Conclusions

In conclusion, as previously emphasized by many authors it would be interesting to search for
evidence of galileons at all distance scales, including galactic and sub-galactic, as well as cosmological.
Perhaps a combination of trace couplings and various galileon terms will ultimately lead to a realistic
physical model. In particular, I think it is important to investigate the stability of galileon solutions
and to consider the dynamical evolution of generic galileon and other matter field initial data to
determine under what physical conditions naked singularities might actually form.
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