DISCRETE 2014: Fourth Symposium on Prospects in the Physics of Discrete Symmetries

Contribution ID: 26

Type: not specified

Predictions for the Dirac Phase in the Neutrino Mixing Matrix

Wednesday 3 December 2014 14:30 (30 minutes)

Using the fact that the neutrino mixing matrix $U = U_e^{\dagger} U_{\nu}$, where U_e and U_{ν} result from the diagonalisation of the charged lepton and neutrino mass matrices, and assuming 3-neutrino mixing, we consider a number of forms of U_{ν} associated with a variety of flavour symmetries: i) tri-bimaximal (TBM) and ii) bimaximal BM) forms, the forms corresponding iii) to the conservation of the lepton charge $L' = L_e - L_{\mu} - L_{\tau}$ (LC), iv) to golden ratio type A (GRA) mixing, v) golden ratio type B (GRB) mixing, and vi) to hexagonal (HG) mixing. In this approach to neutrino mixing one obtains exact predictions for the Dirac phase δ in the neutrino mixing matrix if the matrix U_e has a minimal form in terms of angles and phases it contains that can provide the requisite corrections to U_{ν} so that the reactor, atmospheric and solar neutrino mixing angles θ_{13} , θ_{23} and θ_{12} have values compatible with the current data. The predictions for δ depend on the angles θ_{13} ,

 θ_{23} and θ_{12} have values compatible with the θ_{23} and θ_{12} and have also simple

"leading order" and "next-to-leading order" approximate

forms. We compare the exact predictions for δ with

those obtained in the "leading order" approximation.

We investigate also the variation of the predictions

of δ with the variation of the values of the neutrino mixing angles θ_{13}, θ_{23} and θ_{12} in their

 3σ experimentally allowed ranges.

Finally, we discuss other forms for the matrices U_e and U_{ν} which allow us to derive exact predictions for the CP violation phase δ . A measurement of $\cos \delta$

can allow to descriminate between the different forms of

 U_e and U_ν considered in our study.

Authors: Mr TITOV, Arsenii (SISSA); Mr GIRARDI, Ivan (SISSA); Prof. PETCOV, Serguey (SISSA)

Presenter: Mr GIRARDI, Ivan (SISSA)

Session Classification: Parallel 2: Neutrinos mass and mixing, implications for astroparticle physics, dark matter searches