Supernovae shed light on GRBs

3rd Caribbean Symposium – Havana, May 2015

Massimo Della Valle

Capodimonte Observatory, INAF-Naples ICRANet - Pescara

SNe & GRBs at z < 0.2

GRB	SN	Z	Ref.
GRB 980425	SN 1998bw	0.0085	Galama et al. 1998
GRB 060218	SN 2006aj	0.033	Campana et al. 2006 Pian et al. 2006
GRB 080109	SN 2008D	0.007	Soderberg et al. 2008 Mazzali et al. 2008
GRB 100316D	SN 2010bh	0.06	Bufano et al. 2012 Chornock et al. 2010 Cano et al. 2011 Margutti et al. 2013
GRB 030323	SN 2003dh	0.16	Hjorth et al. 2003 Stanek et al. 2003
GRB 031203	SN 2003lw	0.11	Malesani et al. 2004
GRB 130702A	SN 2013dx	0.15	D'Elia et al. 2014

Properties of GRB-SNe (broad-lined SNe-Ic)

Lack of H and He in the ejecta: SNe-Ic Very broad features: large expansion velocity (> 0.1c) \rightarrow Kinetic energy (non-relativistic ejecta) ~ 10⁵² erg \geq 10 larger than usual CC-SNe Range of luminosity: in some case large ⁵⁶Ni mass (~ 0.5±0.2 M_☉)

Explosions are aspherical (profiles of nebular lines O vs. Fe and Polarization)

SN 1998bw

SN 1987A

Aspherical explosion

Maeda et al. 2006, 2008 see also Tautenberger et al. 2009

E_K ~ 30 x 10⁵¹ erg

 $E_{K} \sim 1 \times 10^{51} \text{ erg}$

Ma	odeling	lightcu	irves ar	nd spec	tra
[10 ⁻¹⁴ erg sec ⁻¹ cm ⁻² Å ⁻¹] ¹ ¹ ¹ ¹ ¹ ¹ ¹ ¹		3 May 1998	43 - ([_s Bia]	Aspherical Iwamoto $E_{51}=20$	(a) Model A o et al. 1998
1998bw	2003dh	20031w	2006aj	2008D	2010bh
$25-35~{ m M}_{\odot}$	$35-40~\mathrm{M}_{\odot}$	$40-50~{ m M}_{\odot}$	$20\text{-}25~\mathrm{M}_\odot$	$20\text{-}30~\mathrm{M}_{\odot}$	$25 \mathrm{M}_{\odot}$
$40 \ \mathrm{M}_{\odot}$					Í
Woosley 1999; Maeda et al. 2006	Nomoto et al. 2003	Mazzali et al. 2006	Mazzali et al. 2006	Tanaka et al. 2008	Bufano et al. 2012

Distant GRB/SNe?

GRB census > 0.2

GRB	SN	Ζ	Ref.
GRB 021202	SN 2002lt	1.002	Della Valle et al. 2003
GRB 050525A	SN 2005nc	0.606	Della Valle et al. 2006
GRB 101219B	SN 2010ma	0.55	Sparre et al. 2011
GRB 060729	SN no name	0.54	Cano et al. 2011
GRB 090618	SN no name	0.54	Cano et al. 2011
GRB 081007	SN 2008hw	0.53	Della Valle et al. 2008 Zhi-ping et al. 2008
GRB 091127	SN 2009nz	0.49	Cobb et al. 2010 Berger et al. 2011
GRB120714B	SN 2012eb	0.40	Klose et al. 2012
GRB 130427A	SN 2013cq	0.34	Melandri et al. 2014 Xu et al. 2013
GRB 120422A	SN 2012bz	0.28	Melandri et al. 2012
GRB 120729A; 130215A; GRB 130831A	?; SN2013ez , SN2013fu	0.8;0.6;0.48	Cano et al. 2014

Bjornsson et al. 2001

Garnavich et al. 2003

Della Valle et al. 2003

Cano et al. 2014

Della Valle et al. 2006

Are the bumps representative of signatures of incipient SNe?

Or they can be produced by different phenomena as dust echoes or thermal re-emission of the afterglow or thermal radiation from a pre-existing SN remnant (e.g. Esin & Blandfors 2000; Waxman & Draine 2000; Dermer 2003) or Macronova events (see Piran's talk).

Berger et al. 2011 SN 2009nz @ z=0.49 GRB 091127

Zhi-Ping et al. 2013 SN 2008hw @ z=0.53 GRB 081007

Della Valle et al. 2003 SN 2002|t @ z=1 GRB 021202

ì ĩ з

Kelly et al. 2008 find that SNe-Ic and LGRB erupt in the brightest regions of their hosts (see also Fruchter et al. 2006)

Long-GRBs have ~ $30 - 50 M_{\odot}$ Raskin et al. 2008

What Progenitors?

blue dwarf

yellow dwarf (Sun-like)

19

What Stars are GRB Progenitors?

