Magnetized White Dwarfs Revisited

Diana Alvear*

Miguel Castillo* Dr. Daryel Manreza** Dra. Aurora Pérez ***

* (Undergraduate Student) Physics Faculty, Havana University, Cuba
**Physics Faculty, Havana University, Cuba
*** ICIMAF, Cuba

SMFNS2015 13-16 May 2015

Equations of State Weak Field Limit Strong Field Limit

Structure Equations

Results Weak Field Limit

Conclusions

Future Directions

- Magnetic White Dwarfs observational surface field until 10^9 G.
- Schwinger magnetic field:

$$B_c = m^2/e\hbar c \sim 10^{13} \mathrm{G}.$$

- Magnetic White Dwarfs observational surface field until 10^9 G.
- Schwinger magnetic field:

$$B_c = m^2/e\hbar c \sim 10^{13} \mathrm{G}.$$

■ Studies considering isotropic pressure:
□ Weak Field Limit, B < B_c (Suh & Mathews, 2000)[†]

[†] Suh, I.-S. & Mahews, G. J. 2000, ApJ, 530, 949

- Magnetic White Dwarfs observational surface field until 10⁹ G.
- Schwinger magnetic field:

$$B_c = m^2/e\hbar c \sim 10^{13} \text{ G}.$$

- Studies considering isotropic pressure:
 - □ Weak Field Limit, $B < B_c$ (Suh & Mathews, 2000)[†]
 - □ Strong Field Limit, $B > B_c$ (Das & Mukhopadhyay 2012, 2013, 2014) [‡]

[†] Suh, I.-S. & Mahews, G. J. 2000, ApJ, 530, 949

- [‡] Das, U. & Mukhopadhyay, B. 2012, IJMP D, 21, 1242001
- Das, U. & Mukhopadhyay, B. 2013 PRL, 110, 071102

Das, U. & Mukhopadhyay, B. 2014 arXiv e-prints

■ Cylindrical metric (Manreza Paret et al. 2014)[†]:

$$ds^{2} = -e^{2\Phi(r)}dt^{2} + e^{2\Lambda(r)}dr^{2} + r^{2}d\phi^{2} + e^{2\Psi(r)}dz^{2}$$

to include anisotropic pressures and anisotropic structure equations.

(See Daryel's talk tomorrow.)

[†]Manreza Paret, D., Horvath, J. E., & Pérez Martínez, A. 2014, arXiv:1407.2280, accepted in RA&A 2015

■ Cylindrical metric (Manreza Paret et al. 2014)[†]:

$$ds^{2} = -e^{2\Phi(r)}dt^{2} + e^{2\Lambda(r)}dr^{2} + r^{2}d\phi^{2} + e^{2\Psi(r)}dz^{2}$$

to include anisotropic pressures and anisotropic structure equations.

(See Daryel's talk tomorrow.)

Objectives:

- □ Find more treatable (semi-analitical) EoS in each field limit.
- □ Solve structure equations in spherical and cylindrical metric to compare with previous works.
- □ Discuss scalar Virial theorem bound for magnetic field, inverse β decay, ... (Coelho et al. 2014)[‡]

[†]Manreza Paret, D., Horvath, J. E., & Pérez Martínez, A. 2014, arXiv:1407.2280, accepted in RA&A 2015

[‡] Coelho, J. G., Marinho, R. M., Malheiro, M. et al. 2014, ApJ, 794, 86

Starting from thermodynamical potential at T = 0:

 $B < B_c$

Starting from thermodynamical potential at T = 0:

 $B < B_c \rightarrow$ Euler-MacLaurin Expansion

Starting from thermodynamical potential at T = 0:

 $B < B_c \rightarrow$ Euler-MacLaurin Expansion

$$\begin{split} P_{\parallel}(x,B) &= \frac{m^4}{12\pi^2(\hbar c)^3} \Phi_+(x,B) \\ P_{\perp}(x,B) &= \frac{m^4}{12\pi^2(\hbar c)^3} \Phi_-(x,B) \\ E(x,B) &= \frac{m^3}{12\pi^2(\hbar c)^3} \left(\frac{1}{x} \left[\frac{B}{B_c}\right]^2 + 4x^3\right) \left(\frac{Am_N}{Z} + m\sqrt{x^2 + 1}\right) - \frac{m^4}{12\pi^2(\hbar c)^3} \Phi_+(x,B) \\ \Phi_{\pm}(x,B) &= x\sqrt{x^2 + 1} \left(x^2 - \frac{3}{2}\right) + \frac{3}{2} \ln\left[\sqrt{x^2 + 1} + x\right] \pm \left[\frac{B}{B_c}\right]^2 \ln\left[\sqrt{x^2 + 1} + x\right] \end{split}$$

with:

x: dimensionless Fermi momentum, *A*: atomic mass, *Z*: atomic number, *m*: electron mass, and m_N : nucleon mass.

