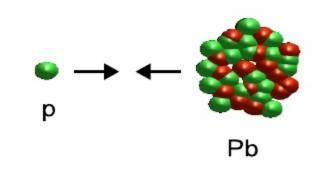
LHCb results in proton-nucleus collisions at the LHC

Star 2015 - Havana, May 10-13, 2015

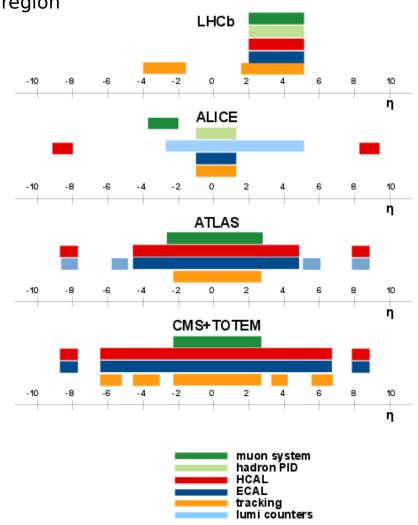
Katharina Müller

on behalf of the LHCb collaboration

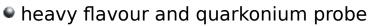

University of Zurich^{uzH}

THE

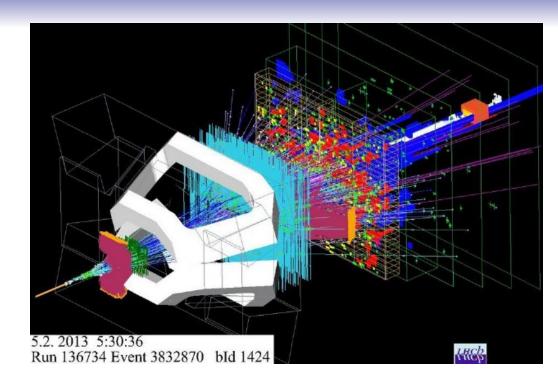
- Motivation
- LHCb Detector
- Proton lead runs
- Measurements
 - J/Ψ production
 - Y production
 - Z boson production
 - Spectroscopy
- Conclusions

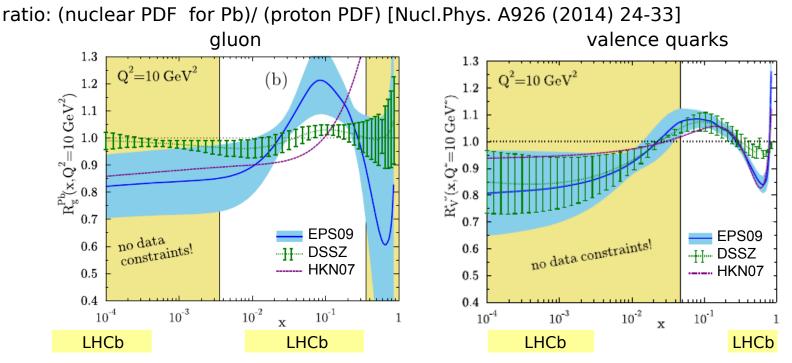

LHCb fully instrumented in the forward region

→ study proton-ion collisions in a unique kinematic region


proton-lead (pA) collisions allow factorizing the effects of Quark Gluon Plasma from Cold Nuclear Matter → reference sample for heavy ion collisions

sensitive probes of properties of nuclear matter


- nuclear parton distribution function (nPDF)
- nuclear attenuation factors
- \rightarrow test phenomenological models

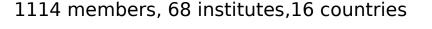

- cold nuclear effects
- energy loss mechanisms
- medium transport properties
- quark deconfinement

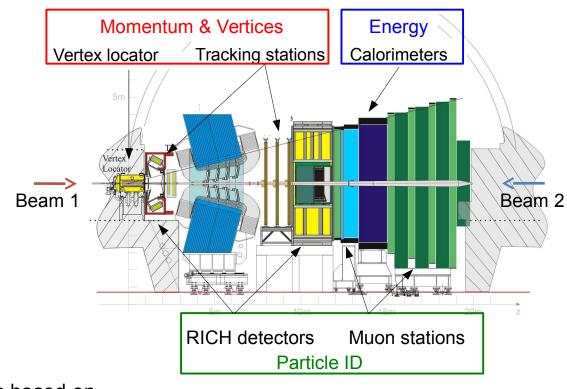
electroweak bosons:

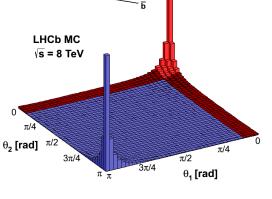
• probe nuclear PDFs which are poorly constrained

Current knowledge of nuclear PDFs (nPDF)

nuclear PDF poorly constrained at high and low $x_{\Delta} \rightarrow LHCb$ has good sensitivity.


LHCb accessible region for J/ ψ , Y and Z production: $x_{1,2}^{}=(M/\sqrt{s}) e^{\pm y}$


```
\begin{array}{l} J/\psi: 1\times 10^{-5} < x_{_{A}} < 1\times 10^{-4} \ , \ 7\times 10^{-3} < x_{_{A}} < 7\times 10^{-2} \\ Y : 3\times 10^{-5} < x_{_{A}} < 3\times 10^{-4} \ , \ 3\times 10^{-2} < x_{_{A}} < 3\times 10^{-1} \\ Z : 2\times 10^{-4} < x_{_{A}} < 3\times 10^{-3} \ , \quad 0.2 < x_{_{A}} < 1 \\ \text{fixed target physics @ LHCb: x about 0.1} \end{array}
```

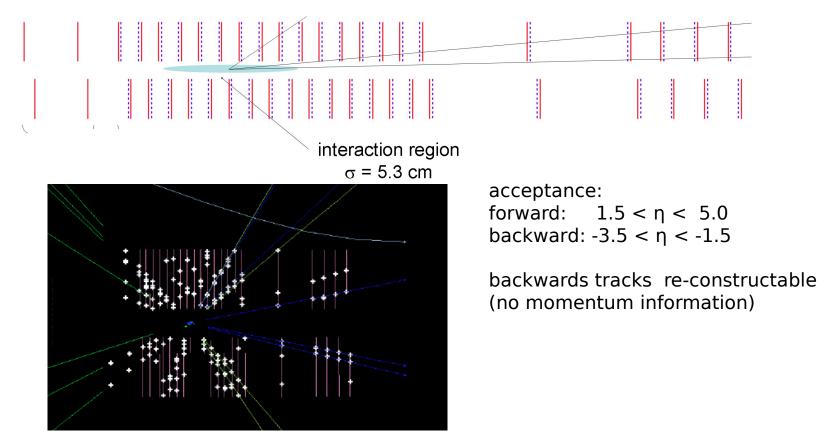

x_A:momentum fraction carried by parton inside the nucleon bound in the lead ion EPS09: JHEP 04 (2009) 065, DSSZ : Phys. Rev. D 85 (2012),HKN07: Phys. Rev. C 76 (2007) 065207 Stars 2015, Havana, May 10-13, 2015 Katharina Müller

- single arm spectrometer designed for precision measurements in b and c physics
- fully instrumented in the forward region (2 < η < 5)
- some detection capability in backward region (-3.5 < η < -1.5)
- very flexible trigger \rightarrow able to trigger on low momentum objects

25% of bbbar pairs in LHCb acceptance

analyses based on

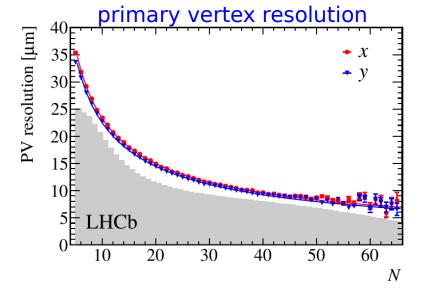
- 2013 proton-lead runs @ 5 TeV
- preliminary results from pilot run 2012


Stars 2015, Havana, May 10-13, 2015

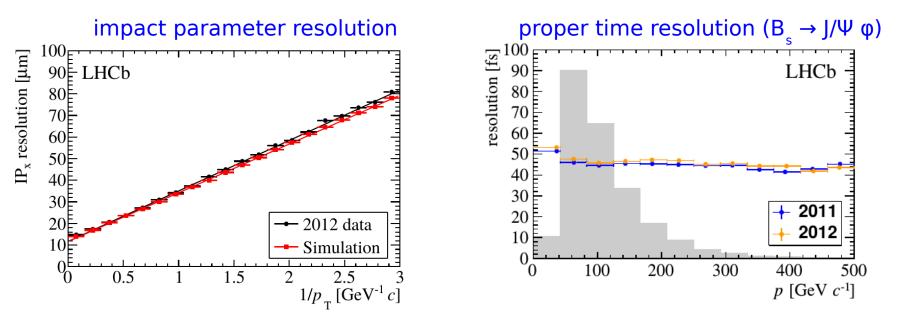
84 micro-strip silicon sensors close to the IR \rightarrow precise track and vertex reconstruction