GRB 060218/SN 2006aj•• (Campana et al. 2006) z = 0.033 faint: $E_{\gamma} \sim 10^{49}$ erg M_{v} (host) = -16

Host has brightness Similar to SMC

Z/Z_☉ ~ 0.3 2006aj = SN-Ic

Campana et al. 2006

SNe-CC size progenitors

Red Supergiant R~4x10¹³ cm

The radius of the progenitor **W-R Star**

R~4x10¹¹ cm

05 Jan 03

Blue Supergiant R~4×10¹² cm

What is the rate of SNe-Ib/c?

Asiago Survey (Cappellaro et al. 1999)

galaxy]	N. SNe*	*		rate [SNu]	
type	Ia	Ib/c	II	Ia	Ib/c	II
E-SO	22.0			0.18 ± 0.06	< 0.01	< 0.02
S0a-Sb	18.5	5.5	16.0	0.18 ± 0.07	0.11 ± 0.06	0.42 ± 0.19
Sbc-Sd	22.4	7.1	31.5	0.21 ± 0.08	0.14 ± 0.07	0.86 ± 0.35
Others#	6.8	2.2	5.0	0.40 ± 0.16	0.22 ± 0.16	0.65 ± 0.39
All	69.6	14.9	52.5	0.20 ± 0.06	0.08 ± 0.04	0.40 ± 0.19

Rate for Ib/c: 0.152 ± 0.064 SNu

Guetta & DV 2007

 1.8×10^{4} SNe-Ibc Gpc⁻³ yr⁻¹ $\rightarrow 1.1 \times 10^{4}$ up to 2.6x 10⁴

What is the rate of SNe-Ib/c?

Lick Survey (Li et al. 2011)

Rate	SN Ia	SN Ibc	SN II
Early(fiducial; SNuK) Late(fiducial; SNuK) Early(LF-average; SNuK) Late(LF-average; SNuK)	$\begin{array}{c} 0.064\substack{+0.008\\-0.007}(\substack{+0.013\\-0.013})\\ 0.074\substack{+0.006\\-0.012}\\0.048\substack{+0.006\\-0.005}(\substack{+0.010\\-0.010})\\0.065\substack{+0.006\\-0.005}(\substack{+0.010\\-0.010})\end{array}$	$\begin{array}{c} 0.008\substack{+0.006\\-0.004}\begin{pmatrix}+0.002\\-0.002\end{pmatrix}\\ 0.096\substack{+0.010\\-0.009}\begin{pmatrix}+0.018\\-0.018\end{pmatrix}\\ 0.006\substack{+0.004\\-0.003}\begin{pmatrix}+0.002\\-0.002\end{pmatrix}\\ 0.083\substack{+0.009\\-0.008}\begin{pmatrix}+0.016\\-0.016\end{pmatrix}\end{array}$	$\begin{array}{c} 0.004^{+0.003}_{-0.002}(\substack{+0.001\\-0.002}(\substack{-0.001\\-0.001})\\ 0.172^{+0.011}_{-0.036}(\substack{+0.045\\-0.003}(\substack{+0.002\\-0.001}(\substack{+0.001\\-0.001})\\ 0.149^{+0.010}_{-0.009}(\substack{+0.039\\-0.031})\end{array}$
Vol-rate $(10^{-4} \text{ SN Mpc}^{-3} \text{ yr}^{-1})$	$0.301\substack{+0.038\\-0.037}(\substack{+0.049\\-0.049})$	$0.258\substack{+0.044\\-0.042}(\substack{+0.058\\-0.058})$	$0.447^{+0.068}_{-0.068}(^{+0.131}_{-0.111})$

Rate for Ib/c: 2.6 x 10⁴ SNe-Ibc Gpc⁻³ yr⁻¹ 2.2 x 10⁴ \rightarrow 3 x 10⁴ SNe-Ibc Gpc⁻³ yr⁻¹

What is the rate of (long) GRBs?

