Natural Standard Model Alignment in the Two Higgs Doublet Model

P. S. Bhupal Dev

Consortium for Fundamental Physics, The University of Manchester

PSBD and A. Pilaftsis, accepted in JHEP [arXiv:1408.3405 [hep-ph]].

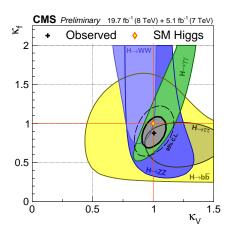
DISCRETE 2014King's College London

December 04, 2014

Outline

- Introduction
- Natural Alignment
- Maximally Symmetric 2HDM
- Collider Phenomenology
- Conclusion

A Higgs or the Higgs?



Unique opportunity in constraining/searching for New Physics through Higgs portal.

- Precision Higgs Study (Higgcision).
- Search for additional Higgses.

The Two Higgs Doublet Model

- Several theoretical motivations to go for an extended Higgs sector (e.g. SUSY).
- Must be consistent with $\rho_{\rm exp} = 1.0004^{+0.0003}_{-0.0004}$. [PDG '14]
- Simplest choice: Add multiplets such that $\rho_{\text{tree}} = 1$.
- SM: One $SU(2)_L$ doublet Φ with $Y = \frac{1}{2}$.
- A simple extension: two $SU(2)_L$ doublets $\Phi_i = \begin{pmatrix} \phi_i^+ \\ \phi_i^0 \end{pmatrix}$ (with i = 1, 2).
- Most general 2HDM potential in doublet field space Φ_{1,2}:

$$\begin{split} V &= -\,\mu_1^2(\Phi_1^\dagger\Phi_1) - \mu_2^2(\Phi_2^\dagger\Phi_2) - \left[m_{12}^2(\Phi_1^\dagger\Phi_2) + \mathrm{H.c.}\right] \\ &+ \lambda_1(\Phi_1^\dagger\Phi_1)^2 + \lambda_2(\Phi_2^\dagger\Phi_2)^2 + \lambda_3(\Phi_1^\dagger\Phi_1)(\Phi_2^\dagger\Phi_2) + \lambda_4(\Phi_1^\dagger\Phi_2)(\Phi_2^\dagger\Phi_1) \\ &+ \left[\frac{1}{2}\lambda_5(\Phi_1^\dagger\Phi_2)^2 + \lambda_6(\Phi_1^\dagger\Phi_1)(\Phi_1^\dagger\Phi_2) + \lambda_7(\Phi_1^\dagger\Phi_2)(\Phi_2^\dagger\Phi_2) + \mathrm{H.c.}\right]. \end{split}$$

- Four real mass parameters $\mu_{1,2}^2$, $\text{Re}(m_{12}^2)$, $\text{Im}(m_{12}^2)$, and 10 real quartic couplings $\lambda_{1,2,3,4}$: $\text{Re}(\lambda_{5,6,7})$, $\text{Im}(\lambda_{5,6,7})$.
- Rich vacuum structure. [Battye, Brawn, Pilaftsis '11; Branco et al '12]

The Two Higgs Doublet Model

- Several theoretical motivations to go for an extended Higgs sector (e.g. SUSY).
- Must be consistent with $\rho_{\rm exp} = 1.0004^{+0.0003}_{-0.0004}$. [PDG '14]
- Simplest choice: Add multiplets such that $\rho_{\text{tree}} = 1$.
- SM: One $SU(2)_L$ doublet Φ with $Y = \frac{1}{2}$.
- A simple extension: two $SU(2)_L$ doublets $\Phi_i = \begin{pmatrix} \phi_i^+ \\ \phi_i^0 \end{pmatrix}$ (with i = 1, 2).
- Most general 2HDM potential in doublet field space Φ_{1,2}:

$$\begin{split} V &= -\,\mu_1^2(\Phi_1^\dagger\Phi_1) - \mu_2^2(\Phi_2^\dagger\Phi_2) - \left[m_{12}^2(\Phi_1^\dagger\Phi_2) + \mathrm{H.c.}\right] \\ &+ \lambda_1(\Phi_1^\dagger\Phi_1)^2 + \lambda_2(\Phi_2^\dagger\Phi_2)^2 + \lambda_3(\Phi_1^\dagger\Phi_1)(\Phi_2^\dagger\Phi_2) + \lambda_4(\Phi_1^\dagger\Phi_2)(\Phi_2^\dagger\Phi_1) \\ &+ \left[\frac{1}{2}\lambda_5(\Phi_1^\dagger\Phi_2)^2 + \lambda_6(\Phi_1^\dagger\Phi_1)(\Phi_1^\dagger\Phi_2) + \lambda_7(\Phi_1^\dagger\Phi_2)(\Phi_2^\dagger\Phi_2) + \mathrm{H.c.}\right]. \end{split}$$

- Four real mass parameters $\mu_{1,2}^2$, Re(m_{12}^2), Im(m_{12}^2), and 10 real quartic couplings $\lambda_{1,2,3,4}$, Re($\lambda_{5,6,7}$), Im($\lambda_{5,6,7}$).
- Rich vacuum structure. [Battye, Brawn, Pilaftsis '11; Branco et al '12]

Alignment Limit

- Consider normal vacua with real vevs $v_{1,2}$, where $\sqrt{v_1^2 + v_2^2} = v_{\text{SM}}$ and $\tan \beta = v_2/v_1$.
- Eight real scalar fields: $\phi_j = \begin{pmatrix} \phi_j^+ \\ \frac{1}{\sqrt{2}} (v_j + \rho_j + i\eta_j) \end{pmatrix}$ (with j = 1, 2).
- After EWSB, 3 Goldstone bosons (G^{\pm}, G^0) , eaten by W^{\pm} and Z, and five physical scalar fields: two CP-even (h, H), one CP-odd (a) and two charged (h^{\pm}) .
- $\bullet \quad \text{In the charged sector, } \left(\begin{array}{c} G^\pm \\ h^\pm \end{array} \right) \ = \ \left(\begin{array}{cc} \cos\beta & \sin\beta \\ -\sin\beta & \cos\beta \end{array} \right) \left(\begin{array}{c} \phi_1^\pm \\ \phi_2^\pm \end{array} \right).$
- In the *CP*-odd sector, $\begin{pmatrix} G^0 \\ a \end{pmatrix} = \begin{pmatrix} \cos \beta & \sin \beta \\ -\sin \beta & \cos \beta \end{pmatrix} \begin{pmatrix} \eta_1 \\ \eta_2 \end{pmatrix}$.
- $\bullet \text{ In the } \textit{CP}\text{-even sector, } \left(\begin{array}{c} H \\ h \end{array} \right) \ = \ \left(\begin{array}{cc} \cos\alpha & \sin\alpha \\ -\sin\alpha & \cos\alpha \end{array} \right) \left(\begin{array}{c} \rho_1 \\ \rho_2 \end{array} \right)$
- The SM Higgs boson is given by

$$H_{\rm SM} = \rho_1 \cos \beta + \rho_2 \sin \beta = H \cos(\beta - \alpha) + h \sin(\beta - \alpha)$$
.

• SM alignment limit: $\alpha \to \beta$ (or $\beta - \pi/2$).

