Direct Searches for New Physics Particles at BABAR

Gerald Eigen, University of Bergen
representing the BABAR collaboration
Discrete Symmetry Workshop, Kings College, London, Dec. 2-6, 2014
Outline

- Motivation
- Search for dark photons
- Search for long-live particles
- Search for π^0-like new particles
- Conclusions and outlook
Introduction: Astrophysics Results

- In 2010, the Pamela experiment reported a positron excess that is increasing with energy above 10 GeV.

- This was confirmed in 2012 by the Fermi LAT.

- In 2014, AMS showed more higher precision data up to 300 GeV confirming an increase in e^+ fraction in the 10 - 250 GeV energy range.

- AMS has not observed an excess of anti protons in the same energy range.

- Though an astrophysical explanation is possible, theorists have come up with new dark matter scenarios favoring light particles.

G. Eigen, Discrete Symmetries, London, 02/12/2014

Fermi, PRL 108, 011103 (2012)
AMS, PRL 110, 141102 (2013)
In the past, dark matter particles have been associated with new heavy particles predicted in extensions of the Standard Model (SM), e.g. neutralinos.

There are several searches for WIMPs (weakly interacting massive particles).

The observation by Pamela has triggered light-mass dark matter scenarios.

The SM may be connected to the dark sector through so-called portals, these links are the lowest-dimensional operators that may provide coupling of the dark sector to the SM (higher-dimensional operators are mass suppressed).

- **Vector:** \(\varepsilon \, F^\gamma,\mu\nu \, F^\prime_{\mu\nu} \) hidden photon (new U(1) symmetry)
- **Axion:** \(f_a^{-1} \, F^{\mu\nu} \, F_{\mu\nu} \, a \) axion
- **Scalar:** \(\lambda \, H^2 S^2 + \mu \, H^2 S \) hidden scalar/exotic decays
- **Neutrino:** \(\kappa (H\nu) N \) sterile neutrino

At low energy scale, the light vector portal is the most accessible portal, but the scalar portal can be probed as well.
Previous BABAR Searches

- Search for Higgsstrahlung in $e^+e^- \rightarrow h' A'$, $h' \rightarrow A'A'$ \Rightarrow set 90% CL upper limit on $\alpha_D \varepsilon^2$ between 10^{-10} to 10^{-8} from $0.8<m_h<10$ GeV and $0.25<m_A<3$ GeV ($m_h>2m_A$).

- Search for $Y(2S,3S) \rightarrow \gamma A^0$, $A^0 \rightarrow \mu^+\mu^-$ \Rightarrow set 90% CL upper limit on branching fraction at level of $(0.26-8.3) \times 10^{-6}$ in $0.21<m_{A^0}<10.1$ GeV.

- Further Searches for $Y(2S, 3S) \rightarrow \gamma A^0$, $A^0 \rightarrow \tau^+\tau^-$, hadrons, invisible \Rightarrow set similar 90% CL upper limit on branching fractions.

- Search for $Y(1S) \rightarrow \gamma A^0$, $A^0 \rightarrow gg, s\bar{s}$ \Rightarrow set 90% CL upper limit on branching fraction at level of 10^{-6} to 10^{-2} in $1.5<m_{A^0}<9.0$ GeV.

PRD 86, 051105 (2012)

PRD 87, 031102 (2013)

PRD 88, 071102 (2013)

PRL 107, 221803 (2013)

PRD 86, 051105 (2011)

PRL 107, 021804 (2011)

PRD 88, 031701 (2013)
Search for Dark Photons
Dark Photon Production in BABAR

A dark photon A' can be produced in e^+e^- collisions by $e^+e^-\rightarrow \gamma A' \rightarrow \gamma e^+e^-$ ($qq\bar{q}$)

Cross section is reduced wrt $e^+e^-\rightarrow \gamma \gamma$: $\sigma \propto \varepsilon^2 \alpha^2 / E^2_{CM}$ where ε lies in the range 10^{-5}-10^{-2}

BABAR looks for e^+e^- or $\mu^+\mu^-$ and γ with $E_{CM} > 200$ MeV
- Apply constrained fit to beam energy & beam spot
- Use kinematic constraints to improve purity
- Require good quality on γ, e & μ and remove e conversions