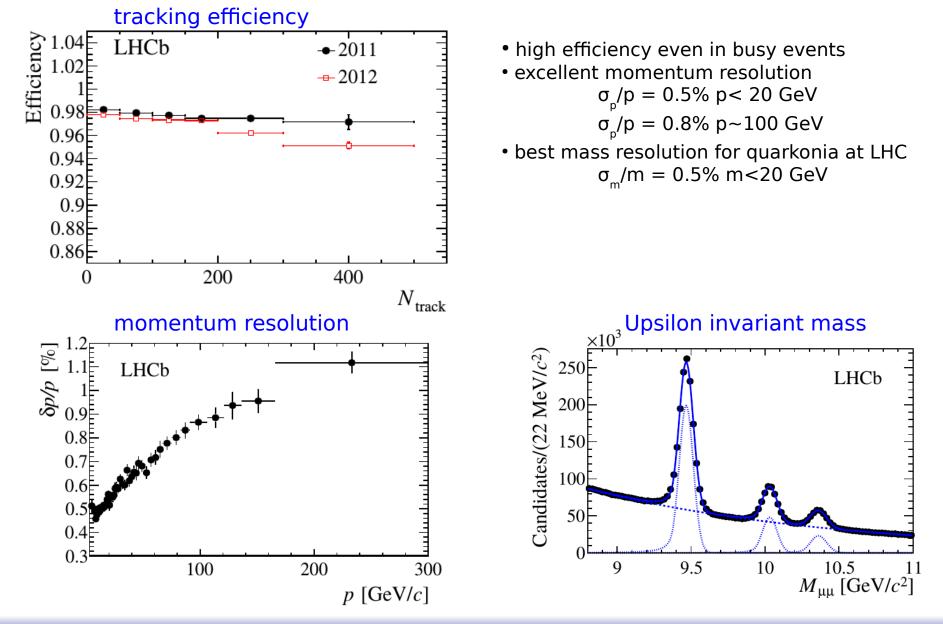
distance to beam axis: 8 mm (retractable)

pileup stations

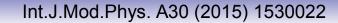


JINST9 (2014) 09007

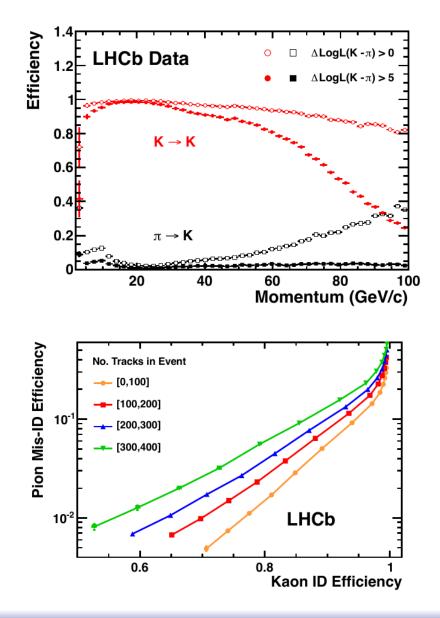

Stars 2015, Havana, May 10-13, 2015


- excellent agreement data simulation vertex resolution (PV with 20 tracks): $\sigma_{_{xy}} \sim 15 \mu m$, $\sigma_{_z} \sim 80 \mu m$
- average proper time resolution 45 fs

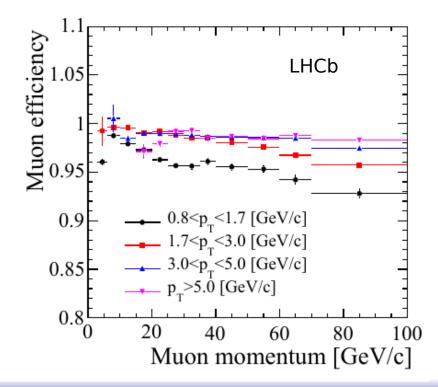
: underlying distributions



Stars 2015, Havana, May 10-13, 2015



Stars 2015, Havana, May 10-13, 2015


Particle identification

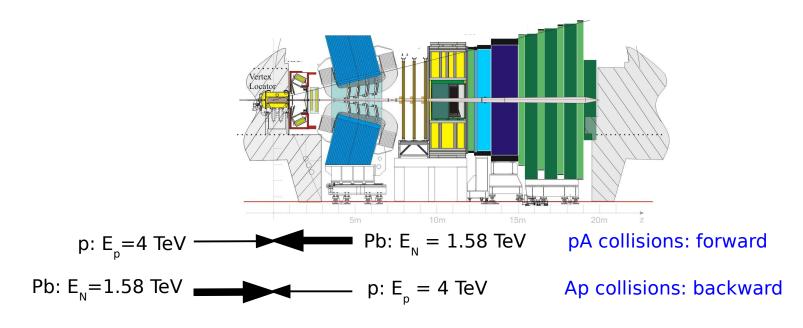
RICH1: Aerogel and C_4F_{10} - low p(2-60 GeV) RICH2: CF_4 - high p (<100 GeV)

- kaon ID ε=95%; π mis-id< 5%
- high multiplicities: performance degraded

muon ID ε=97%; π-mis-id < 1-3%

Stars 2015, Havana, May 10-13, 2015

Proton-lead runs

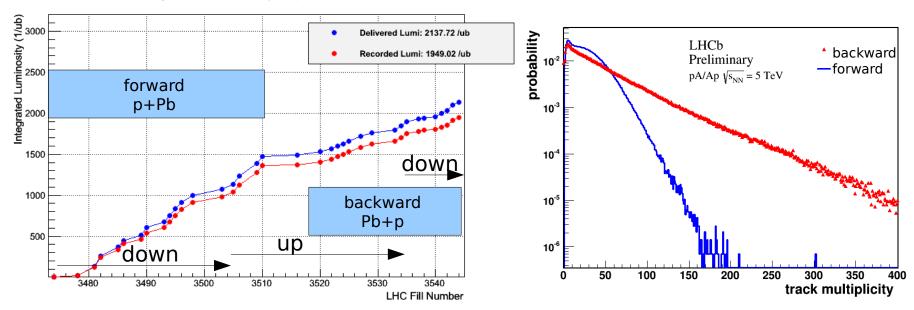

 $E_p = 4$ TeV, $E_N = 1.58$ TeV, nucleon-nucleon cm energy $\sqrt{s} = \sqrt{4E_pE_N}$

 \rightarrow proton-lead collisions at 5 TeV

• asymmetric beam energies rapidity of cm system: $y_{cm} = \frac{1}{2} \ln \frac{E_p}{E_N}$

→ shift in rapidity
$$\Delta y = y_{lab}$$
-y = 0.47

forward and backward coverage when swapping beam directions



• acceptance: forward 1.5 < y < 4.0

backward -5.0 < y < -2.5

Stars 2015, Havana, May 10-13, 2015 Kathari

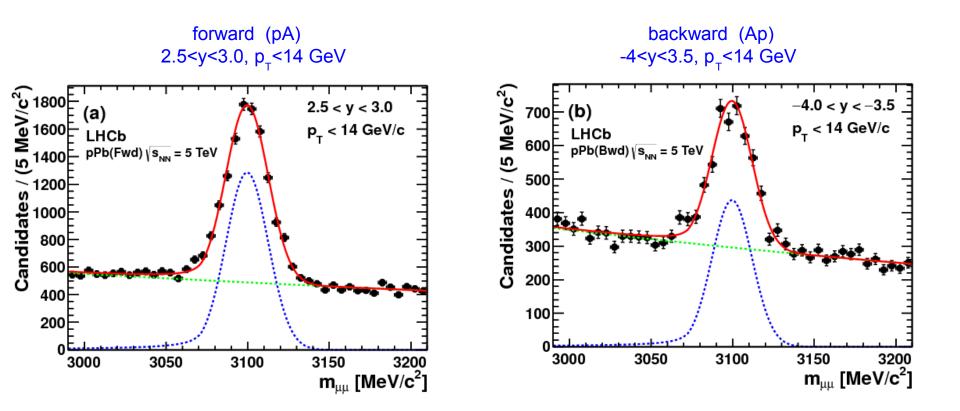

LHCb Integrated Luminosity at p-Pb 4 TeV in 2013

- low instantaneous luminosity: $L \approx 5 \times 10^{27} \text{ cm}^{-2} \text{s}^{-1}$
- low pile-up (approx. 1 primary vertex per beam crossing)
- data-taking efficiency better than 91%
- results based on 2 beam and 2 magnet configurations
- pA (forward) : $L = 1.1 \text{ nb}^{-1}$
- Ap (backward) : $L = 0.5 \text{ nb}^{-1}$

