The Fermilab Muon g-2 Experiment

Mark Lancaster

Aim of Experiment

Make a 0.14 ppm measurement

Mark Lancaster : Discrete 2014 : p1

Comparison of SM & BNL Measurement

Present measurement is at odds with SM at 3.5σ level.

A 0.14 ppm measurement moves this to more than 5σ

Interest in this result

3rd most cited paper in experimental particle physics

Â

Sensitivity to new physics \triangleq UCC New physics as: $\left(\frac{m_{\ell}}{M_{\rm NEW}}\right)^2$

Muon sensitivity to BSM in 20 MeV (e.g. dark photons) to TeV region

Electron presently limited to BSM contributions from m < 100 MeV

 μ, ϵ

 μ, e

BSM Landscape

Measurement probes much of the same TeV-scale BSM landscape as LHC.

Complements LHC

$$M_2 = \mu = 2M_1, \ m_{\tilde{\mu}_R} \gg m_{\tilde{\mu}_L}$$

BNL anomaly (if real) would be expected to produce a direct observable in 14 TeV LHC data in most TeV-scale models.

In this case the g-2 measurement can resolve degeneracy in model parameters & improve their determination e.g. $tan\beta$.

pMSSM Models

Mastercode collaboration arXiv:1410.6755

Sampling of pMSSM phase space

M. Cahill-Rowley et al., Eur. Phys. J72, 2156 (2012); Phys. Rev. D 88, 035002 (2013).

Mark Lancaster : Discrete 2014 : p8

Dark Photons

L

Fermilab Muon g-2 Experiment

m g-2

New results from NA48

How to achieve 0.1 ppm

"Never measure anything but frequency" I. Rabi

Fermilab Muon g-2 Experiment

Mark Lancaster : Discrete 2014 : p11

Spin Equation

Measure rate at which muon spin turns relative to momentum vector

This is determined by (g-2) and the EM fields and energy of the muon

$$\omega_a = \omega_s - \omega_c$$

Â

$$a_{\mu} = \frac{1}{2}(g-2)$$

FNAL/BNL approach : effect of focussing E-field cancelled by using "magic" 3.09 GeV momenta muons.

J-PARC approach : 300 MeV beam with v. low transverse momenta requiring no E-field to focus.

Two measured quantities : ω_a and B

B is measured using NMR in terms of the proton Larmor frequency : ω_p

$$a_{\mu} = rac{\omega_a/\omega_p}{\lambda_+ - \omega_a/\omega_p} \ ; \ \lambda_+ = \mu_{\mu^+}/\mu_p$$

 $\lambda_{\scriptscriptstyle +}$ measured from muonium hyperfine structure

Uncertainty in a_{μ} determined by precision of ω_{p} and ω_{a} measurements

FNAL g-2 Experimental Technique

In g-2 experiment : cyclotron period is 149 ns

Spin precesses around momentum direction once every 30 turns (4.3 us)

Storage ring at BNL

The Small Move

The Big Move

Fermilab Muon g-2 Experiment

g-2

The Big Move

Mark Lancaster : Discrete 2014 : p18

g-2

Arrival at FNAL

Long Live The Risk Register

Mark Lancaster : Discrete 2014 : p20

Muon Campus at FNAL

Mark Lancaster : Discrete 2014 : p21

Fermilab Muon g-2 Experiment

Lower Yoke installed

Mark Lancaster : Discrete 2014 : p24

g-2

Mark Lancaster : Discrete 2014 : p25

g-2

$\begin{array}{l} \text{BNL} \rightarrow \text{FNAL} \\ [54 (stat.) \oplus 33 (syst.) \rightarrow 11 (stat.) \oplus 11 (syst.)] \times 10^{-11} \\ 0.54 \text{ ppm} \rightarrow 0.14 \text{ ppm} \end{array}$

Contribution to a $_{\mu}$

Seven FNAL g-2 improvements

Mark Lancaster : Discrete 2014 : p27

Accelerator Modifications

To provide x20 more muons at lower inst. rate with much reduced pion contamination compared to BNL.

Proton accelerator modifications (Recycler & Booster)

Old Pbar complex being re-configured to provide muons. **aka "The Delivery Ring"**

Accelerator Modifications

Many of these modifications are also required by Mu2e

Fermilab Muon g-2 Experiment

Accelerator Requirements

- 4 proton pulses of 10¹² @ 8 GeV separated by 10ms (av rate 12 Hz)
- pulse duration to be less than cyclotron period (149ns)

- dispersion in pion momentum < 2%
- long pion decay beamline

Re-uses much of current infrastructure but requires new beamlines, kickers, power supplies, controls etc

Each 10¹² proton pulse results in \approx 16,000 stored 3.09 GeV muons in g-2 ring

Accelerator Modifications

Mark Lancaster : Discrete 2014 : p31

q-2

Accelerator Modifications

Schedule is funding-constrained. Beamlines will be ready for operation in April 2017.