Alignment Limit

- Consider normal vacua with real vevs $v_{1,2}$, where $\sqrt{v_1^2 + v_2^2} = v_{\text{SM}}$ and $\tan \beta = v_2/v_1$.
- Eight real scalar fields: $\phi_j = \begin{pmatrix} \phi_j^+ \\ \frac{1}{\sqrt{2}} (v_j + \rho_j + i\eta_j) \end{pmatrix}$ (with j = 1, 2).
- After EWSB, 3 Goldstone bosons (G^{\pm}, G^0) , eaten by W^{\pm} and Z, and five physical scalar fields: two CP-even (h, H), one CP-odd (a) and two charged (h^{\pm}) .
- In the charged sector, $\begin{pmatrix} G^{\pm} \\ h^{\pm} \end{pmatrix} = \begin{pmatrix} \cos \beta & \sin \beta \\ -\sin \beta & \cos \beta \end{pmatrix} \begin{pmatrix} \phi_1^{\pm} \\ \phi_2^{\pm} \end{pmatrix}$.
- In the *CP*-odd sector, $\begin{pmatrix} G^0 \\ a \end{pmatrix} = \begin{pmatrix} \cos \beta & \sin \beta \\ -\sin \beta & \cos \beta \end{pmatrix} \begin{pmatrix} \eta_1 \\ \eta_2 \end{pmatrix}$.
- In the *CP*-even sector, $\begin{pmatrix} H \\ h \end{pmatrix} = \begin{pmatrix} \cos \alpha & \sin \alpha \\ -\sin \alpha & \cos \alpha \end{pmatrix} \begin{pmatrix} \rho_1 \\ \rho_2 \end{pmatrix}$
- The SM Higgs boson is given by

$$H_{\rm SM} = \rho_1 \cos \beta + \rho_2 \sin \beta = H \cos(\beta - \alpha) + h \sin(\beta - \alpha)$$
.

• SM alignment limit: $\alpha \to \beta$ (or $\beta - \pi/2$).

Alignment Limit

- Consider normal vacua with real vevs $v_{1,2}$, where $\sqrt{v_1^2 + v_2^2} = v_{\text{SM}}$ and $\tan \beta = v_2/v_1$.
- Eight real scalar fields: $\phi_j = \begin{pmatrix} \phi_j^+ \\ \frac{1}{\sqrt{2}}(v_j + \rho_j + i\eta_j) \end{pmatrix}$ (with j = 1, 2).
- After EWSB, 3 Goldstone bosons (G^{\pm}, G^0) , eaten by W^{\pm} and Z, and five physical scalar fields: two CP-even (h, H), one CP-odd (a) and two charged (h^{\pm}) .
- $\bullet \ \ \text{In the charged sector,} \ \left(\begin{array}{c} G^\pm \\ h^\pm \end{array} \right) \ = \ \left(\begin{array}{cc} \cos\beta & \sin\beta \\ -\sin\beta & \cos\beta \end{array} \right) \left(\begin{array}{c} \phi_1^\pm \\ \phi_2^\pm \end{array} \right).$
- In the *CP*-odd sector, $\begin{pmatrix} G^0 \\ a \end{pmatrix} = \begin{pmatrix} \cos \beta & \sin \beta \\ -\sin \beta & \cos \beta \end{pmatrix} \begin{pmatrix} \eta_1 \\ \eta_2 \end{pmatrix}$.
- In the *CP*-even sector, $\begin{pmatrix} H \\ h \end{pmatrix} = \begin{pmatrix} \cos \alpha & \sin \alpha \\ -\sin \alpha & \cos \alpha \end{pmatrix} \begin{pmatrix} \rho_1 \\ \rho_2 \end{pmatrix}$
- The SM Higgs boson is given by

$$H_{\rm SM} = \rho_1 \cos \beta + \rho_2 \sin \beta = H \cos(\beta - \alpha) + h \sin(\beta - \alpha)$$
.

• SM alignment limit: $\alpha \to \beta$ (or $\beta - \pi/2$).

Natural Alignment Condition

- Alignment usually attributed to either decoupling or accidental cancellations.
 [Gunion, Haber '03; Ginzburg, Krawczyk '05; Carena, Low, Shah, Wagner '13]
- Explore symmetries of the 2HDM potential to seek a natural justification.
- CP-even mass matrix can be written as

$$\begin{split} M_{S}^{2} &= \begin{pmatrix} c_{\beta} & -s_{\beta} \\ s_{\beta} & c_{\beta} \end{pmatrix} \begin{pmatrix} \hat{A}v^{2} & \hat{C}v^{2} \\ \hat{C}v^{2} & M_{a}^{2} + \hat{B}v^{2} \end{pmatrix} \begin{pmatrix} c_{\beta} & s_{\beta} \\ -s_{\beta} & c_{\beta} \end{pmatrix} \equiv O\widehat{M}_{S}^{2}O^{T} . \\ \hat{A} &= 2 \Big[c_{\beta}^{4}\lambda_{1} + s_{\beta}^{2}c_{\beta}^{2}\lambda_{345} + s_{\beta}^{4}\lambda_{2} + 2s_{\beta}c_{\beta} \Big(c_{\beta}^{2}\lambda_{6} + s_{\beta}^{2}\lambda_{7} \Big) \Big] , \\ \hat{B} &= \lambda_{5} + 2 \Big[s_{\beta}^{2}c_{\beta}^{2} \Big(\lambda_{1} + \lambda_{2} - \lambda_{345} \Big) - s_{\beta}c_{\beta} \Big(c_{\beta}^{2} - s_{\beta}^{2} \Big) \Big(\lambda_{6} - \lambda_{7} \Big) \Big] , \\ \hat{C} &= s_{\beta}^{3}c_{\beta} \Big(2\lambda_{2} - \lambda_{345} \Big) - c_{\beta}^{3}s_{\beta} \Big(2\lambda_{1} - \lambda_{345} \Big) + c_{\beta}^{2} \Big(1 - 4s_{\beta}^{2} \Big) \lambda_{6} + s_{\beta}^{2} \Big(4c_{\beta}^{2} - 1 \Big) \lambda_{7} \end{split}$$

• Exact alignment $(\alpha = \beta)$ iff C = 0, i.e.

$$\lambda_7 t_{\beta}^4 - (2\lambda_2 - \lambda_{345}) t_{\beta}^3 + 3(\lambda_6 - \lambda_7) t_{\beta}^2 + (2\lambda_1 - \lambda_{345}) t_{\beta} - \lambda_6 = 0.$$

lacktriangle Natural alignment if happens for any value of tan eta, independent of non-SM Higgs spectra:

$$\lambda_1 = \lambda_2 = \lambda_{345}/2 \; , \quad \lambda_6 = \lambda_7 = 0$$

Natural Alignment Condition

- Alignment usually attributed to either decoupling or accidental cancellations.
 [Gunion, Haber '03; Ginzburg, Krawczyk '05; Carena, Low, Shah, Wagner '13]
- Explore symmetries of the 2HDM potential to seek a natural justification.
- CP-even mass matrix can be written as

$$\begin{array}{lll} \textit{M}_{S}^{2} & = & \left(\begin{array}{ccc} c_{\beta} & -s_{\beta} \\ s_{\beta} & c_{\beta} \end{array} \right) \left(\begin{array}{ccc} \widehat{A} \textit{V}^{2} & \widehat{C} \textit{V}^{2} \\ \widehat{C} \textit{V}^{2} & \textit{M}_{a}^{2} + \widehat{B} \textit{V}^{2} \end{array} \right) \left(\begin{array}{ccc} c_{\beta} & s_{\beta} \\ -s_{\beta} & c_{\beta} \end{array} \right) \equiv \textit{O} \widehat{\textit{M}}_{S}^{2} \textit{O}^{T} \; . \\ \\ \widehat{\textit{A}} & = & 2 \Big[c_{\beta}^{4} \lambda_{1} + s_{\beta}^{2} c_{\beta}^{2} \lambda_{345} + s_{\beta}^{4} \lambda_{2} + 2 s_{\beta} c_{\beta} \Big(c_{\beta}^{2} \lambda_{6} + s_{\beta}^{2} \lambda_{7} \Big) \Big] \; , \\ \\ \widehat{\textit{B}} & = & \lambda_{5} \; + \; 2 \Big[s_{\beta}^{2} c_{\beta}^{2} \Big(\lambda_{1} + \lambda_{2} - \lambda_{345} \Big) - s_{\beta} c_{\beta} \Big(c_{\beta}^{2} - s_{\beta}^{2} \Big) \Big(\lambda_{6} - \lambda_{7} \Big) \Big] \; , \\ \\ \widehat{\textit{C}} & = & s_{\beta}^{3} c_{\beta} \Big(2 \lambda_{2} - \lambda_{345} \Big) - c_{\beta}^{3} s_{\beta} \Big(2 \lambda_{1} - \lambda_{345} \Big) + c_{\beta}^{2} \Big(1 - 4 s_{\beta}^{2} \Big) \lambda_{6} + s_{\beta}^{2} \Big(4 c_{\beta}^{2} - 1 \Big) \lambda_{7} \; . \end{array}$$