J/Ψ production in p-Pb collisions

- reconstruct J/ Ψ in di-muon channel
- forward: 1.5<y<4.0 and backward: -5.0<y<-2.5
- p_T < 14 GeV
- separate prompt J/ Ψ s and J/ Ψ s from b: pseudo-proper time

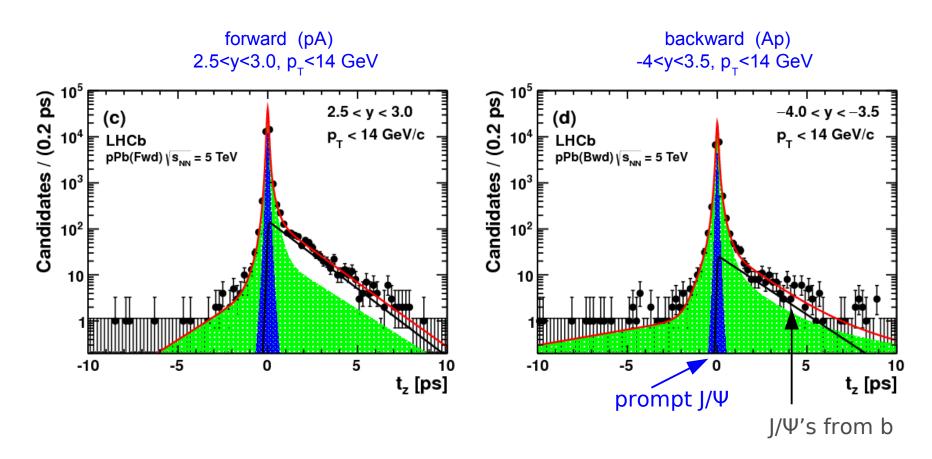
p-proper time J/Ψ V V $z(J/\Psi)-z(PV)$


results:

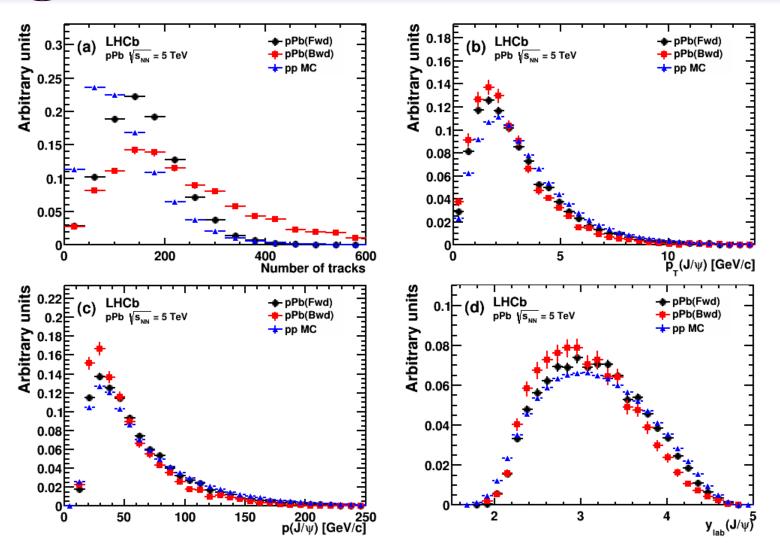
- differential J/ Ψ cross sections: bins in $\textbf{p}_{_{T}}$ and y
- nuclear effects

yields: simultaneous fit to mass & pseudo-proper time mass model: Crystal-Ball signal and exponential background

 \rightarrow background higher for lead-proton collisions due to higher multiplicities

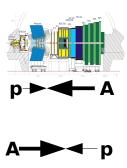


JHEP 02(2014) 072


J/Ψ production in p-Pb collisions

yields: simultaneous fit to mass & pseudo-proper time mass model: Crystal-Ball signal and exponential background t_z model: exponential for J/ Ψ 's from b's convoluted with double Gaussian

 δ function for prompt J/ Ψ 's convoluted with double Gaussian empirical function (sPlot) from side-band for background



acceptance and efficiency corrections from pp simulation pp simulation reweighted to describe track multiplicity

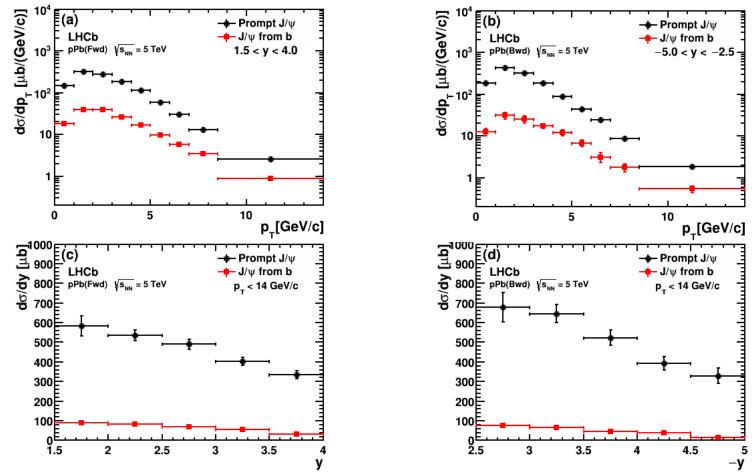
Stars 2015, Havana, May 10-13, 2015

J/Ψ production cross-sections

forward: 1.5 < y < 4.0prompt: $\sigma = 1168 \pm 15 \text{ (stat)} \pm 54 \text{ (sys)} \mu b$ from b's: $\sigma = 166 \pm 4.1 \text{ (stat)} \pm 8.2 \text{ (sys)} \mu b$ backward: -5.0 < y < -2.5prompt: $\sigma = 1293 \pm 42 \text{ (stat)} \pm 75 \text{ (sys)} \mu b$ from b's: $\sigma = 118.2 \pm 6.8 \text{ (stat)} \pm 11.7 \text{ (sys)} \mu b$

prompt J/ψ cross section about 10 times higher than J/ψ from b
 ⇒ similar to the values observed in pp collisions at 2.76, 7 and 8 TeV
 [JHEP 02 (2013) 041], [EPJC (2011) 71 1645], [JHEP 06 (2013) 064]

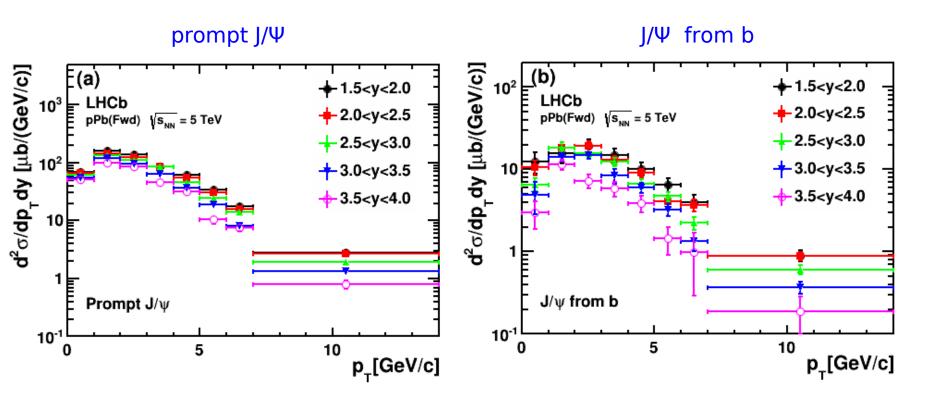
- acceptance and efficiency corrections from pp simulation
- pp simulation reweighted to describe track multiplicity
- largest systematic uncertainties
 - mass model: 2.3-3.4%
 - difference of $\textbf{p}_{_{T}}$ and y distribution between simulation and data: 0.1-8.7%
 - multiplicity reweighting: 0.1-4.3%
 - t_7 fit (only for J/ ψ from b): 0.2-12%