Batell et al., PRD 79, 225008 (2009)
Raw e^+e^- and $\mu^+\mu^-$ Mass Spectra

- Generally, good data/MC agreement for m_{ee}
- BHWIDTH generator fails to reproduce low m_{ee} mass region
- MADGRAPH generator reproduces low m_{ee} consistently, but has low statistics
 - Signal extraction does not rely on MC
- For $\mu\mu$, define reduced mass $m_{red} = \sqrt{(m_{\mu\mu}^2 - 4m_{\mu}^2)}$
 - Smoother turn-on near threshold
- KK2F generators reproduces m_{red} well
- Sensitivity is dominated by $\mu\mu$ mode due to higher efficiency and lower backgrounds
- Exclude ω, ϕ, J/ψ, $\psi(2S)$, $Y(1S)$ & $Y(2S)$ mass regions

G. Eigen, Discrete Symmetries, London, 02/12/2014
Observed Cross Section for Dark Photons

- Results on $\sigma(e^+e^-\rightarrow\gamma A' \rightarrow\gamma l^+l^-)$ include all data at $\Upsilon(2S)$, $\Upsilon(3S)$ and $\Upsilon(4S)$

- Largest deviations in e^+e^- channel:
 3.4σ at 7.02 GeV \rightarrow 0.6σ with trial factor (determined from MC)

Significances are estimated as $[2 \log (L/L_0)]^{1/2}$

PRL 113, 201801 (2014)
Observed Cross Section for Dark Photons

- Largest deviations: in $\mu^+\mu^-$ channel 2.9σ at 6.09 GeV \Rightarrow 0.1σ with trial factors

\[\sigma(e^+e^- \rightarrow \gamma A') A' \rightarrow \mu^+\mu^-) \text{ fb}\]

\[S_S\]

σ vs $m_{A'}$ (GeV)

\[PRL 113, 201801 (2014)\]

G. Eigen, Discrete Symmetries, London, 02/12/2014
BABAR pushes exclusion region on ε in the mass range 0.03-~10 GeV substantially lower.

Most of the region favored by g-2 is now excluded.

Region near ρ mass can be further probed by analyzing $A' \rightarrow \pi^+\pi^-$ channel.

G. Eigen, Discrete Symmetries, London, 02/12/2014
In the next few years, several dedicated experiments and Belle II will push the limit on ε further down nearly to $\sim 10^{-4}$.
Search for Long-Lived Particles
The simplest way to produce a long-lived dark particle is via mixing of a photon from e^+e^- annihilation with a dark photon A'
- the dark photon emits a dark scalar S and decays to 2 dark fermions χ (not seen)
- the dark scalar decays to 2 dark photons that mix with real photons that in turn decay to a pair of fermions

The mass is limited to $m_S < 2m_\chi$ since $m_{A'} > 2m_\chi$
- prediction lies around 1 GeV

Another production mechanism originates from the coupling of the SM Higgs field to one new scalar field ϕ
- so ϕ can be produced in SM processes like $\Upsilon(nS)$ or B decay and can decay to 2 fermions

The mass range is $0.1 < m_\phi < 10$ GeV

G. Eigen, Discrete Symmetries, London, 02/12/2014
We perform the first search for a long-lived particle L in the process $e^+e^- \rightarrow LX$ where X is any set of particles and L decays to $e^+e^-, \mu^+\mu^-, e^+\mu^+$, $\pi^+\pi^-, K^+K^-$ and $K^\pm\pi^\mp$.

We present the results in 2 interpretations:

- First, we use all data except for a 20 fb$^{-1}$ validation sample at $\Upsilon(4S)$ (404 fb$^{-1}$ at $\Upsilon(4S)$, 44 fb$^{-1}$ below $\Upsilon(4S)$, 28 fb$^{-1}$ at $\Upsilon(3S)$ and 14 fb$^{-1}$ at $\Upsilon(2S)$) → results in a model-independent interpretation
- Second, we select the $B \rightarrow LX_s$ decays from this data sample where X_s is a hadronic system with strangeness -1 → results in a model-dependent interpretation