• Exact alignment $(\alpha = \beta)$ iff $\widehat{C} = 0$, i.e.

$$\lambda_7 t_{\beta}^4 - (2\lambda_2 - \lambda_{345}) t_{\beta}^3 + 3(\lambda_6 - \lambda_7) t_{\beta}^2 + (2\lambda_1 - \lambda_{345}) t_{\beta} - \lambda_6 = 0.$$

lacktriangle Natural alignment if happens for any value of tan eta, independent of non-SM Higgs spectra:

$$\lambda_1 = \lambda_2 = \lambda_{345}/2 \; , \quad \lambda_6 = \lambda_7 = 0$$

Natural Alignment Condition

- Alignment usually attributed to either decoupling or accidental cancellations.
 [Gunion, Haber '03; Ginzburg, Krawczyk '05; Carena, Low, Shah, Wagner '13]
- Explore symmetries of the 2HDM potential to seek a natural justification.
- CP-even mass matrix can be written as

$$\begin{array}{lll} \textit{M}_{S}^{2} & = & \left(\begin{array}{ccc} c_{\beta} & -s_{\beta} \\ s_{\beta} & c_{\beta} \end{array} \right) \left(\begin{array}{ccc} \widehat{A} \textit{V}^{2} & \widehat{C} \textit{V}^{2} \\ \widehat{C} \textit{V}^{2} & \textit{M}_{a}^{2} + \widehat{B} \textit{V}^{2} \end{array} \right) \left(\begin{array}{ccc} c_{\beta} & s_{\beta} \\ -s_{\beta} & c_{\beta} \end{array} \right) \equiv \textit{O} \widehat{\textit{M}}_{S}^{2} \textit{O}^{T} \; . \\ \\ \widehat{A} & = & 2 \Big[c_{\beta}^{4} \lambda_{1} + s_{\beta}^{2} c_{\beta}^{2} \lambda_{345} + s_{\beta}^{4} \lambda_{2} + 2 s_{\beta} c_{\beta} \Big(c_{\beta}^{2} \lambda_{6} + s_{\beta}^{2} \lambda_{7} \Big) \Big] \; , \\ \\ \widehat{B} & = & \lambda_{5} \; + \; 2 \Big[s_{\beta}^{2} c_{\beta}^{2} \Big(\lambda_{1} + \lambda_{2} - \lambda_{345} \Big) - s_{\beta} c_{\beta} \Big(c_{\beta}^{2} - s_{\beta}^{2} \Big) \Big(\lambda_{6} - \lambda_{7} \Big) \Big] \; , \\ \\ \widehat{C} & = & s_{\beta}^{3} c_{\beta} \Big(2 \lambda_{2} - \lambda_{345} \Big) - c_{\beta}^{3} s_{\beta} \Big(2 \lambda_{1} - \lambda_{345} \Big) + c_{\beta}^{2} \Big(1 - 4 s_{\beta}^{2} \Big) \lambda_{6} + s_{\beta}^{2} \Big(4 c_{\beta}^{2} - 1 \Big) \lambda_{7} \; . \end{array}$$

• Exact alignment $(\alpha = \beta)$ iff $\widehat{C} = 0$, i.e.

$$\lambda_7 t_{\beta}^4 - (2\lambda_2 - \lambda_{345}) t_{\beta}^3 + 3(\lambda_6 - \lambda_7) t_{\beta}^2 + (2\lambda_1 - \lambda_{345}) t_{\beta} - \lambda_6 = 0.$$

• Natural alignment if happens for any value of $\tan \beta$, independent of non-SM Higgs spectra:

$$\lambda_1=\lambda_2=\lambda_{345}/2\ ,\quad \lambda_6=\lambda_7=0$$

An Alternative Formulation of the 2HDM Potential

- Gauge-invariant bilinear scalar-field formalism.
 [Nishi '06; Ivanov '06; Maniatis, von Manteuffel, Nachtmann, Nagel '06]
- Introduce an 8-dimensional complex multiplet: [Battye, Brawn, Pilaftsis '11; Nishi '11; Pilaftsis '12]

$$\Phi = \begin{pmatrix} \Phi_1 \\ \Phi_2 \\ i\sigma^2 \Phi_1^* \\ i\sigma^2 \Phi_2^* \end{pmatrix}.$$

- Φ satisfies the Majorana property: $\Phi = C\Phi^*$, where $C = \sigma^2 \otimes \sigma^0 \otimes \sigma^2 = C^{-1} = C^*$.
- Define a null 6-dimensional Lorentz vector bilinear in Φ:

$$R^A = \Phi^{\dagger} \Sigma^A \Phi$$

(with A = 0, 1, 2, 3, 4, 5), where

$$\begin{split} & \Sigma^0 = \frac{1}{2} \sigma^0 \otimes \sigma^0 \otimes \sigma^0 \equiv \frac{1}{2} \mathbf{1}_8, \quad \Sigma^1 = \frac{1}{2} \sigma^0 \otimes \sigma^1 \otimes \sigma^0, \qquad \Sigma^2 = \frac{1}{2} \sigma^3 \otimes \sigma^2 \otimes \sigma^0, \\ & \Sigma^3 = \frac{1}{2} \sigma^0 \otimes \sigma^3 \otimes \sigma^0, \qquad \qquad \Sigma^4 = -\frac{1}{2} \sigma^2 \otimes \sigma^2 \otimes \sigma^0, \quad \Sigma^5 = -\frac{1}{2} \sigma^1 \otimes \sigma^2 \otimes \sigma^0. \end{split}$$

• Σ^A satisfy the Majorana condition: $C^{-1}\Sigma^A C = (\Sigma^A)^T$

An Alternative Formulation of the 2HDM Potential

- Gauge-invariant bilinear scalar-field formalism.
 [Nishi '06; Ivanov '06; Maniatis, von Manteuffel, Nachtmann, Nagel '06]
- Introduce an 8-dimensional complex multiplet: [Battye, Brawn, Pilaftsis '11; Nishi '11; Pilaftsis '12]

$$\Phi = \begin{pmatrix} \Phi_1 \\ \Phi_2 \\ i\sigma^2 \Phi_1^* \\ i\sigma^2 \Phi_2^* \end{pmatrix}.$$

- Φ satisfies the Majorana property: $\Phi = C\Phi^*$, where $C = \sigma^2 \otimes \sigma^0 \otimes \sigma^2 = C^{-1} = C^*$.
- Define a null 6-dimensional Lorentz vector bilinear in Φ:

$$R^A = \Phi^{\dagger} \Sigma^A \Phi$$
,

(with A = 0, 1, 2, 3, 4, 5), where

$$\begin{split} \Sigma^0 &= \frac{1}{2} \sigma^0 \otimes \sigma^0 \otimes \sigma^0 \equiv \frac{1}{2} \textbf{1}_8, \quad \Sigma^1 &= \frac{1}{2} \sigma^0 \otimes \sigma^1 \otimes \sigma^0, \qquad \Sigma^2 &= \frac{1}{2} \sigma^3 \otimes \sigma^2 \otimes \sigma^0, \\ \Sigma^3 &= \frac{1}{2} \sigma^0 \otimes \sigma^3 \otimes \sigma^0, \qquad \qquad \Sigma^4 &= -\frac{1}{2} \sigma^2 \otimes \sigma^2 \otimes \sigma^0, \quad \Sigma^5 &= -\frac{1}{2} \sigma^1 \otimes \sigma^2 \otimes \sigma^0. \end{split}$$

• Σ^A satisfy the Majorana condition: $C^{-1}\Sigma^A C = (\Sigma^A)^T$.