• systematic uncertainties larger at low and high y and for backward configuration

Single differential J/ Ψ production cross-sections

forward 1.5<y<4.0

backward -5.0<y<-2.5



- forward: fraction from J/ ψ from b increases from 10 to 25% with $p_{_{\rm T}}$
- backward: 5 to 20%
- fraction has only small rapidity dependence
 - \rightarrow similar results in pp collisions

Stars 2015, Havana, May 10-13, 2015

Double differential J/ $\Psi d^2\sigma/dp_T dy$ cross-section JHEP 02(2014) 072

forward: double differential cross sections

quantified with measurement of

nuclear modification factor

$$R_{pA}(y, \sqrt{s_{NN}}) = \frac{1}{A} \frac{d \sigma_{pA}(y, \sqrt{s_{NN}})/dy}{d \sigma_{pp}(y, \sqrt{s_{NN}})/dy}$$

in overlap region 2.5 < |y| < 4.0

A: atomic number

=1 if pA collision is superposition of A pp collisions

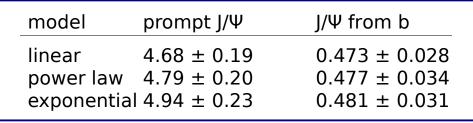
<1 in case of suppression due to medium

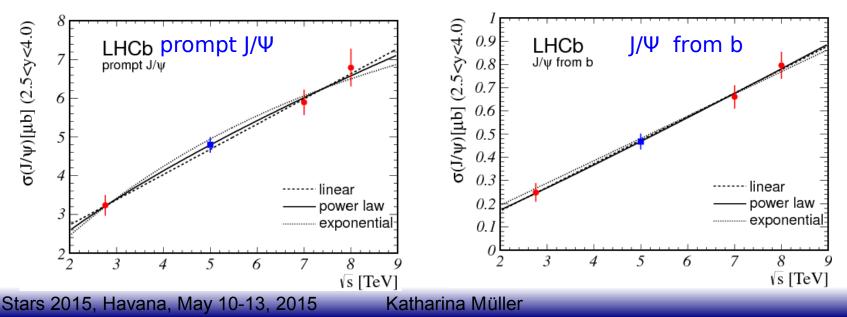
forward backward production ratio

$$R_{FB}(y, \sqrt{s_{NN}}) = \frac{d \sigma_{pA}(+|y|, \sqrt{s_{NN}})/dy}{d \sigma_{Ap}(-|y|, \sqrt{s_{NN}})/dy}$$

in overlap region 2.5 < |y| < 4.0

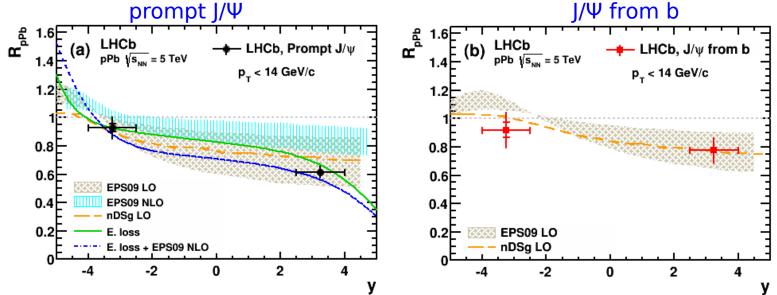
 \rightarrow many uncertainties cancel (luminosity, tracking efficiency) no reference cross section needed


Reference cross-section @ 5 TeV


reference pp cross section at 5 TeV not measured directly: interpolation of $\sigma_{_{DD}}$ at \sqrt{s} =2.76, 7 and 8 TeV JHEP 02(2013)041, EPJC (2011) 71 1645, JHEP 06 (2013) 064

interpolation functions: linear

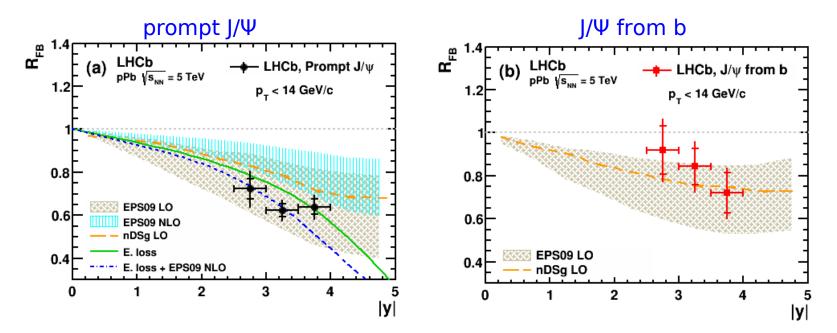
```
linear \sigma(\sqrt{s}) = p_0 + \sqrt{s} p_1
power law \sigma(\sqrt{s}) = (\sqrt{s}/P_0)^{p_1}
exponential \sigma(\sqrt{s}) = p_0(1 - \exp(-1\sqrt{s}/p_1))
```


interpolated cross-section @ 5 TeV [µb]

Nuclear modification factor R_{pPb}

 $R_{_{pPb}} = 1/A (d\sigma_{_{pA}}/dy) /(d\sigma_{_{pp}}/dy)$ in overlap region 2.5 < |y | < 4.0

• prompt J/Ψ: significant sign of cold nuclear matter effects: 40% measurements agree with most of the predictions


• J/Ψ from b: modest suppression wrt pp

first indication of suppression of b hadron production in Pb agreement with predictions in forward region

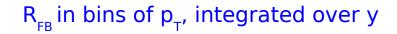
• predictions:

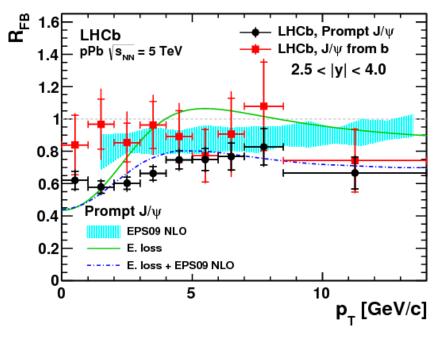
- NLO, LO CSM with EPS09 or nDSg parametrisation for modification of PDFs
- energy loss effects of initial and final state partons with or without modification

EPS09: JHEP 0904 (2009) 65, nDSG:Phys. Rev.D69(2004) 074028 Energy loss: JHEP 03(2013) 122 NLO: Phys. Rev. D17 (1978) 2324, LO: Nucl. Phys. B127 (1980) 425, Phys. Lett. B102, (1981) 364 Stars 2015, Havana, May 10-13, 2015 Katharina Müller $R_{_{FB}} = (d\sigma_{_{DA}}/dy)/(d\sigma_{_{AD}}/dy)$ in three bins in |y|

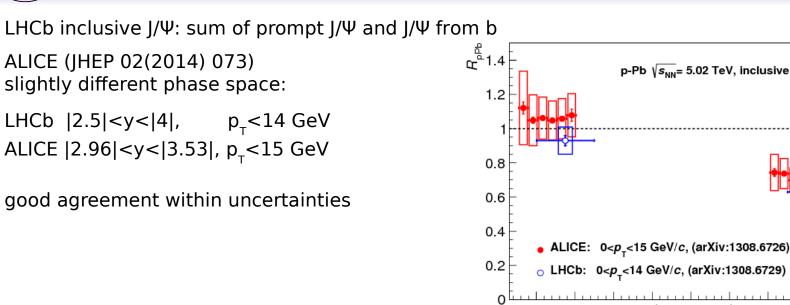
- prompt J/ Ψ : significant forward-backward asymmetry
- J/ Ψ from b: R_{FR} closer to one

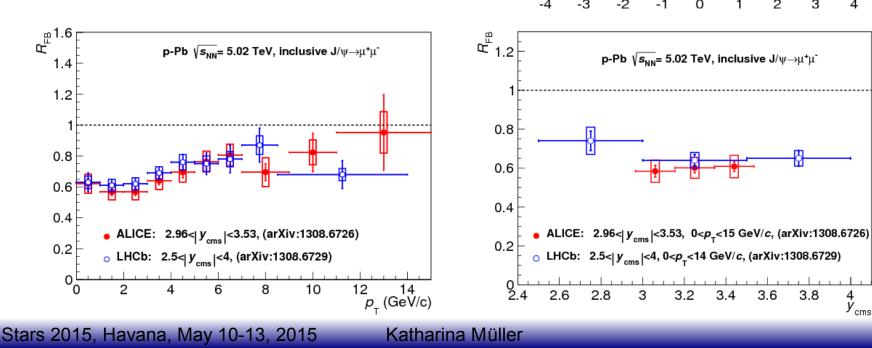
```
→ study heavier systems
```


- pure NLO (EPS09) predicts smaller asymmetry for prompt J/ Ψ
- predictions:
 - NLO, LO CSM with EPS09 or nDSg parametrisation for modification of PDFs
 - energy loss effects of initial and final state partons with or without modification