$$P_{\perp} = E = -P_{\parallel} = \frac{B^2}{8\pi}$$

From Numeric EoS obtained in (Manreza Paret et al. 2014)[†]:

Polytropic Parametrization: $P = K E^{\Gamma}$

[†]Manreza Paret, D., Horvath, J. E., & Pérez Martínez, A. 2014, arXiv:1407.2280, accepted in RA&A 2015

From Numeric EoS obtained in (Manreza Paret et al. 2014)[†]:

Polytropic Parametrization: $P = K E^{\Gamma}$

<i>B</i> (G)	$K_{\perp}([\text{MeV fm}^{-3}]^{1-\Gamma_{\perp}})$	$K_{\parallel}([\mathrm{MeV}\mathrm{fm}^{-3}]^{1-\Gamma_{\parallel}})$
$1 imes 10^{13}$	$0.00642 \pm 0.012 \times 10^{-5}$	$0.00642 \pm 0.013 \times 10^{-5}$
$5 imes 10^{13}$	$0.00642 \pm 0.012 \times 10^{-5}$	$0.00642 \pm 0.014 \times 10^{-5}$
$1 imes 10^{14}$	$0.00642 \pm 0.011 \times 10^{-5}$	$0.00642 \pm 0.020 \times 10^{-5}$
$5 imes 10^{14}$	$0.00639 \pm 0.024 \times 10^{-5}$	$0.00646 \pm 0.027 imes 10^{-5}$
1×10^{15}	$0.00630 \pm 0.945 \times 10^{-5}$	$0.00655 \pm 1.000 \times 10^{-5}$
<i>B</i> (G)	Γ_{\perp}	Γ_{\parallel}
$\frac{B(G)}{1 \times 10^{13}}$	Γ_{\perp} 1.32786 $\pm 0.002 \times 10^{-2}$	Γ_{\parallel} 1.32787 \pm 0.002 \times 10 ⁻²
$\frac{B (G)}{1 \times 10^{13}} \\ 5 \times 10^{13}$	$\label{eq:GammaL} \begin{split} \Gamma_{\perp} \\ 1.32786 \pm 0.002 \times 10^{-2} \\ 1.32777 \pm 0.002 \times 10^{-2} \end{split}$	$\begin{split} \Gamma_{\parallel} \\ \hline 1.32787 \pm 0.002 \times 10^{-2} \\ 1.32796 \pm 0.002 \times 10^{-2} \end{split}$
$\begin{array}{c} B (G) \\ \hline 1 \times 10^{13} \\ 5 \times 10^{13} \\ 1 \times 10^{14} \end{array}$	$\begin{split} \Gamma_{\perp} \\ \hline 1.32786 \pm 0.002 \times 10^{-2} \\ 1.32777 \pm 0.002 \times 10^{-2} \\ 1.32749 \pm 0.002 \times 10^{-2} \end{split}$	$\begin{split} & \Gamma_{\parallel} \\ \hline 1.32787 \pm 0.002 \times 10^{-2} \\ 1.32796 \pm 0.002 \times 10^{-2} \\ 1.32824 \pm 0.003 \times 10^{-2} \end{split}$
$\begin{array}{c} B (G) \\ \hline 1 \times 10^{13} \\ 5 \times 10^{13} \\ 1 \times 10^{14} \\ 5 \times 10^{14} \end{array}$	$\begin{split} \Gamma_{\perp} \\ \hline 1.32786 \pm 0.002 \times 10^{-2} \\ 1.32777 \pm 0.002 \times 10^{-2} \\ 1.32749 \pm 0.002 \times 10^{-2} \\ 1.31850 \pm 0.037 \times 10^{-2} \end{split}$	$\begin{split} \Gamma_{\parallel} \\ \hline 1.32787 \pm 0.002 \times 10^{-2} \\ 1.32796 \pm 0.002 \times 10^{-2} \\ 1.32824 \pm 0.003 \times 10^{-2} \\ 1.33734 \pm 0.041 \times 10^{-2} \end{split}$

- Anisotropy becomes important for higher values of *B*.
- Parameter's uncertainty increases with *B*.