We reject background from K^0_S and Λ as well low-mass peaking structures in the background by imposing mass thresholds:

- $m_{ee} > 0.44 \text{ GeV}$,
- $m_{e\mu} > 0.48 \text{ GeV}$,
- $m_{\mu\mu} > 0.50 \text{ GeV}$, and
- $m_{\mu\mu} > 0.37 \text{ GeV}$
- $m_{\pi\pi} > 0.86 \text{ GeV}$,
- $m_{K\pi} > 1.05 \text{ GeV}$, and
- $m_{KK} > 1.35 \text{ GeV}$

The efficiency varies from 47% for $m=1 \text{ GeV}$ at $2 < p_T < 3 \text{ GeV}$ & $c\tau=3 \text{ cm}$ to a few per mil for large m and $c\tau$
Using unbinned extended ML fits of the mass distributions, we extract the signal yield for each final state as a function of mass m.

We divide the mass distribution of each mode into 13 regions straddling each of the signal MC samples.

We define signal PDFs in each region:

$$P_s(m) = H\left(\frac{m - m_t}{\sigma_m}\right)$$

where $H(x)$ is the pull histogram produced from masses closest to the true mass m_t and m & σ_m are measured mass and its error.

The background PDF is a 2nd-order polynomial spline interpolated between bin midpoints.

The histogram bin width in mass region i is $w_i = 15\times\sigma_{m_i}$; σ_{m_i} increases from 4 MeV at $m_i = 0.2$ GeV to ~180 MeV at $m_i = 9.5$ GeV.

Note, the factor $n=15$ is large enough to provide high sensitivity but small enough to prevent fluctuations to appear as significant signal peaks.

G. Eigen, Discrete Symmetries, London, 02/12/2014
We scan the data in steps of $m_t=2$ MeV.

We use the PDF $n_s P_s(m) + n_B P_B(m)$, where n_s (signal) and n_B (background) yields are determined from the fit.

We define the statistical significance

$$S = \text{sign}(n_s) \sqrt{-2 \ln \left(\frac{L_s}{L_0} \right)}$$

where L_s is the ML of the fit and L_0 is the ML for $n_s=0$.

Observe $S=4.7$ at $m_t(\mu\mu)=0.212$ MeV, but most of vertices lie inside detector material and μ tracks have low momenta that are poorly separated from e and π.

Next highest $S=4.2$ at $m_t(\mu\mu)=1.24$ GeV $\Rightarrow P=0.8\%$ to see $S \geq 4.2$ in entire $\mu\mu$ mass spectrum.

Data are consistent with background expectation.
We determine the systematic error on the signal yield for each scan fit.

The dominant systematic error results from the background PDF.

We estimate systematic errors due to mass resolution, luminosity, particle ID (<1%) and # MC signal events.

We convolve L_S (normal distributed) with Gaussian representing total σ_{sys}.

We determine uniform-prior Bayesian upper limits at 90% CL on the product

$$\sigma(e^+e^- \rightarrow LX) \times B(L \rightarrow f) \times \varepsilon(f)$$

with efficiency tables limits can be applied to any production model.
For the model-dependent interpretation, we set Bayesian upper limits @90%CL on the product of branching fractions

\[\mathcal{B}(B \to X_s L) \times \mathcal{B}(L \to f) \]

for each final state \(f \) and different \(c_\tau \)

These limits exclude a significant region of the parameter space of the inflaton model

Bezrukov and Gorbunov, JHEP 1307, 140 (2013)
Search for π^0-like Particles
Motivation for π^0-like Particle Search

- Two-photon collisions were used by BABAR to measure the π^0 form factor.
- At sufficiently high Q^2, the pion form factor should approach the Brodsky-Lepage limit of $\sqrt{2} f_\pi/Q^2 \approx 185$ MeV/Q^2 (Brodsky et al., PRD 28, 228 (1983)).
- At $Q^2 > 15$ GeV2, the prediction is highly reliable well beyond the non-perturbative QCD regime.
- BABAR data show no sign of convergence towards the Brodsky-Lepage limit.
- So maybe there is a new particle with a mass close to the π^0 mass decaying to $\gamma \gamma$ that causes this behavior.
- The new particle may be a scalar (ϕ_S), pseudoscalar (ϕ_P) or hard-core pion (π^0_{HC}).

