CKM and PMNS mixing matrices from discrete subgroups of SU(2)

Frank Potter

Sciencegems.com Huntington Beach, CA USA

Sneak Preview!

PMNS mixing angles from 2T, 2O, 2I

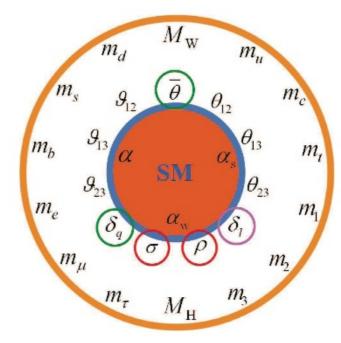
- Predicted: $\theta_{12} = 34.29^{\circ}$, $\theta_{23} = -42.85^{\circ}$, $\theta_{13} = -8.56^{\circ}$
- Empirical: $\theta_{12} = \pm 34.47^{\circ}$, $\theta_{23} = \pm (38-45^{\circ})$, $\theta_{13} = \pm 8.73^{\circ}$

 $0^{\circ} \le \delta \le \pm 14.8^{\circ}$ from V_{e3}

Potter, F., CKM and PMNS mixing matrices from discrete subgroups of SU(2), 2014, *Progress in Physics*, 10(1), pp.1-5.

Standard Model

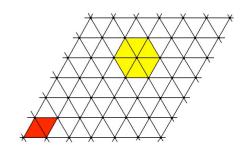
- Very successful theory (since 1970s)
- Local gauge group SU(2)_L x U(1)_Y x SU(3)_C
- Incomplete: 28 parameters!
- Assumes space is continuous



Fritzsch-Xing "pizza" 1411.2713v2

Discrete space-time

Discrete space at Planck scale



- R⁴ = C² lattice of mathematical nodes
- Nodes have no measurable physical properties
- Properties 'emerge' for particle collection of nodes
- Particles have discrete rotational symmetries

Frank Potter: CKM and PMNS mixing matrices from discrete subgroups of SU(2) DISCRETE 2014

2-6/12/14

Flavor states (v_e , e)

- 2 weak isospin states in each lepton family
- basis states ± 1/2 from SU(2)
- unit quaternion q = a + bi + cj +dk a,b,c,d real
- $i^2 = j^2 = k^2 = ijk = -1$ [W.R. Hamilton on Brougham Bridge 1843]
- Pauli matrices: $i\sigma_x = k$, $i\sigma_y = j$, $i\sigma_z = i$

$$q = \begin{vmatrix} a + bi & c + di \\ -c + di & a - bi \end{vmatrix}$$

Geometrical approach

- Discrete (finite) quaternion groups: binary, double
- 2T, 2O, 2I, 2D_{2n}, 2C_n, C_n (n odd) [Duval; Conway & Smith]
- 2T: (24) 1,1',1",2,2',2",3
- 20: (48)1,1',2,2',2",3,3',4
- 2I: (120) 1,2,2',3,3',4,4',5,6
- contain a 3-D volume; regular 3-D polyhedrons

2T, 2O, 2I for 3 families

N_i from group relation to j-invariant / syzygies [F. Klein 1884]

		Ni	Mass Mev/c ²	Mass Mev/c ²	Family
2T	[3,3,2]	1	0.511	~0	ν _e , e
20	[4,3,2]	108	105.7	~0	ν _μ , μ
21	[5,3,2]	1728	1776.8	~0	ν _τ , τ

- j-invariant of elliptic modular functions, Möbius trans
- partition function of QFT based on Monster Group!

Flavors from basis states

- Two degenerate basis states $|1\rangle$ and $|2\rangle$ $|E|=|E_0\rangle$
- Linear superposition -> flavor states

$$|I> = (|1> - |2>)/\sqrt{2}$$
 $E_I = E_0 + A_i$

$$||1> = (|1> + |2>)/\sqrt{2}$$

$$E_{II} = E_0 - A_i$$

	2A _i
ν _e , e	~0.511
ν_{μ} , μ	~105.7
$\nu_{ au}$, $ au$	~1776.8

The A_i could be a function of the local environment!

Quaternion generators?