2HDM Potential in Bilinear Field Space

The general 2HDM potential takes a simple form:

$$V = -\frac{1}{2}M_{A}R^{A} + \frac{1}{4}L_{AB}R^{A}R^{B}, \quad \text{where}$$

$$M = \left(\mu_{1}^{2} + \mu_{2}^{2}, 2\text{Re}(m_{12}^{2}), -2\text{Im}(m_{12}^{2}), \mu_{1}^{2} - \mu_{2}^{2}, 0, 0\right),$$

$$R = \begin{pmatrix} \Phi_{1}^{\dagger}\Phi_{1} + \Phi_{2}^{\dagger}\Phi_{2} \\ \Phi_{1}^{\dagger}\Phi_{2} + \Phi_{2}^{\dagger}\Phi_{1} \\ -i(\Phi_{1}^{\dagger}\Phi_{2} - \Phi_{2}^{\dagger}\Phi_{1}) \\ \Phi_{1}^{\dagger}\Phi_{1} - \Phi_{2}^{\dagger}\Phi_{2} \\ \Phi_{1}^{\dagger}i\sigma^{2}\Phi_{2} - \Phi_{2}^{\dagger}i\sigma^{2}\Phi_{1}^{*} \\ -i(\Phi_{1}^{\dagger}i\sigma^{2}\Phi_{2} + \Phi_{2}^{\dagger}i\sigma^{2}\Phi_{1}^{*}) \end{pmatrix},$$

$$L = \begin{pmatrix} \lambda_{1} + \lambda_{2} + \lambda_{3} & \text{Re}(\lambda_{6} + \lambda_{7}) & -\text{Im}(\lambda_{6} + \lambda_{7}) & \lambda_{1} - \lambda_{2} & 0 & 0 \\ \text{Re}(\lambda_{6} + \lambda_{7}) & \lambda_{4} + \text{Re}(\lambda_{5}) & -\text{Im}(\lambda_{5}) & \text{Re}(\lambda_{6} - \lambda_{7}) & 0 & 0 \\ -\text{Im}(\lambda_{6} + \lambda_{7}) & -\text{Im}(\lambda_{5}) & \lambda_{4} - \text{Re}(\lambda_{5}) & -\text{Im}(\lambda_{6} - \lambda_{7}) & 0 & 0 \\ \lambda_{1} - \lambda_{2} & \text{Re}(\lambda_{6} - \lambda_{7}) & -\text{Im}(\lambda_{6} - \lambda_{7}) & \lambda_{1} + \lambda_{2} - \lambda_{3} & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 \end{pmatrix}$$

• The bilinear field space spanned by the 6-vector \mathbb{R}^A realizes an SO(1,5) symmetry.

- Three classes of accidental symmetries of the 2HDM potential:
 - Higgs Family (HF) Symmetries involving transformations of Φ_{1,2} only (but not Φ*_{1,2}),
 e.g. Z₂ [Glashow, Weinberg '58], U(1)_{PQ} [Peccei, Quinn '77], SO(3)_{HF} [Deshpande, Ma '78; Ivanov '07;
 Ma, Maniatis '09; Ferreira, Haber, Maniatis, Nachtmann, Silva '10].
 - CP Symmetries relating $\Phi_{1,2}$ to $\Phi_{1,2}^*$, e.g. $\Phi_{1(2)} \to \Phi_{1(2)}^*$ (CP1) [Lee '73; Branco '80], $\Phi_{1(2)} \to (-)\Phi_{2(1)}^*$ (CP2) [Davidson, Haber '05], CP1 combined with $SO(2)_{HF}/Z_2$ (CP3) [Ivanov '07; Ferreira, Haber, Silva '09; Ma, Maniatis '09; Ferreira, Haber, Maniatis, Nachtmann, Silva '10].
 - Additional mixed HF and CP symmetries that leave the gauge-kinetic terms of Φ_{1,2} invariant [Battye, Brawn, Pilaftsis '11].
- Includes all custodial symmetries of the 2HDM potential.
- Maximum of 13 distinct accidental symmetries of the general 2HDM potential.
- Each of them imposes specific relations among the scalar parameters.

- Three classes of accidental symmetries of the 2HDM potential:
 - Higgs Family (HF) Symmetries involving transformations of Φ_{1,2} only (but not Φ*_{1,2}),
 e.g. Z₂ [Glashow, Weinberg '58], U(1)_{PQ} [Peccei, Quinn '77], SO(3)_{HF} [Deshpande, Ma '78; Ivanov '07;
 Ma, Maniatis '09; Ferreira, Haber, Maniatis, Nachtmann, Silva '10].
 - CP Symmetries relating $\Phi_{1,2}$ to $\Phi_{1,2}^*$, e.g. $\Phi_{1(2)} \to \Phi_{1(2)}^*$ (CP1) [Lee '73; Branco '80], $\Phi_{1(2)} \to (-)\Phi_{2(1)}^*$ (CP2) [Davidson, Haber '05], CP1 combined with $SO(2)_{HF}/Z_2$ (CP3) [Ivanov '07; Ferreira, Haber, Silva '09; Ma, Maniatis '09; Ferreira, Haber, Maniatis, Nachtmann, Silva '10].
 - Additional mixed HF and CP symmetries that leave the gauge-kinetic terms of Φ_{1,2} invariant [Battye, Brawn, Pilaftsis '11].
- Includes all custodial symmetries of the 2HDM potential.
- Maximum of 13 distinct accidental symmetries of the general 2HDM potential.
- Each of them imposes specific relations among the scalar parameters.

[Pilaftsis '12]

Table 1Parameter relations for the 13 accidental symmetries [1] related to the $U(1)_Y$ -invariant 2HDM potential in the diagonally reduced basis, where $Im \lambda_5 = 0$ and $\lambda_6 = \lambda_7$. A dash sienflies the absence of a constraint.

No.	Symmetry	μ_1^2	μ_2^2	m_{12}^2	λ_1	λ_2	λ_3	λ_4	$Re \lambda_5$	$\lambda_6=\lambda_7$
1	$Z_2 \times O(2)$	-	-	Real	-	-	-	-	-	Real
2	$(Z_2)^2 \times SO(2)$	-	-	0	-	-	-	-	-	0
3	$(Z_2)^3 \times O(2)$	-	μ_1^2	0	-	λ_1	-	-	-	0
4	$O(2) \times O(2)$	-	- '	0	-	-	-	-	0	0
5	$Z_2 \times [O(2)]^2$	-	μ_1^2	0	-	λ_1	-	-	$2\lambda_1 - \lambda_{34}$	0
6	$0(3) \times 0(2)$	-	μ_1^2	0	-	λ_1	-	$2\lambda_1 - \lambda_3$	0	0
7	SO(3)	-	-	Real	-	-	-	-	λ_4	Real
8	$Z_2 \times O(3)$	-	μ_1^2	Real	-	λ_1	-	-	λ_4	Real
9	$(Z_2)^2 \times SO(3)$	-	μ_1^2	0	-	λ_1	-	-	$\pm \lambda_4$	0
10	$O(2) \times O(3)$	-	μ_1^2	0	-	λ_1	$2\lambda_1$	-	0	0
11	SO(4)	-	-	0	-	-	-	0	0	0
12	$Z_2 \times O(4)$	-	μ_1^2	0	-	λ_1	-	0	0	0
13	SO(5)	-	μ_1^2	0	-	λ_1	$2\lambda_1$	0	0	0

- *Maximal* symmetry group in the bilinear field space: $G_{2HDM}^R = SO(5)$
- In the original Φ -field space, $G_{2HDM}^{\Phi} = [Sp(4)/Z_2] \otimes SU(2)_L$
- Conjecture: In a general nHDM, $G_{n\text{HDM}}^{\Phi} = [\text{Sp}(2n)/\text{Z}_2] \otimes \text{SU}(2)_L$.

[Pilaftsis '12]

Table 1Parameter relations for the 13 accidental symmetries [1] related to the $U(1)_Y$ -invariant 2HDM potential in the diagonally reduced basis, where $Im \lambda_5 = 0$ and $\lambda_6 = \lambda_7$. A dash sienflies the absence of a constraint.