Stars 2015, Havana, May 10-13, 2015

R_{FR} vs transverse momentum

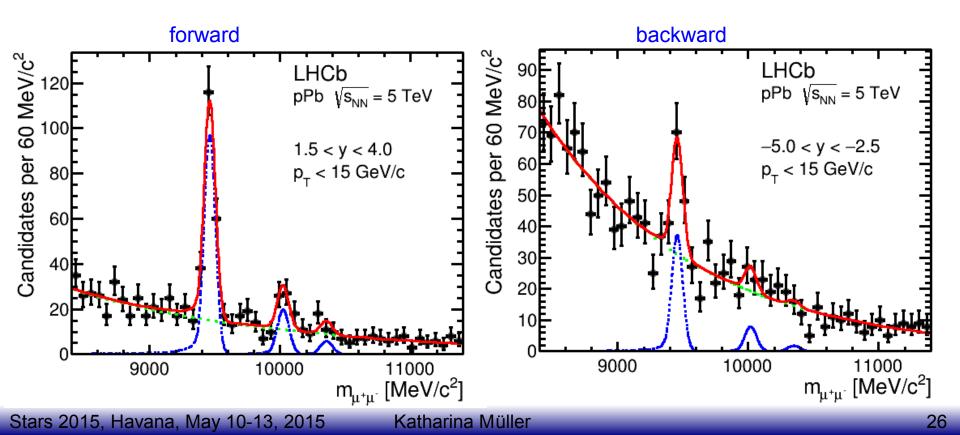




- predictions for prompt $\ J/\Psi$ only
- EPS09(NLO) plus energy loss agrees with data except at low $\ensuremath{\mathsf{p}_{\scriptscriptstyle\mathsf{T}}}$
- energy loss only overshoots at high $\mathbf{p}_{_{\mathrm{T}}}$

p-Pb $\sqrt{s_{NN}}$ = 5.02 TeV, inclusive J/ $\psi \rightarrow \mu^+\mu^-$

Comparison to ALICE



Y production in p-Pb collisions

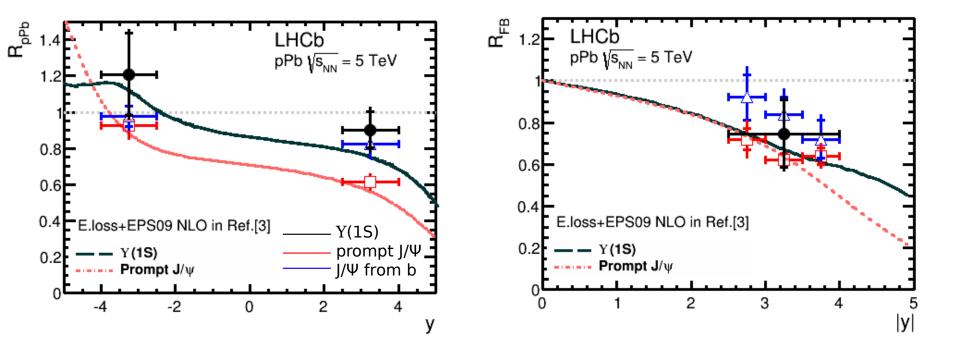
- reconstruct Y in di-muon channel
- forward 1.5<y<4.0 and backward -5.0 < y < -2.5
- p_T < 15 GeV
- low statistics \rightarrow no differential measurement
- yields: fit to mass
- mass model: three Crystal-Balls for Y(1S), Y(2S) and Y(3S) signal and exponential background

Y production in p-Pb collisions

cross-section times branching fraction, integrated over $\textbf{p}_{_{T}}$ and y

	σ(Y(nS)) x B(Y(nS) → μμ) Forward	Backward
Y(1S)	$380 \pm 35_{stat} \pm 19_{syst}$ nb	$295 \pm 56_{stat} \pm 27_{syst} \text{ nb}$
Y(2S)	$75 \pm 19_{stat} \pm 5_{syst}$ nb	$81 \pm 39_{stat} \pm 17_{syst}$ nb
Y(3S)	$27 \pm 16_{stat} \pm 4_{syst}$ nb	< 39 nb @ 90% C.L.
	Relative suppression factor R ^{nS/1S} ForwardBackward	
	Forward	Backward
R ^{25/15}		
R ^{25/15} R ^{35/15}	Forward $0.20 \pm 0.05_{stat} \pm 0.01_{syst}$ $0.07 \pm 0.04_{stat} \pm 0.01_{syst}$	Backward 0.28 ± 0.14 _{stat} ± 0.05 _{syst} <0.13 @ 90% C.L.

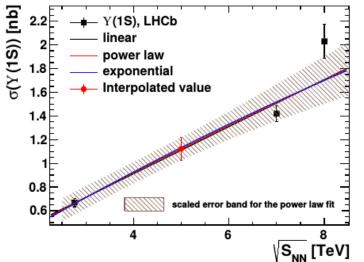
statistical uncertainty dominates


dominant systematic uncertainties:

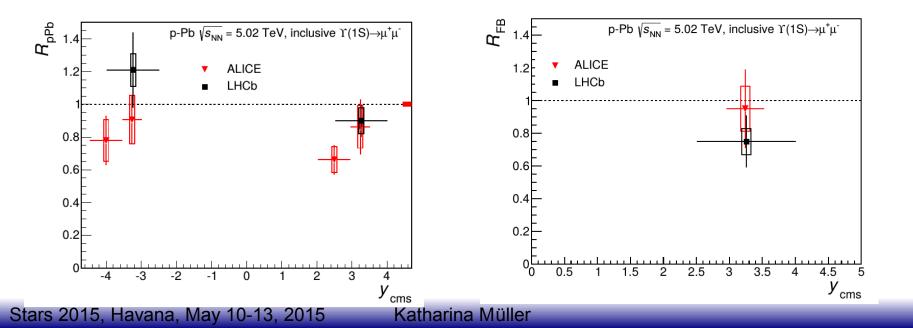
 p_{τ} and y dependence of signal 4%(forward) 7%(backward) or trigger efficiency : 2%(forward) 5%(backward)

 \rightarrow concentrate on Y(1S)

Stars 2015, Havana, May 10-13, 2015


measurement of $R_{_{pPb}}$ and $R_{_{FB}}$ with Y(1S) complementary to J/ Ψ (probing different $x_{_{A}})$

- cold nuclear effects are also visible with Y(1S) production
- suppression in forward region smaller than for $\mbox{ J/}\Psi$
- possible enhancement in backward region due to anti-shadowing
- agreement with prediction EPS09(NLO) for nPDF and with and without energy loss


reference cross section @ 5 TeV:

interpolation of measurements at 2.76, 7 and 8 TeV:

linear	1.111±0.036 nb
power law	1.123±0.036 nb
exponential	1.134±0.038 nb

Comparison to ALICE Phys.Lett. B740 (2015) 105-117 slightly different phase space:

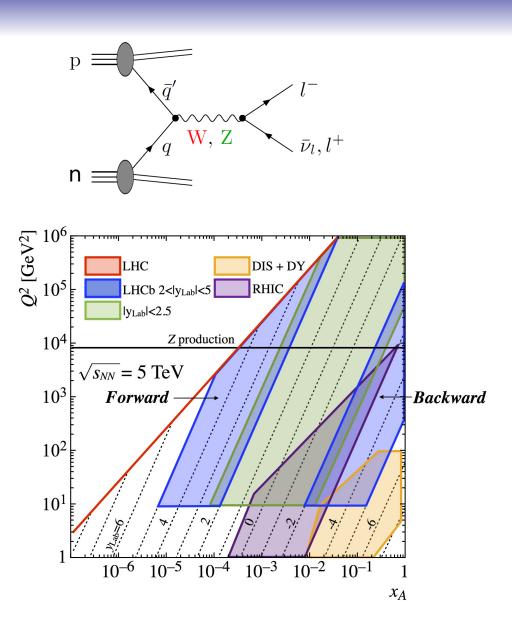
LHCb |2.5| < y < |4|ALICE |2.96| < y < |3.53|→ reasonable agreement