Structure Equations

Spherical Symmetry: TOV equations

$$\frac{dM}{dr} = 4\pi GE$$
$$\frac{dP}{dr} = -G\frac{(E+P)(M+4\pi r^3)}{r^2 - 2rM}$$

Boundary Conditions: P(R) = 0, M(0) = 0.

• Solve for P_{\parallel} and P_{\perp} independently.

- EoS: For $B < B_c$ pressure and energy density become: $P(x, B) = P(x, 0) \pm [B/B_c]^2 f(x)$ $E(x, B) = E(x, 0) + [B/B_c]^2 g(x)$
- EoS: At $B > B_c$ regime, our parametrization is not good when $B \sim 10^{15}$ G.

- EoS: For $B < B_c$ pressure and energy density become: $P(x,B) = P(x,0) \pm [B/B_c]^2 f(x)$ $E(x,B) = E(x,0) + [B/B_c]^2 g(x)$
- EoS: At $B > B_c$ regime, our parametrization is not good when $B \sim 10^{15}$ G.
- Despite small differences between $P_{\parallel}(E)$ and $P_{\perp}(E)$, Mass-Radius relation changes noticeably.

- EoS: For $B < B_c$ pressure and energy density become: $P(x,B) = P(x,0) \pm [B/B_c]^2 f(x)$ $E(x,B) = E(x,0) + [B/B_c]^2 g(x)$
- EoS: At $B > B_c$ regime, our parametrization is not good when $B \sim 10^{15}$ G.
- Despite small differences between $P_{\parallel}(E)$ and $P_{\perp}(E)$, Mass-Radius relation changes noticeably.
- Curves obtained for at $B < B_c$ agree with results from (Suh & Mathews, 2000) and (Manreza Paret et al. 2014)[‡].

[†] Suh, I.-S. & Mahews, G. J. 2000, ApJ, 530, 949

[‡] Manreza Paret, D., Horvath, J. E., & Pérez Martínez, A. 2014, arXiv:1407.2280, accepted in RA&A 2015

- EoS: For $B < B_c$ pressure and energy density become: $P(x,B) = P(x,0) \pm [B/B_c]^2 f(x)$ $E(x,B) = E(x,0) + [B/B_c]^2 g(x)$
- EoS: At $B > B_c$ regime, our parametrization is not good when $B \sim 10^{15}$ G.
- Despite small differences between $P_{\parallel}(E)$ and $P_{\perp}(E)$, Mass-Radius relation changes noticeably.
- Curves obtained for at $B < B_c$ agree with results from (Suh & Mathews, 2000) and (Manreza Paret et al. 2014)[‡].
- For $B \gtrsim B_c$ anisotropic effects must be considered.

[†] Suh, I.-S. & Mahews, G. J. 2000, ApJ, 530, 949

[‡] Manreza Paret, D., Horvath, J. E., & Pérez Martínez, A. 2014, arXiv:1407.2280, accepted in RA&A 2015

- EoS: For $B < B_c$ pressure and energy density become: $P(x,B) = P(x,0) \pm [B/B_c]^2 f(x)$ $E(x,B) = E(x,0) + [B/B_c]^2 g(x)$
- EoS: At $B > B_c$ regime, our parametrization is not good when $B \sim 10^{15}$ G.
- Despite small differences between $P_{\parallel}(E)$ and $P_{\perp}(E)$, Mass-Radius relation changes noticeably.
- Curves obtained for at $B < B_c$ agree with results from (Suh & Mathews, 2000) and (Manreza Paret et al. 2014)[‡].
- For $B \gtrsim B_c$ anisotropic effects must be considered.
- Chandrasekhar Mass limit holds. (More details in Daryel's talk.)
- [†] Suh, I.-S. & Mahews, G. J. 2000, ApJ, 530, 949
- [‡] Manreza Paret, D., Horvath, J. E., & Pérez Martínez, A. 2014, arXiv:1407.2280, accepted in RA&A 2015

Future Directions

- Solve anisotropic structure equations from (Manreza Paret et al. 2014).
- Given our *more treatable (semi-analitical)* EoS, analize:
 - (a) inverse β decay and pycnonuclear fusion reactions,
 - (b) macroscopic consequences of anisotropic structure equations solutions,
 - (c) bound on the magnetic field imposed by the scalar Virial theorem.

(Coelho et al. 2014)[‡]

[†] Manreza Paret, D., Horvath, J. E., & Pérez Martínez, A. 2014, arXiv:1407.2280, accepted in RA&A 2015

[‡] Coelho, J. G., Marinho, R. M., Malheiro, M. et al. 2014, ApJ, 794, 86