No.	Symmetry	μ_1^2	μ_2^2	m_{12}^2	λ_1	λ_2	λ_3	λ_4	$Re \lambda_5$	$\lambda_6=\lambda_7$
1	$Z_2 \times O(2)$	-	-	Real	-	-	-	-	-	Real
2	$(Z_2)^2 \times SO(2)$	-	-	0	-	-	-	-	-	0
3	$(Z_2)^3 \times O(2)$	-	μ_1^2	0	-	λ_1	-	-	-	0
4	$0(2) \times 0(2)$	-	-	0	-	-	-	-	0	0
5	$Z_2 \times [O(2)]^2$	-	μ_1^2	0	-	λ_1	-	-	$2\lambda_1 - \lambda_{34}$	0
6	$0(3) \times 0(2)$	-	μ_1^2	0	-	λ_1	-	$2\lambda_1 - \lambda_3$	0	0
7	SO(3)	-	-	Real	-	-	-	-	λ_4	Real
8	$Z_2 \times O(3)$	-	μ_1^2	Real	-	λ_1	-	-	λ_4	Real
9	$(Z_2)^2 \times SO(3)$	-	μ_1^2	0	-	λ_1	-	-	$\pm \lambda_4$	0
10	$O(2) \times O(3)$	-	μ_1^2	0	-	λ_1	$2\lambda_1$	-	0	0
11	SO(4)	-	-	0	-	-	-	0	0	0
12	$Z_2 \times O(4)$	-	μ_1^2	0	-	λ_1	-	0	0	0
13	SO(5)	-	μ_1^2	0	-	λ_1	$2\lambda_1$	0	0	0

- *Maximal* symmetry group in the bilinear field space: $G_{2HDM}^{R} = SO(5)$.
- In the original Φ -field space, $G_{2HDM}^{\Phi} = [Sp(4)/Z_2] \otimes SU(2)_L$.
- Conjecture: In a general nHDM, $G_{n\text{HDM}}^{\Phi} = [\text{Sp}(2n)/\text{Z}_2] \otimes \text{SU}(2)_L$.

Maximally Symmetric 2HDM

In the SO(5) limit:

$$\mu_1^2 = \mu_2^2 \,, \quad m_{12}^2 = 0 \,, \quad \lambda_2 = \lambda_1 \,, \quad \lambda_3 = 2\lambda_1 \,, \quad \lambda_4 = \text{Re}(\lambda_5) = \lambda_6 = \lambda_7 = 0 \,.$$

- Satisfies the natural alignment condition: $\lambda_1 = \lambda_2 = \lambda_{345}/2$.
- MS-2HDM potential is very simple:

$$V = -\mu^2 \left(|\Phi_1|^2 + |\Phi_2|^2 \right) + \lambda \left(|\Phi_1|^2 + |\Phi_2|^2 \right)^2 = -\frac{\mu^2}{2} \Phi^{\dagger} \Phi + \frac{\lambda}{4} \left(\Phi^{\dagger} \Phi \right)^2.$$

- After EWSB in the MS-2HDM, one massive Higgs boson H with $M_H^2=2\lambda_2 v^2$, whilst remaining four $(h, a \text{ and } h^\pm)$ are massless.
- Natural SM alignment limit with $\alpha = \beta$. [Recall $H_{\rm SM} = H\cos(\beta \alpha) + h\sin(\beta \alpha)$
- In Type-II 2HDM, only two other symmetries satisfy the natural alignment condition:

 (i) O(3) ⊗ O(2) and (ii) Z₂ ⊗ [O(2)]².

Maximally Symmetric 2HDM

In the SO(5) limit:

$$\mu_1^2 = \mu_2^2 \,, \quad m_{12}^2 = 0 \,, \quad \lambda_2 = \lambda_1 \,, \quad \lambda_3 = 2\lambda_1 \,, \quad \lambda_4 = \text{Re}(\lambda_5) = \lambda_6 = \lambda_7 = 0 \,.$$

- Satisfies the natural alignment condition: $\lambda_1 = \lambda_2 = \lambda_{345}/2$.
- MS-2HDM potential is very simple:

$$V = -\mu^2 \left(|\Phi_1|^2 + |\Phi_2|^2 \right) + \lambda \left(|\Phi_1|^2 + |\Phi_2|^2 \right)^2 = -\frac{\mu^2}{2} \Phi^{\dagger} \Phi + \frac{\lambda}{4} \left(\Phi^{\dagger} \Phi \right)^2.$$

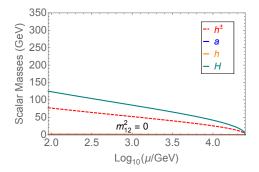
- After EWSB in the MS-2HDM, one massive Higgs boson H with $M_H^2=2\lambda_2 v^2$, whilst remaining four $(h, a \text{ and } h^\pm)$ are massless.
- Natural SM alignment limit with $\alpha = \beta$. [Recall $H_{\rm SM} = H\cos(\beta \alpha) + h\sin(\beta \alpha)$]
- In Type-II 2HDM, *only* two other symmetries satisfy the natural alignment condition: (i) $O(3) \otimes O(2)$ and (ii) $Z_2 \otimes [O(2)]^2$.

g' and Yukawa Coupling Effects

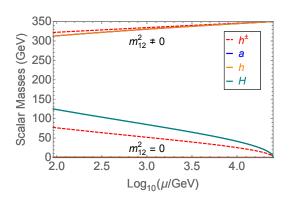
- Custodial symmetry broken by non-zero g' and Yukawa couplings.
- Some of the (pseudo)-Goldstones become massive.

$$\begin{array}{ccc} \mathrm{SO}(5) \otimes \mathrm{SU}(2)_L & \xrightarrow{g' \neq 0} & \mathrm{O}(3) \otimes \mathrm{O}(2) \otimes \mathrm{SU}(2)_L \sim & \mathrm{O}(3) \otimes \mathrm{U}(1)_\gamma \otimes \mathrm{SU}(2)_L \\ & \xrightarrow{\mathrm{Yukawa}} & \mathrm{O}(2) \otimes \mathrm{U}(1)_\gamma \otimes \mathrm{SU}(2)_L \sim & \mathrm{U}(1)_{\mathrm{PQ}} \otimes \mathrm{U}(1)_\gamma \otimes \mathrm{SU}(2)_L. \end{array}$$

- Assume SO(5)-symmetry scale $\mu_X \gg v$.
- Use two-loop RGEs to find the mass spectrum at weak scale.



Soft Breaking Effects

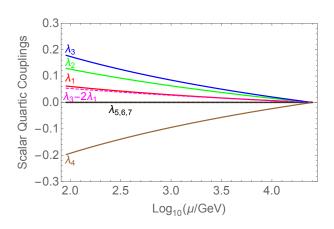


In the SO(5) limit for quartic couplings,

$$M_H^2 = 2\lambda_2 v^2$$
, $M_h^2 = M_a^2 = M_{h^{\pm}}^2 = \frac{\text{Re}(m_{12}^2)}{s_\beta c_\beta}$.

Preserves natural alignment, irrespective of other 2HDM parameters.

Quartic Coupling Unification

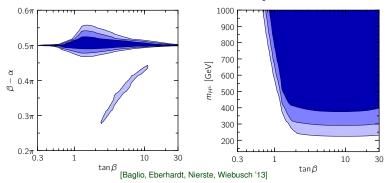


Global Fit

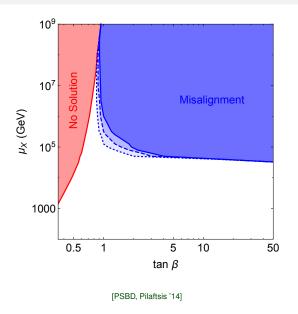
- Electroweak precision observables.
- LHC signal strengths of the light CP-even Higgs boson.
- Limits on heavy *CP*-even scalar from $h \to WW, ZZ, \tau\tau$ searches.
- Flavor observables such as B_s mixing and $B \to X_s \gamma$.
- Stability of the potential:

$$\lambda_{1,2}>0,\quad \lambda_3+\sqrt{\lambda_1\lambda_2}>0,\quad \lambda_3+\lambda_4+\sqrt{\lambda_1\lambda_2}-\text{Re}(\lambda_5)>0.$$

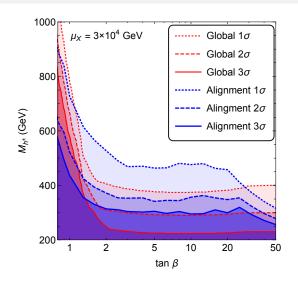
• Perturbativity of the Higgs self-couplings: $||S_{\Phi\Phi\to\Phi\Phi}|| < \frac{1}{8}$.