LHCb forward kinematics:

@ first order, collision of a sea and a valence quark

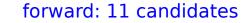
 \rightarrow LHCb probes two distinct regions in x-Q²:

 $x_{1,2}^{}=(Q/\sqrt{s}) e^{\pm y}$

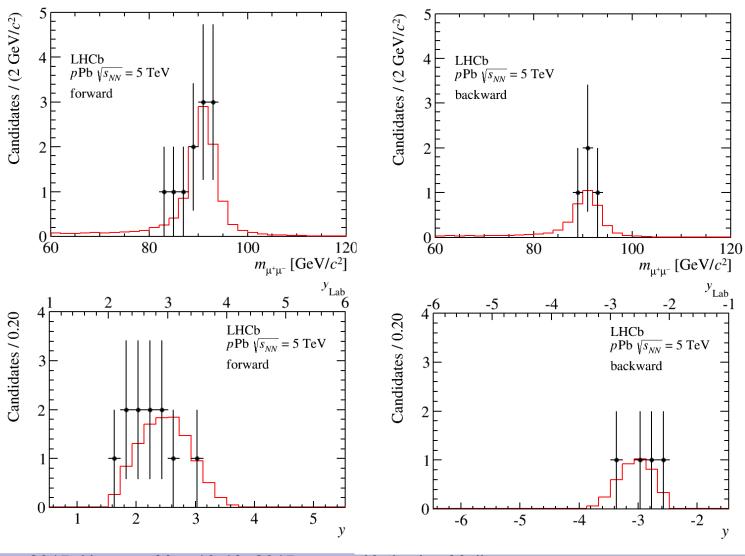

complementary to ATLAS/CMS

LHCb phase space: \rightarrow sensitivity to nuclear PDF at large x_A and low $x_A \approx 2 \cdot 10^{-4}$

selection:


muons: $p_{T}>20$ GeV, 2< η <4.5 mass: 60< $M_{\mu\mu}$ <120 GeV

backgrounds: very small, purity>99% determined from data



Z production in proton-lead

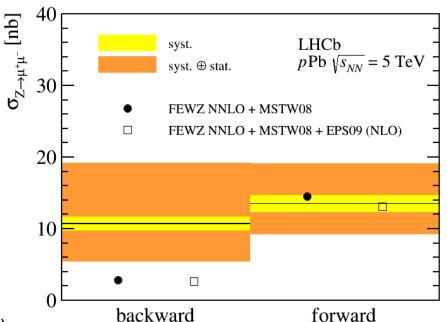
backward: 4 candidates

Stars 2015, Havana, May 10-13, 2015

Z production in proton-lead

- efficiencies, purity from data
- cross sections:

forward:


 $\sigma_{Z(\rightarrow \mu + \mu)} = 13.5^{+5.4}_{-4.0}$ (stat.) ± 1.2(syst.) nb backward:

$$\sigma_{_{Z(\rightarrow \mu + \mu -)}} = 10.7^{_{+8.4}}_{_{-5.1}}$$
 (stat.) ± 1.0(syst.) nb

- dominant systematic uncertainty: efficiency, statistically dominated
- theoretical predictions: NNLO calculations (FEWZ with MSTW08) nuclear modification: EPS09(NLO)
- future higher statistics measurements will provide important information on nuclear PDFs

FEWZ: Y. Li and F. Petriello, Phys. Rev. D86 (2012) 094034, arXiv:1208.5967. MSTW08: A. Martin, W. Stirling, R. Thorne, and G. Watt, Phys. J C63 (2009), no 2 189 EPS09: K. Eskola, H. Paukkunen, and C. Salgado, JHEP 04 (2009) 065, arXiv:0902.4154. Katharina Müller

Stars 2015, Havana, May 10-13, 2015

Fiducial volume muons: p₇>20 GeV, 2<η<4.5 mass: 60<M(µµ)<120 GeV

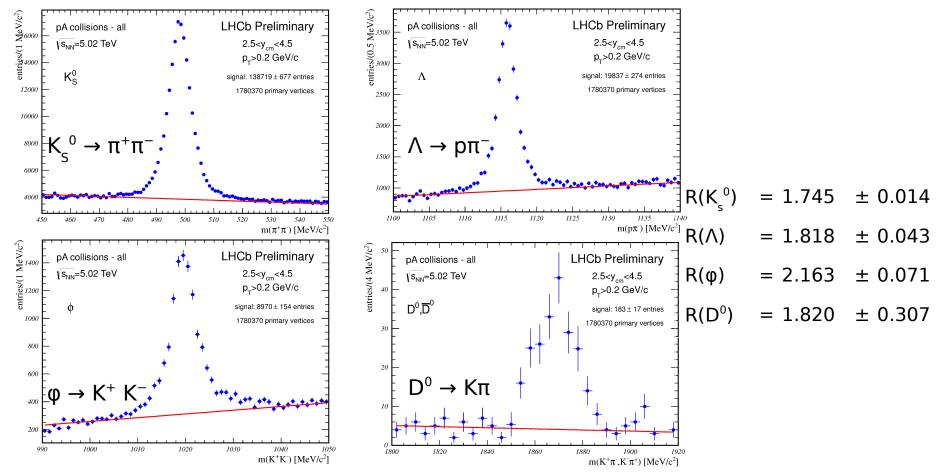
Preliminary: Strangeness & Charm production

results from pilot (pA) run in 2012 integrated luminosity: 0.9 μ b⁻¹

look at K_{s}^{0} , Λ , Φ , D^{0} production, kinematic range 2.5<y<4.5, p_{τ} >0.2 GeV compare pPb collisions to minimum bias pp interactions at \sqrt{s} =8 TeV

study enhancement of particle production from pp to pA

 $R(X) = \frac{N(X)_{pA} \text{ per pA interaction}}{N(X)_{pp} \text{ per pp interaction}}$

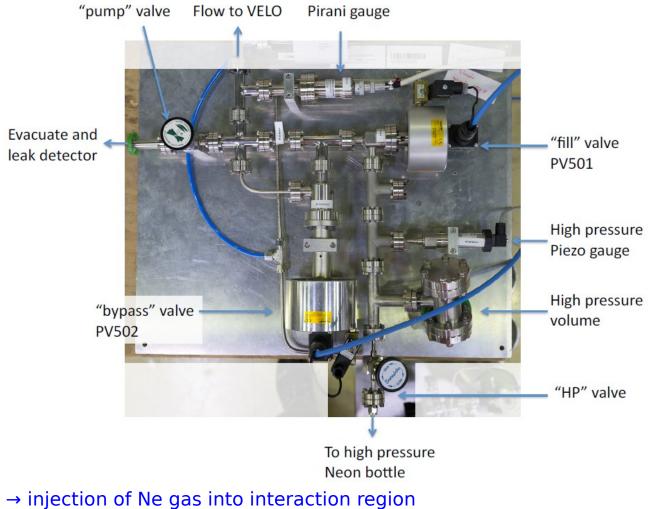

only statistical uncertainties no corrections for

- spurious or multiply reconstructed tracks
- tracks from decays and secondary vertices
- tracking efficiencies
- different kinematics in lab frame
- different nucleon-nucleon cms energies

 \rightarrow expect corrections to increase R(X) by 7 to 16%

Preliminary: Strangeness & Charm production

LHCb-CONF-2012-034

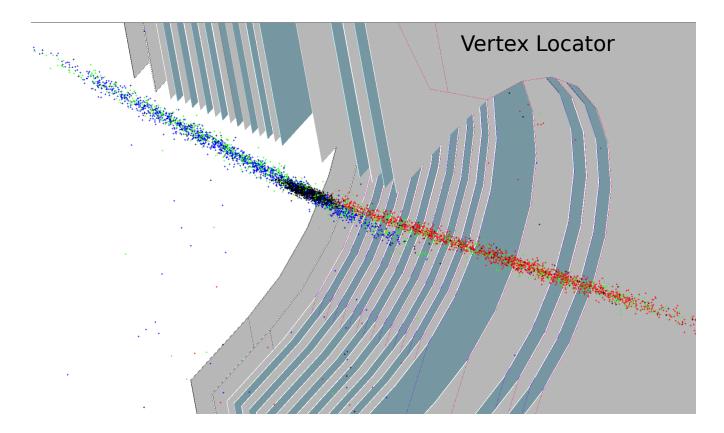

 \rightarrow clean signals of strangeness and charm production

only statistical uncertainties, no corrections applied expect corrections to increase R(X) by 7 to 16%