1.5

T

GRB Gpc ⁻³ yr ⁻¹		1-		: 	BATSE Swift GBM	
 1.5 Schmidt 1999 0.15 Schmidt 2001 0.5 Guetta et al. 2005 1.1 Guetta & Della Valle 2001 	007	(X) -0.5 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1	tta et al. 2011	1.5 kev] ph/c	zm ² s)	2.5
1.1 Liang et al. 2007	Sample	Rate $(z = 0)^1$	<i>L</i> * [50–300] keV	<i>a</i> ₁	<i>a</i> ₂	$\chi^2/\text{d.o.f.}^3$
> 0.5 Pelangeon et al. 2008	-	Gpc ⁻³ yr ⁻¹	10 ⁵¹ erg/s			
13 Wanderman and Piran	GBM	$0.5^{+0.3}_{-0.2}$	$5.5^{+1.5}_{-2}$	$0.3^{+0.1}_{-0.5}$	$2.3^{+0.6}_{-0.3}$	1.1
	BAISE Swift	$1.0_{-0.4}^{+0.3}$ $0.6_{-0.1}^{+0.3}$	$4^{+1.5}_{-1.5}$ 3.3 $^{+2.5}_{-0.5}$	$0.1^{+0.3}_{-0.1}$ $0.1^{+0.3}_{-0.1}$	$2.0_{-0.5}^{-0.5}$ $2.7_{-0.4}^{+1}$	0.95

What is the local rate of (long) GRBs?

What is the fraction of SNe-Ib/c which produces (long)GRBs ?

Rate for Ibc: 2.4 x 10⁴ SNe-Ibc Gpc⁻³ yr⁻¹ GRB rate: 0.7 GRB Gpc⁻³ yr⁻¹

To BEam or not to BEam

Energy Crisis

Fluence : $10^{-7} \div 10^{-5} \text{ erg cm}^{-2}$ Distanza:up to z ~ 10Energy : E_{iso} up to ~ few x 10^{54} erg

 $10^{54} \text{ erg} \sim 1 \text{ M}_{\odot} \sim \times 10$

What is the fraction of SNe-Ib/c which produces (long)GRBs ?

Rate for Ibc: 2.4 x 10⁴ SNe-Ibc Gpc⁻³ yr⁻¹ GRB rate: 0.7 GRB Gpc⁻³ yr⁻¹

<fb⁻¹> ~500 <fb⁻¹> ~75 <fb⁻¹> < 10 <fb⁻¹> ~ 1

(Frail et al. 2001)
(Guetta, Piran & Waxman 2004)
(Guetta & DellaValle 2007)
(Ruffini et al. 2006)

 $(\vartheta \sim 4^{\circ})$ $(\vartheta \sim 9^{\circ})$ $(\vartheta > 25^{\circ})$ for sub-lum GRBs (up to $\vartheta \sim 4 \pi$)

The faster the narrower: characteristic bulk velocities and jet opening angles of Gamma Ray Bursts

G. Ghirlanda^{1*}, G. Ghisellini¹, R. Salvaterra², L. Nava³, D. Burlon⁴, G. Tagliaferri¹, S. Campana¹, P. D'Avanzo¹, A. Melandri¹ (2013)

> 1° < ϑ < 100° ϑ_{peak} ~ 4°

What is the fraction of SNe-Ib/c which produces (long)GRBs ?

Rate for Ibc: 2.4 x 10⁴ SNe-Ibc Gpc⁻³ yr⁻¹ GRB rate: 0.7 GRB Gpc⁻³ yr⁻¹

<fb⁻¹> ~500 <fb⁻¹> ~75 <fb⁻¹> < 10 <fb⁻¹> ~ 1

(Frail et al. 2001; Ghirlanda et al. 2013) $(9 \sim 4^{\circ})$ (Guetta, Piran & Waxman 2004) $(9 \sim 9^{\circ})$ (Guetta & DellaValle 2007) $(9 > 25^{\circ})$ for sub-lum GRBs(Ruffini et al. 2006)(up to $9 \sim 4 \pi$)

GRB/SNe-Ibc: 1.5%-0.003%

GRB/SNeIbc $\rightarrow 0.1-0.01\%$ $\theta \sim 13^{\circ}-40^{\circ}$

Figure 6. Evolution of different cosmic star formation rates with redshift: Menci, private communication (blue solid line), our model (black long-dashed line), Strolger 2004 (turquoise dasheddotted line), Steidel 1999 (orange double dotted-dashed line), Porciani & Madau 2001 (violet double dashed-dotted line). The green dotted line is the fit (Cole et al. 2001) of the data collected by Hopkins (2004).