- $R_s = i \times U_s \text{ for } [p,q,2];$
- $U_1 = j$, $U_3 = i$
- $U_2 = -iCos \pi/q jCos \pi/p + kSin \pi/h$ [H.S.M. Coxeter]

[p,q,2]	h	U_2
[3,3,2]	4	-i/2 - j/2 + k/√2
[4,3,2]	6	-i/2 -j/√2 + k/2
[5,3,2]	10	-i/2 -φj/2 + φ ⁻¹ k/2

 $\phi = (\sqrt{5} + 1)/2$, the golden ratio

Make combined U_2 's = k

- 3 equations for 3 unknown k components
- angles from arccosines of factors
- q rotations in R³ are double angle

	factor	Angle°	Angle°/2
[3,3,2]	-0.2645	105.34°	52.67°
[4,3,2]	0.8012	36.76°	18.38°
[5,3,2]	-0.5367	122.46°	61.23°

• Predicted: $\theta_{12} = 34.29^{\circ}$, $\theta_{23} = -42.85^{\circ}$, $\theta_{13} = -8.56^{\circ}$

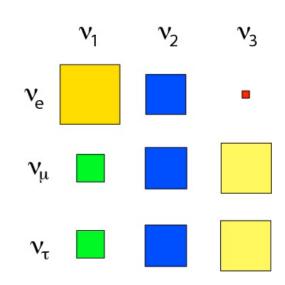
PMNS comparisons

- Predicted: $\theta_{12} = 34.29^{\circ}$, $\theta_{23} = -42.85^{\circ}$, $\theta_{13} = -8.56^{\circ}$
- Empirical: $\theta_{12} = \pm 34.47^{\circ}$, $\theta_{23} = -\pm 42^{\circ}$?, $\theta_{13} = \pm 8.73^{\circ}$

Predicted
$$\begin{bmatrix} 0.817 & 0.557 & -0.149e^{-i\delta} \\ -0.413 - 0.084e^{i\delta} & 0.605 - 0.057e^{i\delta} & -0.673 \\ -0.383 + 0.090e^{i\delta} & 0.562 + 0.061e^{i\delta} & 0.725 \end{bmatrix}$$

Empirical
$$\begin{bmatrix} 0.822 & 0.547 & -0.150 + 0.038i \\ -0.356 + 0.0198i & 0.704 + 0.0131i & 0.614 \\ 0.442 + 0.0248i & -0.452 + 0.0166i & 0.774 \end{bmatrix}$$

$$0^{\circ} \le \delta \le \pm 14.8^{\circ}$$
 from V_{e3}



Frank Potter: CKM and PMNS mixing matrices from discrete subgroups of SU(2) DISCRETE 2014

2-6/12/14

What is learned?

- PMNS angles from U₂ generator projections to k
- Leptons represent 3 discrete binary groups in R³
- [3,3,2], [4,3,2], [5,3,2] for e, μ , τ families [Z⁰ decays]
- Mass values related to j-invariant [Monster Group]
- Normal mass hierarchy for ν 's: $\theta_{23} = -42.85^{\circ}$
- Space could be discrete at Planck scale
- 3 lepton families only; regular polyhedrons in R³

Rotation groups in R⁴

- $R^4 = C^2$
- Rotations simultaneous in two orthogonal planes
- Discrete groups identified as (L/Lk; R/Rk)
- L, R = discrete groups of quaternions
- $SO(4) = SO(3) \times SO(3)$: $SU(2) \times SU(2)$
- Two sets of generators: like i,j,k and i,j,k
- [3,3,3], [4,3,3], [3,4,3], [5,3,3]: regular 4-D polytopes

Quark discrete symmetries

Quark states defined in R⁴ = C²; reg. 4-D polytopes

Group	Family	Ni	u mass GeV/c²	my 1992	d mass GeV/c²	my 1992
[3,3,3]	u, d	1	0.03		0.04	
[4,3,3]	c, s	1	1.3	[1.5]	0.1	
[3,4,3]	t, b	108	173.3	{162}	4.2	[5.0]
[5,3,3]	ť, b'	1728	2773?	{2600}	67?	{80}

Geometrical Basis for the Standard Model, Int'l J. Theor. Phy. 33, 279-305.