Stars 2015, Havana, May 10-13, 2015

Fixed target physics at LHCb

SMOG 'System for Measuring Overlap with Gas' used as internal gas target



very simple robust system (constant flow) used for a precise luminosity determination (arXiv:1410.0149 accepted by JINST)

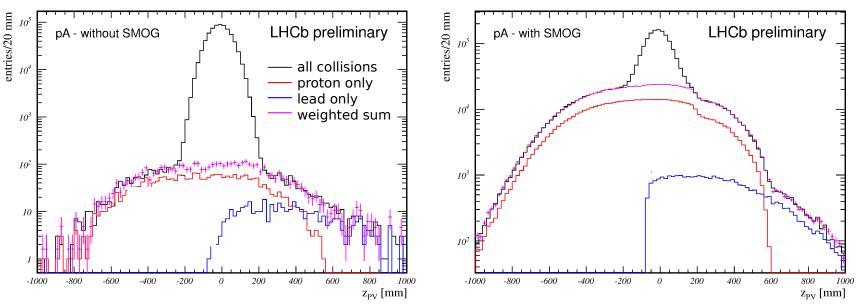
Stars 2015, Havana, May 10-13, 2015

Fixed target physics at LHCb

Distribution of vertices (z-axis scaled by 1:100 compared to transverse dimensions) beam1-beam2, beam1-gas, beam2-gas

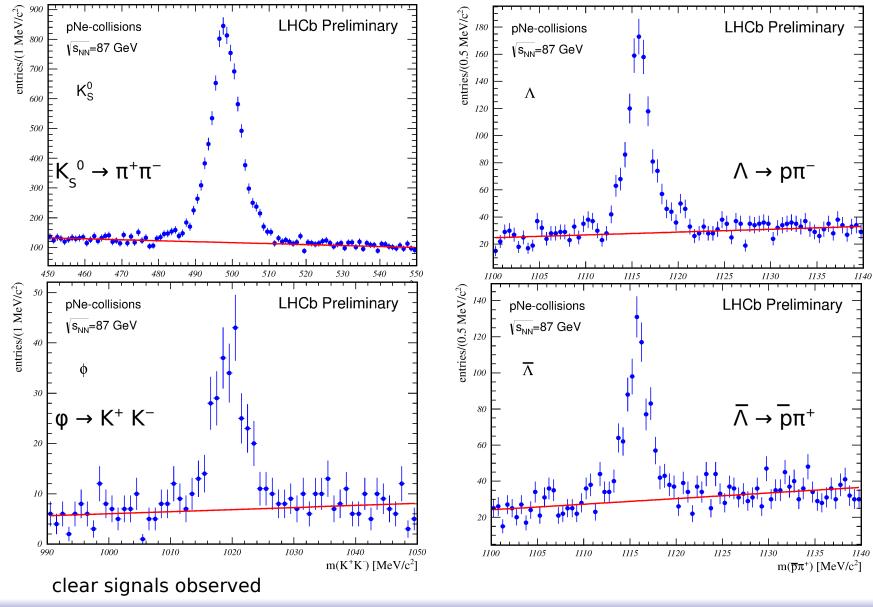
SMOG can be re-used for fixed target physics:

precise vertexing allows to separate beam-beam and beam-gas contributions however strong acceptance effects as a function of the *z* position


Stars 2015, Havana, May 10-13, 2015

with SMOG

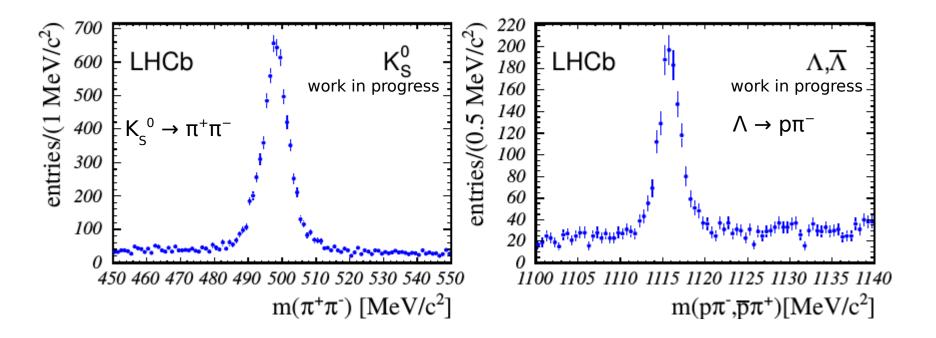
no SMOG


- SMOG: increase of beam-gas interaction rate by two orders of magnitude
- accurate measurement of beam profile \rightarrow precise luminosity determination
- \rightarrow also allows to study <u>pNe interactions</u> at $\sqrt{s}=87$ GeV

$$\mathsf{E}_2 = \mathsf{m}_{\mathsf{Ne}}/2 \quad \rightarrow \quad \sqrt{s} = \sqrt{4 E_p M_{\mathsf{Ne}}/2}$$

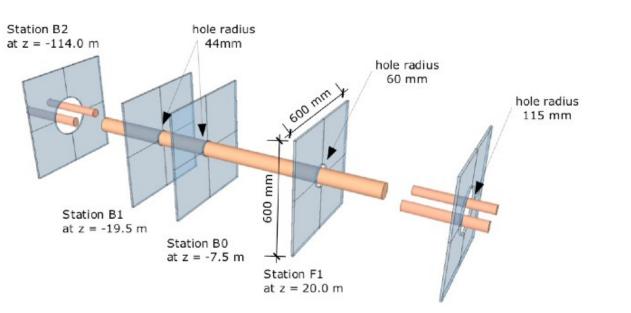
shift of cm system by 4.5 units in rapidity in proton direction

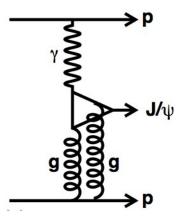
 \rightarrow LHCb is a central detector for fixed target collisions


Strangeness production at 87 GeV (pNe)

Stars 2015, Havana, May 10-13, 2015

Katharina Müller



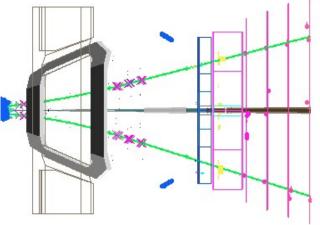


PbNe interactions at $\sqrt{(s_{NN})}=54.4 \text{ GeV}$

40 minutes data taking with PbNe interactions plots based on ¼ of available statistics → clean light hadron signals visible other targets possible: H, He, Ne, Ar, Kr, Xe

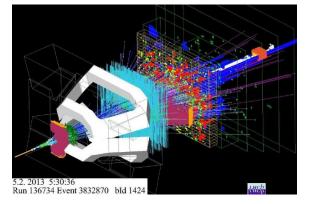
Prospects increase LHCb acceptance

five stations for selecting rapidity gaps up to 114 m from IP


rapidity gap size 2<y<8

detectors: four plastic scintillator plates,

20 mm thick - retractable


→ improvements in triggering and background rejection for diffractive physics and central exclusive production in pp and fixed target collisions

Stars 2015, Havana, May 10-13, 2015

- LHCb successfully participated in proton-lead runs
- ${\ensuremath{\, \bullet}}$ measurement of J/ ψ and Y production
 - \rightarrow cold nuclear matter effects visible in J/ ψ and Y(1S) production
 - \rightarrow first observation of cold nuclear effects for b hadrons
- first observation of forward Z production in proton-nucleus collisions
- many more measurements ongoing
- measurements limited by statistics
 - \rightarrow benefit from larger data samples after the restart of LHC
- in addition, we have sample of pNe and PbNe data
- only a small part of LHCbs potential used so far
- increased forward and backward acceptance with new detector
 - \rightarrow excellent prospects for diffractive physics in fixed target collisions