Accelerator mods : x20 in stats

Final challenge : reduce systematics by factor of ~ 3.

B-field systematic (ω_P) from 0.17 ppm -> 0.07 ppm Precession systematic (ω_a) from 0.2 ppm -> 0.07 ppm

Many aspects to achieving this:

- New, improved detectors, calibration & readout systems
- Improved beam stability/monitoring e.g. new kicker
- Improved calibration/shimming/readout of B-field
- End to end simulation of both accelerator, storage ring and detectors

â

Improvements to injection system

Fermilab Muon g-2 Experiment

q-2

Injection, beam orbit / stability important to:

- minimise muon losses
 - maximise statistics
 - minimise impact of losses that are time dependent
- minimise corrections to the "spin equation"
 - vertical betatron oscillations mean : v.B ≠ 0 (aka "pitch correction")
 - ± 15 MeV variance in beam momentum (aka "E-field correction")
- ensure beam traverses known/consistent path in B-field

Inflector system

Mark Lancaster : Discrete 2014 : p36

q-2

Inflector system

Nulls 1.45 T field at point of injection Static and non ferromagnetic Cannot leak flux into storage ring

Both magnet and shield

R&D into an open-end design:

- less scattering
- x2 more muons
- better matched

Two double (truncated) $\cos\theta$ magnets that trap their own flux.

New Kicker

No (or known) eddy currents during measurement period (30us after injection)

No ferrite materials that can affect the storage ring field

New Kicker Magnet

Blumlein double transmission line to form the pulse into the kicker plate

Stronger field between plates with reduced field at edge of plots

New Kicker Magnet

Mark Lancaster : Discrete 2014 : p41

q-2

Electrostatic Focussing Quadrupoles

 plates, (2) HV standoffs, (3) trolley rails, (4) adjustment screws, (5) vacuum chamber

Provide vertical focussing of beam

4 (non-ferrite) metal plates under HV

Influences:

- # lost muons
- E field correction
- ω_P (orbit distortion)

Dipole B-field & quadrupole E-field means beam undergoes SHM (betatron) oscillations in vertical and radial direction.

Radial : affects detector acceptance. Vertical : lowers ω_a since v.B \neq 0 (pitch correction)

Quadrupoles and n-value

mpact of Quad field, position on $\omega_a \triangleq \bigcup C$

$$\frac{\Delta\omega_a}{\omega_a} = -2\frac{\beta E_r}{cB_y} \left(\frac{\Delta p}{p_m}\right) = -2n(1-n)\beta^2 \langle x_e^2 \rangle R_o^2$$

$\Delta p/p$ (%)	Q position	$E ext{-field}$	$B_y ~(\mathrm{ppm})$	$C_E ~(\mathrm{ppm})$	$\Delta (\text{ppb})$
0	$\operatorname{perfect}$	pure quad	0	0	0.01
0.25	$\mathbf{perfect}$	pure quad	0	2.74	3.0
0	$\mathbf{perfect}$	\mathbf{m} -poles	0	0	0.1
0.25	$\operatorname{perfect}$	m-poles	0	2.74	8.7
0.25	$\mathbf{perfect}$	pure quad	$10\cos(arphi)$	2.74	3.5
0.25	$Q_{1x}=0.3~\mathrm{mm}$	pure quad	0	2.74	8.7
0.25	$Q_{1x} = 0.3 \text{ mm}$	m-poles	0	2.74	17.8
0.25	$Q_{1x} = 0.3 \text{ mm}$	m-poles	$10\cos(arphi)$	2.74	22.1
0.25	$Q_{1x} = 0.3 ext{ mm} \ Q_{3x} = 0.3 ext{ mm}$	m-poles	$10\cos(arphi)$	2.74	33.9

0.03 ppm is FNAL aim. BNL achieved 0.065 ppm

Quad affect on "pitch correction"

Smaller than E-field correction but again requires precise alignment of quads Again it systematically lowers ω_a

$A_y \ (\mathrm{mm})$	Q position	E-field	$B_r ~(\mathrm{ppm})$	$C_P ~(\mathrm{ppm})$	Δ (ppb)
0	perfect	pure quad	0	0	0.006
41.2	$\mathbf{perfect}$	pure quad	0	1.51	3.5
40.7	perfect	m-poles	0	1.47	6.5
41.0	perfect	m-poles	-10	1.50	7.5
40.7	$Q_{1y} = 0.3 \text{ mm}$	m-poles	0	1.47	8.0
41.2	$Q_{1y} = 0.3 \mathrm{~mm}$	pure quad	0	1.51	6.2
41.1	$Q_{1y} = 0.3 ext{ mm} \ Q_{3y} = -0.3 ext{ mm}$	pure quad	0	1.50	8.8

$A_{\boldsymbol{\gamma}}$: Amplitude of vertical betatron oscillation

B-field measurement

 ω_{p} systematics need to be reduced by a factor of 2.5

Better run conditions, e.g. temperature stability.