Quark generators

- $U_1 = j$, $U_3 = i$
- Projections to planes are regular polygons 2Cn
- $U_2 = i \exp[2\pi i/h]$ [H.S.M. Coxeter]

Group	Family	U ₂	Angle°	Angle θ°	Angle Diff.
[3,3,3]	u, d	i exp[2πi/5]	72	81.504	30.564°
[4,3,3]	C, S	i exp[2πi/8]	45	50.940	(15.282°)
[3,4,3]	t, b	i exp[2πi/12]	30	33.960	20.376°
[5,3,3]	ť, b'	i exp[2πi/30]	12	13.584	(10.188°)
			159°	179.988°	

Q_L mixing

- $V = U_L D^{\dagger}_L$
- Bi-quaternion case Bogoliubov mixing [Jourjine 1307.2694]
- $U_L = W^{u}_{14,23} W^{u}_{12,34}$, $D_L = W^{d}_{14,23} W^{d}_{12,34}$
- $V_{CKM4} = W_{14,23}^{u} W_{12,34}^{u} (W_{14,23}^{d} W_{12,34}^{d})^{\dagger}$
- 4 isospin cases: (0,0), (1/2,0), (0,1/2), (1/2,1/2)
- Equal, simultaneous, isospin 1/2 rotations

CKM4 math

SU(2) matrix blocks mixing 1,2 and 3,4

$$\begin{aligned} W^{u}_{12,34}W^{d\dagger}_{12,34} &= \begin{bmatrix} x_1 & y_1 & 0 & 0 \\ z_1 & w_1 & 0 & 0 \\ 0 & 0 & x_2 & y_2 \\ 0 & 0 & z_2 & w_2 \end{bmatrix} & \begin{bmatrix} x & y \\ z & w \end{bmatrix} = \begin{bmatrix} \cos\theta \, e^{i\alpha} & -\sin\theta \, e^{i\beta} \\ \sin\theta \, e^{i\gamma} & \cos\theta \, e^{i\delta} \end{bmatrix} \\ W^{u,d}_{14,23} &= \frac{1}{\sqrt{2}} \begin{bmatrix} 1 & 0 & -1 & 0 \\ 0 & 1 & 0 & -1 \\ 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 \end{bmatrix}$$

$$\begin{bmatrix} x & y \\ z & w \end{bmatrix} = \begin{bmatrix} \cos\theta e^{i\alpha} & -\sin\theta e^{i\beta} \\ \sin\theta e^{i\gamma} & \cos\theta e^{i\delta} \end{bmatrix}$$

2-6/12/14

• $V_{CKM4} = W_{14,23} W_{12,34} (W_{14,23} W_{12,34})^{\dagger}$

$$V_{CKM4} = \frac{1}{2} \begin{bmatrix} x_1 + x_2 & y_1 + y_2 & x_1 - x_2 & y_1 - y_2 \\ z_1 + z_2 & w_1 + w_2 & z_1 - z_2 & w_1 - w_2 \\ x_1 - x_2 & y_1 - y_2 & x_1 + x_2 & y_1 + y_2 \\ z_1 - z_2 & w_1 - w_2 & z_1 + z_2 & w_1 + w_2 \end{bmatrix}.$$

CKM4 & CKM

- Half-angles: $\theta_1 = 15.282^{\circ}$, $\theta_2 = 10.188^{\circ}$
- Ignoring up to 8 phases!

$$V_{CKM4} = \begin{bmatrix} 0.9744 & 0.2203 & 0.0098 & 0.0433 \\ 0.2203 & 0.9744 & 0.0433 & 0.0098 \\ 0.0098 & 0.0433 & 0.9744 & 0.2203 \\ 0.0433 & 0.0098 & 0.2203 & 0.9744 \end{bmatrix}$$

$$V_{CKM} = \begin{bmatrix} 0.9745 & 0.2246 & 0.0036 \\ 0.2244 & 0.9736 & 0.0415 \\ 0.0088 & 0.0407 & 0.9991 \end{bmatrix}$$

$$\begin{bmatrix} d' \\ s' \\ b' \end{bmatrix} = \begin{bmatrix} V_{ud} \ V_{us} \ V_{ub} \\ V_{cd} \ V_{cs} \ V_{cb} \\ V_{td} \ V_{ts} \ V_{tb} \end{bmatrix} \begin{bmatrix} d \\ s \\ b' \end{bmatrix}$$

Cabibbo Kobayashi eigenstates Maskawa (CKM) matrix eigenstates

Tau decays: $V_{us} = 0.2204 \pm 0.0014$ [arXiv:1411.4526]

Take 3x3 submatrix, impose unitarity, $V_{tb} = 0.999$

Does not agree if only 3 quark groups!

Frank Potter: CKM and PMNS mixing matrices from discrete subgroups of SU(2)

DISCRETE 2014

2-6/12/14

What is learned?

- CKM values derive from U₂ generators
- [3,3,3], [4,3,3], [3,4,3], [5,3,3]: regular 4-D polytopes
- Quark states defined in R⁴
- 4 quark families predicted: where is 4th family?
- Mass values from j-invariant constants N_i
- Space discrete at Planck scale
- End of "Russian doll" hierarchy at lattice nodes

Origin of quark color?