Backup slides

Stars 2015, Havana, May 10-13, 2015

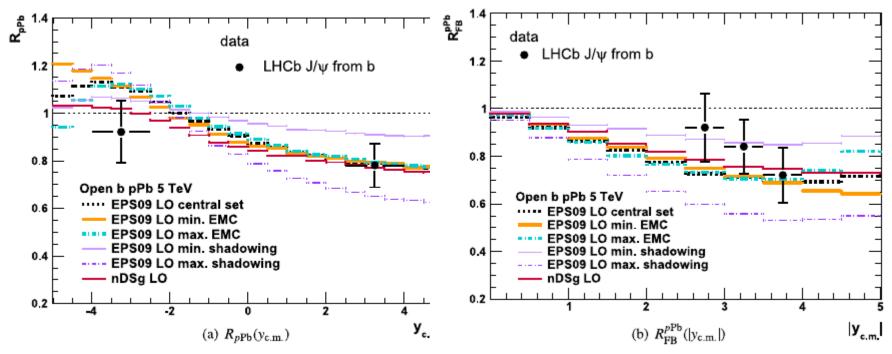
Katharina Müller

42

Check of interpolation method

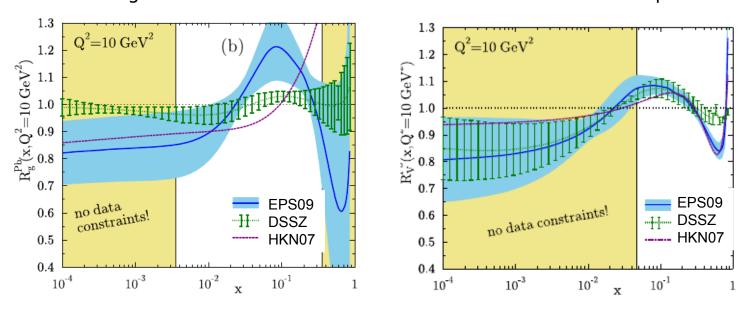
Cross check with theory: FONLL, Leading Order Colour Evaporation Model (LOCEM)

FONILL	Model/PDF	factorization scale	$\sigma(2.76\mathrm{TeV})$	$\sigma(5.02\text{TeV})$	$\sigma(7{\rm TeV})$
FONLL: Phys. Rev. D17 (1978) 2324. LO-CEM JHEP 9805 (1998) 007	LO-CEM/CTEQ6L	$m_c, m_c/2$	4.271	5.300	5.815
	LO-CEM/CTEQ6L	$2m_c$	3.382	5.300	6.619
	LO-CEM/MRST98L	$m_c/2$	4.294	5.300	5.837
	LO-CEM/MRST98L	m_c	3.880	5.300	6.188
	LO-CEM/MRST98L	$2m_c$	3.236	5.300	6.820
	LO-CEM/CTEQ5L	$m_c/2$	3.891	5.300	6.180
	LO-CEM/CTEQ5L	m_c	3.604	5.300	6.450
	LO-CEM/CTEQ5L	$2m_c$	3.138	5.300	6.928
	LO-CEM/MRST01L	$m_c/2$	4.584	5.300	5.586
	LO-CEM/MRST01L	m_c	4.018	5.300	6.131
	LO-CEM/MRST01L	$2m_c$	3.391	5.300	6.670
	LO-CEM/GRV98L	$m_c/2$	3.697	5.300	6.412
	LO-CEM/GRV98L	m_c	3.352	5.300	6.765
	LO-CEM/GRV98L	$2m_c$	3.029	5.300	7.124
	FONLL	(nominal)	3.331	5.300	6.670
	FONLL	(min)	3.872	5.300	6.142
	FONLL	(\max)	3.413	5.300	6.587
	-79				


Absolute cross-sections unconstrained \rightarrow fixed to 5.3µb at 5 TeV check interpolation methods:

• adjust parameters of the interpolation function to cross-section at 2.76 and 7TeV

compare interpolated value to fixed reference


Z. Conesa del Valle , E.G. Ferreiro , F. Fleuret , J.P. Lansberg , A. Rakotozafindrabe Nuclear Physics A 926 (2014) 236-241

 $R_{_{pPb}}$ nDSg fit is better (no antishadowing) – but interpolated cross section needed $R_{_{FB}}$ no tension with EPS09

Current knowledge of nuclear PDFs (nPDF)

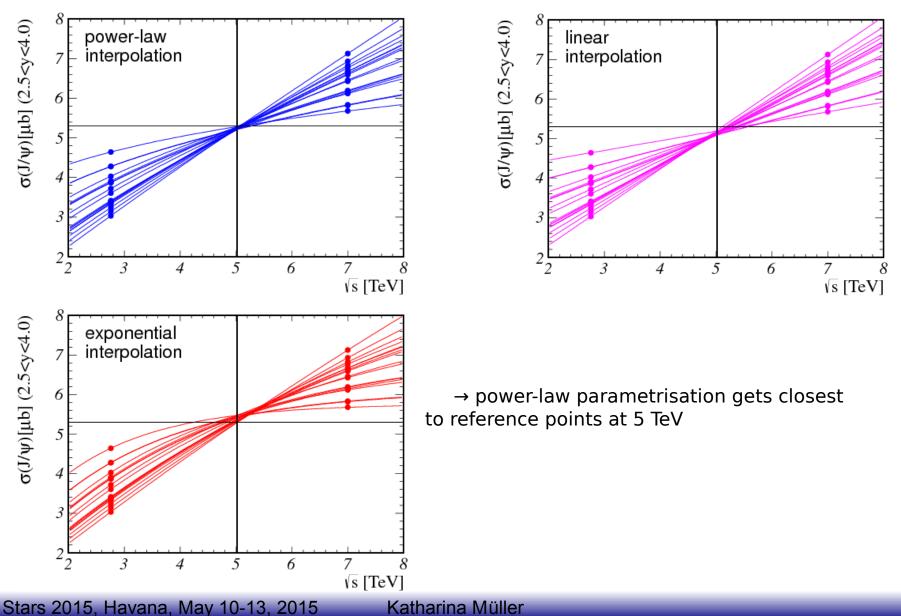
ratio: (nuclear PDF for Pb)/ (proton PDF) [Nucl.Phys. A926 (2014) 24-33] gluon valence quarks

small x:	R<1, shadowing, interference of scattering amplitudes
0.4 <x<0.8:< td=""><td>R<1, EMC effect</td></x<0.8:<>	R<1, EMC effect
$x \rightarrow 1$	R>1, Fermi motion of nucleons in nucleus
x around 0.1:	R>1 antishadowing (sum rules of PDFs)

 x_{A} :momentum fraction carried by parton inside the nucleon bound in the lead ion

J/Ψ systematic uncertainties

	forward	backward
correlated between bins	%	%
mass fit	2.3	3.4
radiative tail	1.0	1.0
muon identification	1.3	1.3
track reconstruction efficiency	1.5	1.5
luminosity	1.9	2.1
Β (J/ψ→μ+μ−) from PDG	1.0	1.0

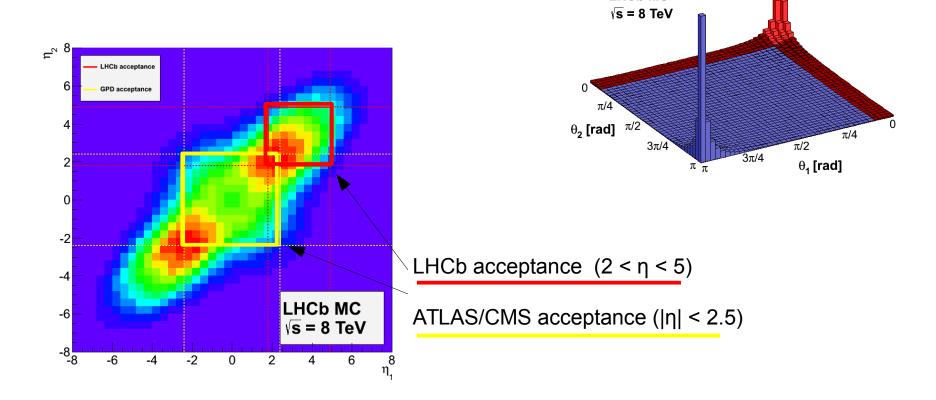

uncorrelated between bins		
y – p _T binning	0.1-8.7	0.1-6.1
Reweighting of track multiplicity	0.1- 3.0	0.2- 4.3
t _z fit on non-prompt J/ψ	0.2-12	0.2-13

systematics are dominated by fit model, luminosity and data-MC agreement

no uncertainty assigned to the effect of J/ ψ polarisation, but effect measured to be small Eur. Phys. J. C73 (2013) 2631: longitudinal J/ ψ polarisation consistent with zero

Check of interpolation method

cross check with theory: FONLL, Leading Order Colour Evaporation Model


θ

LHCb MC

single arm forward spectrometer b pair production angles strongly correlated \rightarrow 25% of bbbar pairs in LHCb acceptance

 \rightarrow 100'000 bb pairs/s