References:
- Bakulev et al., PRD 86, 031501 (2012)
- Dorokhov, JETP Let. 91, 163 (2010)
- Noguera et al., EPJ A 46, 197 (2010)
- G. Eigen, Discrete Symmetries, London, 02/12/2014
Production of π^0-like Particles

- New particles may couple to τ leptons (other couplings are constrained by theory or experiments)

- So we focus on π^0-like particles in associated $\tau^+\tau^-$ pair production

- Cross sections for π^0-like particle production in $e^+e^-\rightarrow\tau^+\tau^-\text{"}\pi^0\text{"}$ processes, are predicted to be large (for $Q^2>8\text{ GeV}^2$)
 $\sigma_{\text{hard-core-pion}}=0.25\text{ pb}, \sigma_{\text{pseudoscalar}}=2.5\text{ pb} \text{ and } \sigma_{\text{scalar}}=68\text{ pb}$

 - Expect large samples at $\Upsilon(4S)$ in BABAR data set
 $N_{\text{hcp}}=1.2\times10^5, N_{\text{pseudoscalar}}=1.2\times10^6 \text{ and } N_{\text{scalar}}=3.2\times10^7$

- However, backgrounds are large as well
BABAR study uses full $\Upsilon(4S)$ data set (468 fb$^{-1}$ → $4.3\times10^8\tau$ pairs)

- Select $\tau\tau$ events in the μe decays with $p_T > 0.3$ GeV for each lepton
- Require exactly $1\pi^0 \rightarrow \gamma\gamma$ with $2.2 < E_{\pi^0} < 4.7$ GeV
- Require $E_{\text{extra}} < 0.3$ GeV (total energy in the em calorimeter excluding γ, s from π^0 decay)
- Reduce background from radiative e's: $E_e > 0.25$ GeV, $30^\circ < \theta(e, \gamma) < 150^\circ$
- Reduce background from semi-leptonic + hadronic ($\pi^\pm\pi^0$) decays: $E_{\min} = \min(E_1, E_\pi) + E_{\pi^0} > 0.5 E_{CM}$; $m_{\pi^\pm\pi^0} > m_\tau$

E_{\min} spectrum before the requirement of $E_{\min} > 0.5 E_{CM}$ is consistent with the expected $e^+e^- \rightarrow \tau^+\tau^-$ spectrum

G. Eigen, Discrete Symmetries, London, 02/12/2014
Signal Extraction for π^0-like Particles

- Fit $m_{\gamma\gamma}$ invariant-mass spectrum with Gaussian signal and linear background:
 \[n(m_{\gamma\gamma}) = N_{\text{lin}}(1+a_{\text{lin}} m_{\gamma\gamma}) + N_g \ G(\mu_g, \sigma_g) \]

- Use unbinned maximum log-likelihood fit to extract N_{lin}, N_g and a_{lin}

- Get σ_g from control study samples

- Scan mass hypotheses m_g between 110 MeV and 160 MeV

- Extract highest yields in range

- Correct for peaking background: 1.24 ± 0.37 events

- Correct for fit bias: -0.06 ± 0.02 events
Results for π^0-like Particle Search

- Perform extended maximum likelihood fit and scan over π^0 mass region
- Observe $N_g = 6.2 \pm 2.7 \pm 0.06$ events @137 MeV/c2
 \[N_{\text{sig}} = N_g - N_{\text{bg}} = 5.0 \pm 2.7 \pm 0.4 \text{ events} \]
- Efficiencies:
 \[\epsilon_{\text{HCP,P}} = (0.455 \pm 0.019)\% \text{ for } \pi^0_{\text{HC}} \& \phi_p \]
 \[\epsilon_S = (0.090 \pm 0.004)\% \text{ for } \phi_S \]
- Cross sections:
 \[\sigma_{\text{HCP,P}} = (37.7 \pm 20.5_{\text{stat}} \pm 3.2_{\text{sys}}) \text{ fb for } \pi^0_{\text{HC}} \& \phi_p \]
 \[\sigma_S = (191 \pm 104_{\text{stat}} \pm 17_{\text{sys}}) \text{ fb for } \phi_S \]
- Cross section upper limits @90%CL
 \[\sigma_{\text{HCP,P}} \leq 73 \text{ fb} \rightarrow \text{(prediction: } 270-820 \text{ fb}) \]
 \[\sigma_S \leq 370 \text{ fb} \rightarrow \text{(prediction: } 68-1850 \text{ nb}) \]
- Compatibility with theory (p-value)
 \[\pi^0_{\text{HC}}: \ p = 5.9 \times 10^{-4}; \ \phi_p: \ p = 8.8 \times 10^{-10}; \ \phi_S: 2.2 \times 10^{-9} \]