- 4-D property: i.e., 4-D rotations in R⁴
- 3 pairs of rotation planes: [wx,yz], [xy,zw], [yw,xz]
- Call them red, green, blue: exact symmetry
- Can use 4x4 real matrices (shows SU(3) symmetry)
- 3-D leptons do not experience 4-D color
- get 8 gluons from matrix products: QCD
- Hadrons are 3-D: intersections of 4-D quarks

Why are there leptons?

- Question by C. Jarlskog at DISCRETE 2008
- QCD is self-contained: world by itself!
- ANS: In graph theory, Kuratowski's theorem
- Graph is planar iff does not contain K₅ or K_{3,3}
- {3,3,3} for up/down quarks is K₅ [subgraph {3,3,2} for e]
- All other quarks must decay no decays by gluon!
- Need EW interaction

EW interaction

- $SU(2)_L \times U(1)_Y$ is $SU'(2) = SU(2) \times I$ [Altmann]
- Chiral: q₁q₂ produces LH doublets, RH singlets
- Need 2I x 2I' for operators: 4 generators [Baez]
- Leads to W⁺, W⁻, Z⁰, γ
- Anti-particles: R⁴ and R'⁴ from Bott periodicity 4n

The Bigger Picture!

• Telescoping up to larger spaces R⁸, R¹⁰, R²⁴

Potter, F., 2006, **Unification of Interactions in Discrete Spacetime**, *Progress in Physics*, Vol. 1 (January), pp. 3-9. http://www.ptep-online.com/index_files/2006/PP-04-01.PDF

R⁴ connects to R⁸

- Icosian:q = $(e_1+e_2\sqrt{5})+(e_3+e_4\sqrt{5})i+(e_5+e_6\sqrt{5})j+(e_7+e_8\sqrt{5})k$ [octonion]
- e_j rational number; only one e_j in pair non-zero
- 2I: 120 icosians D₈ lattice in R⁸ [red squares]
- 2l': 120 icosians D'₈ lattice in R⁸ [black squares] [reciprocal]
- D₈ + D'₈ = E₈ lattice [checkerboard] [3 E8 lattices = Leech]
- Discrete Weyl E₈ symmetry group not E₈

Lorentz transformation

- Use Penrose's "heavenly sphere" for discrete (1,3)-D
- Sphere is tesselated by triangles in discrete space
- Same discrete quaternion groups as before!
- Another E₈ lattice with discrete Weyl E₈ symmetry

Unique result!

- Weyl E₈ x Weyl E₈ = 'discrete' PSL(2,O) [octonions]
- 2x2 matrices with octonion entries
- Know PSL(2,O) = SO(9,1)
- Weyl E_8 x Weyl E_8 = "Weyl" SO(9,1) [8D+8D=10D]!
- 4-D discrete internal space + 4-D discrete spacetime
- Discrete -> UNIQUE! not 10⁵⁰⁰ possibilities

Summary

- Leptons: 3 families: [3,3,2], [4,3,2], [5,3,2] in R³
- Quarks: 4 families: [3,3,3],[4,3,3],[3,4,3],[5,3,3] in R⁴
- CKM4 & PMNS from U₂ generators acting together
- SM is an excellent approximation to Nature
- Discrete symmetries at Planck scale
- Jarlskog value 10¹³ times if 4th quark family -> BAU [Hou]

Predictions

- No multiverse, no landscape, no supersymmetry, etc.
- Monster Group dictates all of physics via j-invariant
- Cannot rule out sterile neutrino!
- Weyl E₈ x Weyl E₈ = "Weyl" SO(9,1) [8D+8D=10D]!
- leptons/quarks -> atoms -> molecules -> humans
- WE ARE MATHEMATICS!
- AMAZING MATHEMATICAL UNIVERSE

[NOT the Tegmark kind!!]

Copied from DISCRETE '08 presentation:

Invariant	Leptons	3-D	Quarks	4-D
{1/4}			u <3,3,3>	
1	v _e <3,3,2>		c <4,3,3>	
108	ν _μ <4,3,2> μ		t <3,4,3>	
1728	ν _τ <5,3,2> τ		t' <5,3,3> b'	

Frank Potter: CKM and PMNS mixing matrices from discrete subgroups of SU(2)

DISCRETE 2014

2-6/12/14