Discovery of a Relati Gamma-ray Trigger

A. M. Soderberg¹, S.
R. A. Chevalier⁴, P. Chandra⁵,
V. Chaplin⁷, V. Connaughton⁷,
N. Chugai¹¹, M. D. Stritzinger¹²,
E. M. Levesque^{1,15}, J. E. Grindlay¹
P. A. Milne¹⁶, M. A. P. Torres¹

GRB/SNe-Ibc ~ 1/146 GRB/SNe-Ibc ~ 0.7%

< 5% at 99%

GRB/SNe-Ibc: 1.5%-0.003%

HNe/SNe-Ibc: ~ 7% GRB/SNe-Ibc: ~ 1.5% GRB/HNe: ~ 20%

A simplified (and wrong) scheme for a GRB-SN event

-an almost isotropic component carrying most energy 10^{52} erg and mass (~5-10M $_{\odot}$)

-highly collimated component 4°-10° for HL-GRBs containing a tiny fraction of the mass (10 ^{-4/-5} M_{\odot}) moving at $\Gamma \sim x 10^{2-3}$

GRB/HNe: ~ 20%

HL-GRBs vs. LL-GRBs

SNe & GRBs at z < 0.1

GRB	SN	Z	E _{iso} (erg)
GRB 980425	SN 1998bw	0.0085	$\sim 10^{48}$
GRB 060218	SN 2006aj	0.033	~ 10 ⁵⁰
GRB 080109	SN 2008D	0.007	~ 10 ⁴⁶
GRB 100316D	SN 2010bh	0.06	$\sim 10^{50}$

SNe & GRBs at z < 0.1

GRB	SN	Z	E_{iso} (erg)
GRB 980425	SN 1998bw	0.0085	~ 10 ⁴⁸
GRB 060218	SN 2006aj	0.033	$\sim 10^{50}$
GRB 080109	SN 2008D	0.007	~ 10 ⁴⁶
GRB 100316D	SN 2010bh	0.06	$\sim 10^{50}$

LL-GRBs sample a volume ~10⁶ smaller → Rate: up to x 10³ larger

(Della Valle 2005, Pian et al. 2006, Cobb et al. 2006, Soderberg et al. 2006, Liang et al. 2006, Guetta & Della Valle 2007, Amati et al. 2007)

What is the fraction of SNe-Ib/c which produces (long)GRBs ?

Rate for Ibc: 2.4 x 10⁴ SNe-Ibc Gpc⁻³ yr⁻¹ GRB rate: 0.7 GRB Gpc⁻³ yr⁻¹

<fb⁻¹> ~500 <fb⁻¹> ~75 <fb⁻¹> < 10 <fb⁻¹> ~ 1

(Frail et al. 2001; Ghirlanda et al. 2013) $(9 \sim 4^{\circ})$ (Guetta, Piran & Waxman 2004) $(9 \sim 9^{\circ})$ (Guetta & DellaValle 2007) $(9 > 25^{\circ})$ for sub-lum GRBs(Ruffini et al. 2006) $(up to 9 \sim 4 \pi)$

LL vs. HL Rates

LL-GRBs ~ 71 x (1 ÷ 10) ~ 70 ÷ 700 LL-GRBs Gpc⁻³ yr⁻¹

 $(fb^{-1})_{HL-GRBs} \sim 75 \div 500$ HL-GRBs ~ 0.7 x $(fb^{-1}) \sim 50 \div 350 \ Gpc^{-3} \ yr^{-1}$

LL-GRB/HL-GRB < ~ 20

LL vs. HL GRBs Clues to different central engines?

SNe & GRBs at z < 0.1

GRB	SN	Z	E_{iso} (erg)
GRB 980425	SN 1998bw	0.0085	~ 10 ⁴⁸
GRB 060218	SN 2006aj	0.033	$\sim 10^{50}$
GRB 080109	SN 2008D	0.007	$\sim 10^{46}$
GRB 100316D	SN 2010bh	0.06	$\sim 10^{50}$

Conclusions

Conclusions

All long duration GRBs are connected with HNe, but "viceversa" is not true. HL-GRBs / HNe <20%, LL-GRBs/HNe < 40%.

Progenitors of GRB-SNe are W-R stars (likely in binary systems).

GRBs are very rare phenomena

GRB/SNe-Ibc < 1.5% or << 1.5%

Conclusions cont'd

The energetic budget of most GRBs (LL-GRBs 10x) is a fraction (of a tiny fraction) of Ek of HNe.

They might well be related to relatively low energy phenomena ($E_{\theta} < ~10^{50}$ erg) such as SN shock breakout (2006aj/060218) or GRB/jet failed (2008D/XRF 080109) events or gravitational capture (GRB 101225A) of minor bodies onto compact stellar remnants.

Conclusions cont'd

The so called "cosmological GRBs" $E_{iso} \sim 10^{52-54}$ erg $(E_{\theta} < \sim 10^{52} \text{ erg}, \text{ after correction for beaming})$ are more energetic events (SN 2013/GRB 130427A) that have been explained with different models. They can be powered by the rotational energy of newborn NSs or by even more extreme scenarios, which involves BHs formation.