G. Eigen, Discrete Symmetries, London, 02/12/2014
Conclusions and Outlook

- B factories are an excellent laboratory to search for light dark matter

- See no dark photons in 0.03-10 GeV mass region ➔ push limit on the mixing parameter ε at a level 10^{-4} to 10^{-3} depending on the dark photon mass

- Observe no long-lived particle in the $0.2 < m < 10$ GeV mass range and average flight length $0.5 < c\tau < 100$ cm ➔ this is the first search for long-lived particles at a high-luminosity e^+e^- collider and the first search in a heavy-flavor environment

- The upper limit on the cross section for the production of π^0-like particles in association with a $\tau^+\tau^-$ pair is $\sigma < 73$ fb at 90% CL ➔ the hypothesis that π^0-like particles cause the non convergence of the pion form factor has a p-value of 5.9×10^{-4} and thus is unlikely

- Belle II can improve on these limit by a factor of 3 to 2 orders of magnitude depending on the final state
Backup Slides
Search for π^0-like Particles

Background studies
- Extract combinatorial background from the fit
- Simulate $e^+e^-\rightarrow\tau^+\tau^-$ $\Rightarrow 0.38\pm0.09$ events
- Estimate $\gamma\gamma$ contribution from data $e^+e^-\rightarrow e^+e^-\pi^+\pi^-\pi^0$ $\Rightarrow 0.86=0.36$ events
- Total background: 1.24±0.37 events

Fit bias study
- Repeat fit after adding 0 to 25 signal events
- Correct for the average fit error (bias): -0.06 ± 0.02
 \Rightarrow these results give the p-value of the background hypothesis (p_0)

G. Eigen, Discrete Symmetries, London, 02/12/2014
Search for π^0-like Particles

- Generate $e^+e^-\rightarrow \tau^+\tau^-\pi^0$ with a 3-body phase space model
- Reweight according to the matrix element of the "π^0" like process (HCP, p,s)
- Fit using linear signal + linear background model
- Determine efficiencies:
 - $\varepsilon_{P,\text{HCP}} = (0.455\pm0.019)\%$
 - $\varepsilon_S = (0.090\pm0.004)\%$
- Dominant systematic uncertainties come from the simulation statistics and the energy scale

<table>
<thead>
<tr>
<th></th>
<th>$\varepsilon_{P,\pi^0_{\text{HCP}}}$</th>
<th>ε_S</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nominal value</td>
<td>0.455%</td>
<td>0.0896%</td>
</tr>
<tr>
<td>Relative uncertainties</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SP statistics</td>
<td>3.5%</td>
<td>3.7%</td>
</tr>
<tr>
<td>π^0 efficiency</td>
<td>1.03%</td>
<td>1.06%</td>
</tr>
<tr>
<td>PID Weighting</td>
<td>0.5%</td>
<td>0.5%</td>
</tr>
<tr>
<td>Momentum scale</td>
<td>0.21%</td>
<td>0.24%</td>
</tr>
<tr>
<td>Momentum resolution</td>
<td>0.09%</td>
<td>0.02%</td>
</tr>
<tr>
<td>Energy scale</td>
<td>1.95%</td>
<td>1.95%</td>
</tr>
<tr>
<td>Energy resolution</td>
<td>0.55%</td>
<td>0.55%</td>
</tr>
<tr>
<td>Combined uncertainty</td>
<td>4.2%</td>
<td>4.4%</td>
</tr>
</tbody>
</table>

G. Eigen, Discrete Symmetries, London, 02/12/2014