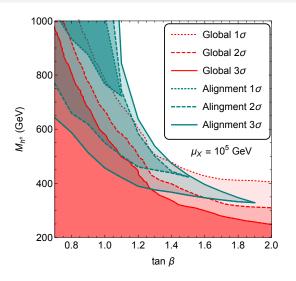
Misalignment Predictions



Lower Limit on Charged Higgs Mass



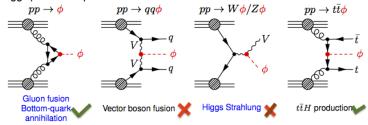
Lower and Upper Limits on Charged Higgs Mass



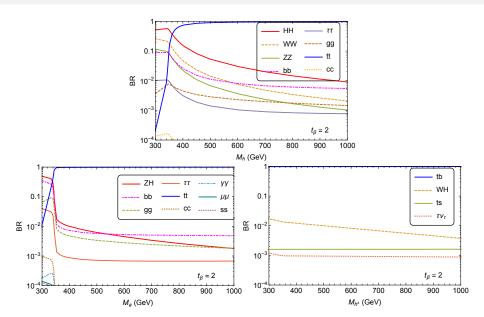
Implications of Alignment for the LHC Searches

- $g_{hVV} = \sin(\beta \alpha)$, $g_{HVV} = \cos(\beta \alpha)$.
- In the alignment limit $\alpha \to \beta$, H is SM-like and the heavy Higgs h is gaugephobic.
- Dominant production modes at the LHC: ggF and associated production with $t\bar{t}$.

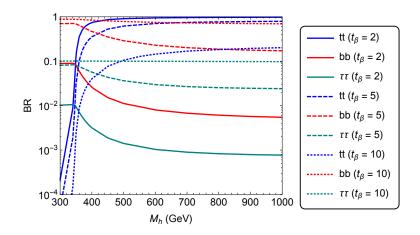
Higgs production processes:



Branching Fractions in Type-II 2HDM



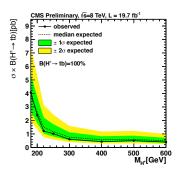
$\tan \beta$ Dependance



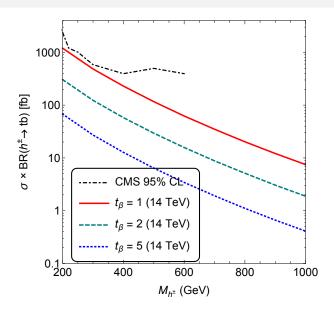
Existing LHC Searches

- Existing collider limits on the heavy Higgs sector derived from WW and ZZ modes are not applicable in the alignment limit.
- Limits from $gg \to h \to \tau^+\tau^-$ and $gg \to b\bar{b}h \to b\bar{b}\tau^+\tau^-$ are easily satisfied.
- Similarly for $h \to HH \to \gamma \gamma bb$.
- In the charged-Higgs sector, most of the searches focus on the low-mass regime $(M_{h^{\pm}} < M_t)$: $pp \to tt \to Wbbh^+$, $h^+ \to cs$.
- Recently, the search was extended beyond the top-threshold: [CMS-PAS-HIG-13-026]

$$gg \rightarrow h^+ tb \rightarrow (\ell \nu bb)(\ell' \nu b)b$$



Predictions in the MS-2HDM



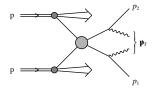
Simulations for $\sqrt{s} = 14$ TeV LHC

- Used MadGraph5 aMC@NLO.
- Event reconstruction using the CMS cuts:

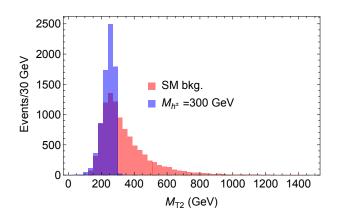
$$\begin{split} & p_T^{\ell} \, > \, 20 \; \mathrm{GeV}, \quad |\eta^{\ell}| < 2.5, \quad \Delta R^{\ell\ell} > 0.4, \\ & M_{\ell\ell} > 12 \; \mathrm{GeV}, \quad |M_{\ell\ell} - M_Z| > 10 \; \mathrm{GeV}, \\ & p_T^{j} \, > \, 30 \; \mathrm{GeV}, \quad |\eta^{j}| < 2.4, \quad \rlap/E_T > 40 \; \mathrm{GeV}. \end{split}$$

- Jet reconstruction using the anti- k_T clustering algorithm with a distance parameter of 0.5.
- At least two b-tagged jets are required in the signal events (each has a b-tagging efficiency of about 70%).
- For charged Higgs mass reconstruction, used 'stransverse mass' variable [Lester, Summers '99]

$$M_{T2} = \min_{\left\{ \mathbf{p}_{T_1} + \mathbf{p}_{T_2} = \mathbf{p}_{T} \right\}} \left[\max \left\{ m_{T_1}, m_{T_2} \right\} \right].$$

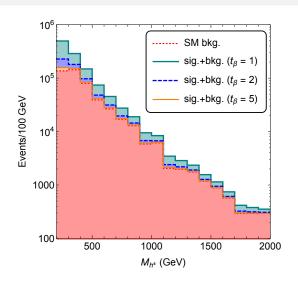


Mass Reconstruction using M_{T2}



[PSBD, Pilaftsis '14]

Reach at 14 TeV LHC

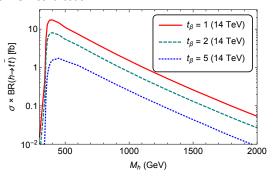


[PSBD, Pilaftsis '14]

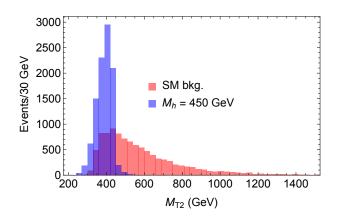
New Signal in the Neutral Higgs Sector

$$gg \rightarrow t\bar{t}h \rightarrow t\bar{t}t\bar{t}$$

- Existing 95% CL experimental upper limit on $\sigma_{t\bar{t}t\bar{t}}$ is 32 fb (CMS).
- SM prediction for $\sigma(pp o t\bar{t}t\bar{t} + X) \simeq$ 10–15 fb at NLO. [Bevilacqua, Worek '12]
- Still lot of room for BSM contribution.

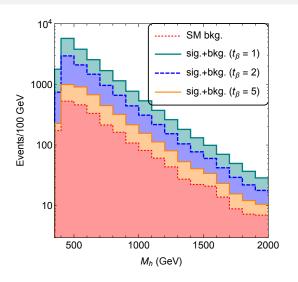


Mass Reconstruction using M_{T2}



[PSBD, Pilaftsis '14]

Reach at 14 TeV LHC



[PSBD, Pilaftsis '14]

Towards a Full Analysis of the 4t Signal

35 final states, grouped into five channels:

- Fully hadronic: 12 jets, with 4 *b*-jets.
- Mostly hadronic: 6 light jets, 4 b-jets, one charged lepton and ∉_T.
- Semi-leptonic/hadronic: 4 light jets, 4 b-jets, 2 charged leptons and ₱Ţ.
- Mostly leptonic: 2 light jets, 4 b-jets, 3 charged leptons and ∉_T.
- Fully leptonic: 4 b-jets, 4 charged leptons and ∉_T.