Improved shimming of magnetic field to high uniformity

Smaller stored muon distribution

Hardware and simulation improvements

B-field measurement

300+ NMR probes in vacuum tank walls

Map field at 6,000 locations every 2 hrs (vs 2 days BNL)

Much improved temp. control

B-field measurement

Bar codes every 2.5mm to track location of trolley

Large bore solenoid now at ANL to test all NMR components to better than 20 ppb.

Fermilab Muon g-2 Experiment

ω_a measurement

Syst. from lost muons, CBO, E & pitch-corrections : mitigated by quads, ring but detectors provide the input / diagnostics

Detectors also the key in the other ω_a systematics & provide the "money-plot"

ω_a measurement

Working prototypes of both detector systems Final versions of the detectors to be constructed in 2015/16.

 ω_a measurement

3.1 GeV

We select positrons above E = 1.86 GeV : maximises sensitivity.

ω_a measurement

0.8

0.2

Simply plot of time of positrons above threshold and perform 5-par fit

$$N(t) = N_0 \exp(-t/\gamma \tau_\mu) \left[1 - A\cos(\omega_a t + \phi)\right]$$

ω_a measurement

Calorimeter:

- more segmented.
- x2 sampling (800M/s) vs BNL
- quicker response (5 ns)
- improved energy resolution

Tracker:

- authenticate pileup
- measure muon profile
- measure EDM

Particularly attention is being paid to gain of calorimeter.

Improved wrt to BNL through: better temperature control & much reduced hadronic-flash negating the need for gated operation

Conclusion

"If you enjoy doing difficult experiments, you can do them, but it is a waste of time and effort because the result is already known" : Pauli

"No experiment is so dumb, that it should not be tried" : Gerlach

BACKUP

Fermilab Muon g-2 Experiment

Muon EDM

Muon EDM in two BSM models.

BSM predictions range from: 10⁻²¹ to 10⁻²⁸

Essentially zero in SM : any observation is new physics

Muon is the only 2nd flav. gen. measurement. and it's free of nuclear / molecular effects

BNL limit is 1.8 x 10⁻¹⁹

Can quickly be improved by x10 and ultimately x100 to 10⁻²¹

If there are non mass-scaling BSM effects then 10⁻²¹ becomes competitive

Measurement can only be performed using the tracking detectors

E821 Error	Size	Plan for the E989 $g-2$ Experiment	Goal
	[ppm]		[ppm]
Absolute field	0.05	Special 1.45 T calibration magnet with thermal	
calibrations		enclosure; additional probes; better electronics	0.035
Trolley probe	0.09	Absolute cal probes that can calibrate off-central	
calibrations		probes; better position accuracy by physical stops	
		and/or optical survey; more frequent calibrations	0.03
Trolley measure-	0.05	Reduced rail irregularities; reduced position uncer-	
ments of B_0		tainty by factor of 2; stabilized magnet field during	
		measurements; smaller field gradients	0.03
Fixed probe	0.07	More frequent trolley runs; more fixed probes;	
interpolation		better temperature stability of the magnet	0.03
Muon distribution	0.03	Additional probes at larger radii; improved field	
		uniformity; improved muon tracking	0.01
Time-dependent	—	Direct measurement of external fields;	
external B fields		simulations of impact; active feedback	0.005
Others	0.10	Improved trolley power supply; trolley probes	
		extended to larger radii; reduced temperature	
		effects on trolley; measure kicker field transients	0.05
Total	0.17		0.07

E821 Error	Size	Plan for the E989 $g-2$ Experiment	Goal
	[ppm]		[ppm]
Gain changes	0.12	Better laser calibration; low-energy threshold;	
		temperature stability; segmentation to lower rates;	
		no hadronic flash	0.02
Lost muons	0.09	Running at higher n -value to reduce losses; less	
		scattering due to material at injection; muons	
		reconstructed by calorimeters; tracking simulation	0.02
Pileup	0.08	Low-energy samples recorded; calorimeter segmentation;	
		Cherenkov; improved analysis techniques; straw trackers	
		cross-calibrate pileup efficiency	0.04
CBO	0.07	Higher n-value; straw trackers determine parameters	0.03
E-Field/Pitch	0.06	Straw trackers reconstruct muon distribution; better	
		collimator alignment; tracking simulation; better kick	0.03
Diff. Decay	0.05^{1}	better kicker; tracking simulation; apply correction	0.02
Total	0.20		0.07

CBO means B.β not zero and adds frequency component to ω_a

Hadronic Corrections

Reducing this 0.42 ppm to ensure 0.14 ppm FNAL measurement has maximum impact is a high priority.

Is this hadronic estimate reliable ? 🔺 🛛 C

97% of the hadronic estimate is **data-driven** and it can now be cross checked by the measured Higgs Mass

Use M_H = 125 GeV for HVP **increases significance** of BNL discrepancy wrt SM