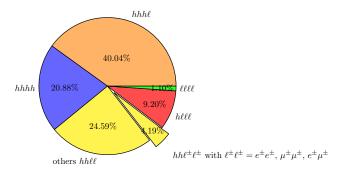


Figure 1.4: Branching fractions for the different decays of the four top quarks, depending on whether the W boson decays hadronically (h) or leptonically (ℓ) . [Figure Courtesy: D. P. Hernández (ATLAS)]

Towards a Full Analysis of the 4t Signal

35 final states, grouped into five channels:

- Fully hadronic: 12 jets, with 4 *b*-jets.
- Mostly hadronic: 6 light jets, 4 b-jets, one charged lepton and ∉_T.
- Semi-leptonic/hadronic: 4 light jets, 4 b-jets, 2 charged leptons and ∉_T.
- Mostly leptonic: 2 light jets, 4 b-jets, 3 charged leptons and ∉_T.
- Fully leptonic: 4 *b*-jets, 4 charged leptons and $\not\!\!E_T$.

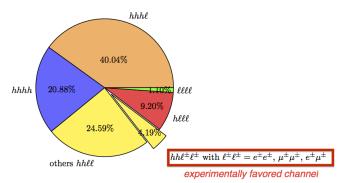


Figure 1.4: Branching fractions for the different decays of the four top quarks, depending on whether the W boson decays hadronically (h) or leptonically (ℓ) . [Figure Courtesy: D. P. Hernández (ATLAS)]

- Analyzed the symmetry classifications of the general 2HDM scalar potential.
- Maximal reparametrization group in bilinear space is SO(5).
- Maximally Symmetric 2HDM potential has a single quartic coupling.
- SM alignment limit is realized naturally, independently of the heavy Higgs spectrum
- Deviations are induced naturally by RG effects due to g' and Yukawa couplings, and due to soft-breaking mass parameter.
- Using the alignment constraints, we predict lower limits on the heavy Higgs spectrum, which prevail the present limits in a wide range of parameter space.
- Depending on the SO(5)-breaking scale, we also obtain an upper limit on the heavy Higgs masses, which could be completely probed during LHC run-II.
- We propose a new collider signal with four top quarks in the final state, which can become a valuable observational tool to directly probe the heavy Higgs sector in the alignment limit

- Analyzed the symmetry classifications of the general 2HDM scalar potential.
- Maximal reparametrization group in bilinear space is SO(5).
- Maximally Symmetric 2HDM potential has a single quartic coupling.
- SM alignment limit is realized naturally, independently of the heavy Higgs spectrum.
- Deviations are induced naturally by RG effects due to g' and Yukawa couplings, and due to soft-breaking mass parameter.
- Using the alignment constraints, we predict lower limits on the heavy Higgs spectrum, which prevail the present limits in a wide range of parameter space.
- Depending on the SO(5)-breaking scale, we also obtain an upper limit on the heavy Higgs masses, which could be completely probed during LHC run-II.
- We propose a new collider signal with four top quarks in the final state, which can become a valuable observational tool to directly probe the heavy Higgs sector in the alignment limit

- Analyzed the symmetry classifications of the general 2HDM scalar potential.
- Maximal reparametrization group in bilinear space is SO(5).
- Maximally Symmetric 2HDM potential has a single quartic coupling.
- SM alignment limit is realized naturally, independently of the heavy Higgs spectrum.
- Deviations are induced naturally by RG effects due to g' and Yukawa couplings, and due to soft-breaking mass parameter.
- Using the alignment constraints, we predict lower limits on the heavy Higgs spectrum, which prevail the present limits in a wide range of parameter space.
- Depending on the SO(5)-breaking scale, we also obtain an upper limit on the heavy Higgs masses, which could be completely probed during LHC run-II.
- We propose a new collider signal with four top quarks in the final state, which can become a valuable observational tool to directly probe the heavy Higgs sector in the alignment limit.

- Analyzed the symmetry classifications of the general 2HDM scalar potential.
- Maximal reparametrization group in bilinear space is SO(5).
- Maximally Symmetric 2HDM potential has a single quartic coupling.
- SM alignment limit is realized naturally, independently of the heavy Higgs spectrum.
- Deviations are induced naturally by RG effects due to g' and Yukawa couplings, and due to soft-breaking mass parameter.
- Using the alignment constraints, we predict lower limits on the heavy Higgs spectrum, which prevail the present limits in a wide range of parameter space.
- Depending on the SO(5)-breaking scale, we also obtain an upper limit on the heavy Higgs masses, which could be completely probed during LHC run-II.
- We propose a new collider signal with four top quarks in the final state, which can become a valuable observational tool to directly probe the heavy Higgs sector in the alignment limit.

Symmetry Generators

Table 2
Symmetry generators [cf. (10), (14)] and discrete group elements [cf. (17)] for the 13 accidental symmetries of the U(1)_Y-invariant 2HDM potential. For each symmetry, the maximally broken SO(5) generators compatible with a neutral vacuum are displayed, along with the pseudo-Goldstone bosons (given in parentheses) that result from the Goldstone theorem.

$Z_2 \times O(2)$	T ⁰			
	1	D_{CP1}	-	0
$(Z_2)^2 \times SO(2)$	T ⁰	D_{Z_2}	-	0
$(Z_2)^3 \times O(2)$	T ⁰	D _{CP2}	-	0
$O(2) \times O(2)$	T^{3}, T^{0}	_	T ³	1 (a)
$Z_2 \times [O(2)]^2$	T^2 , T^0	D_{CP1}	T ²	1 (h)
$O(3) \times O(2)$	$T^{1,2,3}, T^0$	_	T ^{1,2}	2 (h, a)
SO(3)	T ^{0,4,6}	_	T ^{4,6}	2 (h [±])
$Z_2 \times O(3)$	T ^{0,4,6}	$D_{Z_2} \cdot D_{CP2}$	T4.6	2 (h±)
$(Z_2)^2 \times SO(3)$	$T^{0,5,7}$		T ^{5,7}	2 (h [±])
O(2) × O(3)	T^3 , $T^{0,8,9}$	_	T ³	1 (a)
SO(4)	T0,3,4,5,6,7	_	T ^{3,5,7}	3 (a, h±)
$Z_2 \times O(4)$	T ^{0,3,4,5,6,7}	$D_{72} \cdot D_{CP2}$	T ^{3,5,7}	3 (a, h±)
SO(5)	T ^{0,1,2,,9}	-	T1,2,8,9	4 (h, a, h [±])
	$\begin{aligned} &(Z_2)^3 \times O(2) \\ &O(2) \times O(2) \\ &Z_2 \times [O(2)]^2 \\ &O(3) \times O(2) \\ &SO(3) \\ &Z_2 \times O(3) \\ &(Z_2)^2 \times SO(3) \\ &O(2) \times O(3) \\ &SO(4) \\ &Z_2 \times O(4) \end{aligned}$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$

[Pilaftsis '12]

- T^a and K^a are the generators of SO(5) and Sp(4) respectively (a = 0, ..., 9).
- T^0 is the hypercharge generator in R-space, which is equivalent to the electromagnetic generator $Q_{\rm em}=\frac{1}{2}\sigma^0\otimes\sigma^0\otimes\sigma^3+K^0$ in Φ -space.
- Sp(4) contains the custodial symmetry group $SU(2)_C$.
- Three independent realizations of custodial symmetry induced by (i) K^{0,4,6}, (ii) K^{0,5,7}, (iii) K^{0,8,9}.

Symmetry Generators

Table 2
Symmetry generators [cf. (10), (14)] and discrete group elements [cf. (17)] for the 13 accidental symmetries of the U(1)Y-invariant 2HDM potential. For each symmetry, the maximally broken SO(5) generators compatible with a neutral vacuum are displayed, along with the pseudo-Goldstone bosons (given in parentheses) that result from the Goldstone theorem.

No.	Symmetry	Generators $T^a \leftrightarrow K^a$	Discrete group elements	Maximally broken SO(5) generators	Number of pseudo-Goldstone bosons
1	$Z_2 \times O(2)$	T ⁰	D _{CP1}	-	0
2	$(Z_2)^2 \times SO(2)$	T ⁰	D_{Z_2}	-	0
3	$(Z_2)^3 \times O(2)$	T ⁰	D _{CP2}	-	0
4	O(2) × O(2)	T^{3}, T^{0}	-	T ³	1 (a)
5	$Z_2 \times [0(2)]^2$	T^2, T^0	D_{CP1}	T ²	1 (h)
6	O(3) × O(2)	$T^{1,2,3}, T^0$	_	T ^{1,2}	2 (h,a)
7	SO(3)	T ^{0,4,6}	-	T ^{4,6}	2 (h±)
8	$Z_2 \times O(3)$	$T^{0,4,6}$	$D_{Z_2} \cdot D_{CP2}$	T ^{4,6}	2 (h±)
9	$(Z_2)^2 \times SO(3)$	T ^{0,5,7}	$D_{\text{CP1}} \cdot D_{\text{CP2}}$	T ^{5,7}	2 (h±)
10	O(2) × O(3)	$T^3, T^{0,8,9}$	_	T ³	1 (a)
11	SO(4)	T ^{0,3,4,5,6,7}	-	T ^{3,5,7}	3 (a, h±)
12	$Z_2 \times O(4)$	T ^{0,3,4,5,6,7}	$D_{Z_2} \cdot D_{CP2}$	T ^{3,5,7}	3 (a, h [±])
13	SO(5)	T ^{0,1,2,,9}	-	T1,2,8,9	4 (h, a, h^{\pm})
Dilaft	cic '12]				

[Pilaftsis '12]

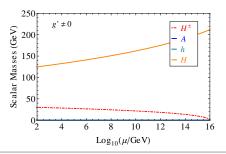
- T^a and K^a are the generators of SO(5) and Sp(4) respectively (a = 0, ..., 9).
- T^0 is the hypercharge generator in R-space, which is equivalent to the electromagnetic generator $Q_{\rm em}=\frac{1}{2}\sigma^0\otimes\sigma^0\otimes\sigma^3+K^0$ in Φ -space.

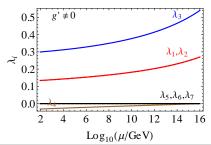
Quark Yukawa Couplings

- By convention, choose $h_1^u = 0$. For Type-I (Type-II) 2HDM, $h_1^d(h_2^d) = 0$.
- Quark yukawa couplings w.r.t. the SM are given by

Coupling	Type-I	Type-II	
$g_{ht\overline{t}}$	$\cos \alpha / \sin \beta$	$\cos \alpha / \sin \beta$	
$g_{hbar{b}}$	$\cos \alpha / \sin \beta$	$-\sin \alpha/\cos \beta$	
$g_{Htar{t}}$	$\sin \alpha / \sin \beta$	$\sin \alpha / \sin \beta$	
$g_{Hbar{b}}$	$\sin \alpha / \sin \beta$	$\cos \alpha / \cos \beta$	
$g_{atar{t}}$	$\cot \beta$	$\cot \beta$	
$g_{abar{b}}$	$-\cot \beta$	$\tan \beta$	

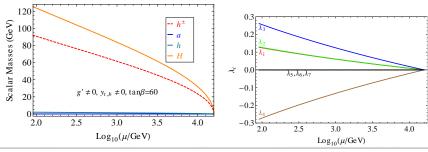
g' Effect





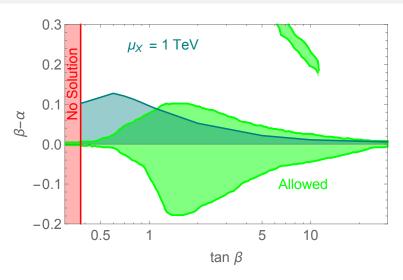
No.	Symmetry	Generators $T^a \leftrightarrow K^a$	Discrete group elements	Maximally broken SO(5) generators	Number of pseudo-Goldstone bosons
1	$Z_2 \times O(2)$	T ⁰	D _{CP1}	-	0
2	$(Z_2)^2 \times SO(2)$	T 0	D 22	-	0
3	$(Z_2)^3 \times O(2)$	T ⁰	D _{CP2}	-	0
4	$O(2) \times O(2)$	T^3, T^0	-	T ³	1 (a)
5	$Z_2 \times [O(2)]^2$	T^2, T^0	D _{CP1}	T ²	1 (h)
6	$O(3) \times O(2)$	$T^{1,2,3}, T^0$	-	T1,2	2(h,a)
7	SO(3)	T ^{0,4,6}	-	T ^{4,6}	2 (h±)
8	$Z_2 \times O(3)$	T ^{0,4,6}	$D_{Z_2} \cdot D_{CP2}$	T4.6	2 (h±)
9	$(Z_2)^2 \times SO(3)$	T ^{0,5,7}	$D_{\text{CP1}} \cdot D_{\text{CP2}}$	T ^{5,7}	2 (h±)
10	$0(2) \times 0(3)$	$T^3, T^{0,8,9}$	_	T^3	1 (a)
11	SO(4)	T ^{0,3,4,5,6,7}	_	T ^{3,5,7}	3 (a, h±)
12	$Z_2 \times O(4)$	T ^{0,3,4,5,6,7}	$D_{Z_2} \cdot D_{CP2}$	T ^{3,5,7}	3 (a, h [±])
13	SO(5)	T ^{0,1,2,,9}	-	T1,2,8,9	4 (h, a, h^{\pm})

Yukawa Coupling Effects



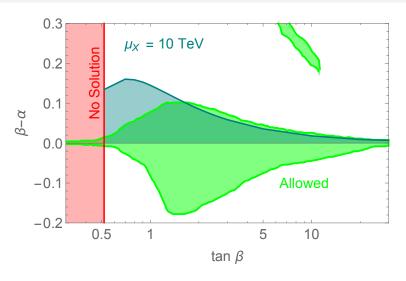
No.	Symmetry	Generators $T^a \leftrightarrow K^a$	Discrete group elements	Maximally broken SO(5) generators	Number of pseudo-Goldstone bosons
1	Z ₂ × O(2)	T ⁰	D _{CP1}	-	0
2	$(Z_2)^2 \times SO(2)$	T ⁰	D_{Z_2}	-	0
3	$(Z_2)^3 \times O(2)$	T ⁰	D _{CP2}	-	0
4	$O(2) \times O(2)$	T^3, T^0	_	T ³	1 (a)
5	$Z_2 \times [O(2)]^2$	T^{2}, T^{0}	D _{CP1}	T ²	1 (h)
6	$O(3) \times O(2)$	$T^{1,2,3}, T^0$	-	$T^{1,2}$	2 (h,a)
7	SO(3)	T ^{0,4,6}	-	T4,6	2 (h±)
8	$Z_2 \times O(3)$	T ^{0,4,6}	$D_{Z_2} \cdot D_{CP2}$	T4.6	2 (h±)
9	$(Z_2)^2 \times SO(3)$	T ^{0,5,7}	$D_{CP1} \cdot D_{CP2}$	T ^{5,7}	2 (h±)
10	$O(2) \times O(3)$	$T^3, T^{0,8,9}$	_	T ³	1 (a)
11	SO(4)	T0,3,4,5,6,7	_	T ^{3,5,7}	3 (a, h±)
12	$Z_2 \times O(4)$	T ^{0,3,4,5,6,7}	$D_{Z_2} \cdot D_{CP2}$	T ^{3,5,7}	3 (a, h [±])
13	SO(5)	T 0,1,2,,9	-	T1,2,8,9	4 (h, a, h^{\pm})

With SO(5) Boundary Conditions at μ_X



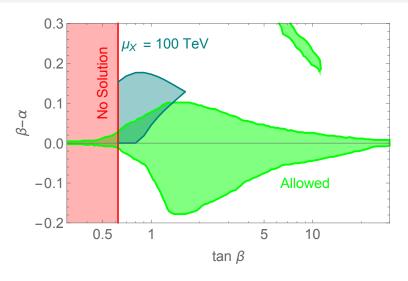
[PSBD, Pilaftsis (preliminary)]

With SO(5) Boundary Conditions at μ_X



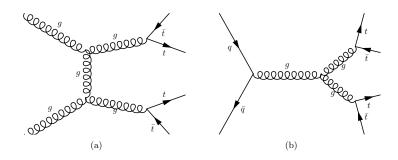
[PSBD, Pilaftsis (preliminary)]

With SO(5) Boundary Conditions at μ_X



[PSBD, Pilaftsis (preliminary)]

Production of 4 tops in the SM



Production of 4 tops in BSM

