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THE QUEST FOR QG PHENOMENOLOGY

Old “dogma”: you shall not access any quantum gravity effect as this
would require experiments at the Planck scale!

This has changed in the last decade, e.g.

2¢ Loss of quantum coherence or state collapse

2

= QG imprints on initial cosmological perturbations - BICEP2?
2¢ Extra dimensions and low-scale QG: Mpy2=R" My(4+n)"+2

Al

=+ Modified Uncertainty principle tests

2¢ Planck scale spacetime fuzziness tests

Al

2+ Violation of discrete symmetries tests
2< Violation of spacetime symmetries tests
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2= Planck scale spacetime fuzziness tests

2¢ Violation of discrete symmetries tests
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2= Violation of spacetime symmetries tests

We shall focus here on the lastitem:.
More precisely on'tests of-Ilocal - Lorentz invariance

Why?
® Lorentzmvarlance is rooted via the equivalehce prlnmple in GR and it is a fundamental pillar of
the SM.
® The more fundamental is an ingredient of your theory the more needs to be tested

observationally.
® This is one of the few cases in which our sensitivity can constraints new physics at the Planck
scale, so tests of Lorentz invariance can be used to rule out QG models: Lorentz violations tests
are so far the best example of QG phenomenology. >
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Giordano Bruno Monument - Rome

LV Dispersion & Hawking radiation (Unruh, 1994, Brout-Massar-Parentani-Spindel 1995)

Possibilities of LV phenomenology (Gonzalez-Mestres, 1995)

“Minimal Standard model extension” & experimental limits (Colladay & Kostelecky, 1997 & many experimenters)
GRB photon dispersion limits at the Planck scale

Coleman-Glashow test theory

Trans-GZK events? (AGASA collab. 1998). Many investigations (Aloisio et al 2000, Amelino-Camelia et al 2002-3, ...)
TeV gamma ray crisis? (Protheroe & Mayer 2000)

Einstein-Aether gravity (Jacobson-Mattingly 2000)

Doubly/Deformed Special Relativity (Amelino-Camelia 2002)

“Standard Model Extensions” beyond renorm. Ops. (Myers-Pospelov 2003, JLM 2003-4).

Horava-Lifshiftz Gravity (Horava 2009, ...)



WHICH BREAKING OF LOCAL LORENTZ
INVARIANCE?

W. von Ignatowsky theorem (1911):
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Let’s start relaxing the Relativity Principle...




PICKING UP A FRAMEWORK...

Missing a definitive QG candidate able to provide definitive sub-Planckian predictions
different general dynamical framework have been proposed
Many of the aforementioned QG models have been shown to lead to modified dispersion
relations but we need also a dynamical framework

Frameworks for preferred frame etfects
See €.9. Amelino-Camelia Living Reviews of Relativity

Non EFT proposals:

EFT+LV E.g. Non-critical Strings
I Spacetime foam models
2 e
EFT with LIV

Minimal Standard Model Extension 3 ; |
Renormalizable ops. on-renormalizable ops

(IR LIV - LI SSB) (no anisotropic scaling),
(UV LIV - QG inspired LIV)
Generally preferred frame aligned with CMB

E.g. QED, rot. Inv. dim 3,4 operators
electrons E? = m? +p? + fél)p + fé2)p2

E.g. QED, dim 5 operators
electrons E? = m? + p* + nf) (E°/Mp)

photons w? = (1 - f§2)) k2
(Colladay-Kosteleky 1998) (Myers-Pospelov 2003)

photons w? = k? £+ £(w?/Mp))



For extensive review see D. Mattingly, Living Rev. Rel. 8:5,2005.
SL Class. Quant Grav 2013
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LIV PHENOMENOLOGY
IN MATTER: A TOOOLKIT

Terrestrial tests:

L enning traps
ClocCk cotnparison EXperiments
Cavity experiments
Op1in polarized torsion balance
LNCUtral immcsons
S1OW atoms rE€CO1S
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MASsS DIMENSION 5, CPT oDD LIV QED

NOTE: CPT violation implies Lorentz violation but LV does not imply CPT violation.
“Anti-CPT” theorem (Greenberg 2002 ).
So one can catalogue LIV by behaviour under CPT
NOTE 2: The above statement is true only for local EFT (Chaichian et al. 2012)

Let’s consider all the Lorentz-violating dimension 5 CPT odd terms that
are quadratic in fields, gauge & rotation invariant, not reducible to lower
order terms (Myers-Pospelov, 2003).

¢ - 1 - 2
—oap ¥ Fma(u- 0)(unF™) + oo u"Pym(Cr + Gays)(u - 0)79
where F is the dual of F and &, (1.2 are dimensionless parameters.
goneThas electrons FE? = m? + p* + 3 /M ‘
For E»m this ansatz leads to the p n+(p°/Mp1) ne = 2(¢C1 £ 6)

following dispersion relations photons w2 = k% + & (k3 / Mpl)

electron helicities have independent LIV  photon helicities have opposite LIV
coefficients coefficients

Positive helicity Negative helicity
Electron N+ n-

Moreover electron and positron have exchanged and
opposite positive and negatives helicities LIV
coefficients (Jacobson,SL,Mattingly,Stecker. 2003). Positron A A

Note: RG studies show that the running of LV coefficients is only logarithmic: so if LIV is O(1) at Mp we
expect it to remain so at TeV scales (Bolokhov & Pospelov, hep-ph/0703291)
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MASS DIMENSION 5-6,
CPT EVEN LIV QED
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[Collins et al. PRLI3 (2004),

Lifshitz theories (anisotropic scaling): lengo, Russo, Serone (2009)]

AN OPEN PROBLEM: THE Uitz theories
UN-NATURALNESS OF SMALL LV INEFT
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[Collins et al. PRL93 (2004),
Lifshitz theories (anisotropic scaling): lengo, Russo, Serone (2009)]
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[Collins et al. PRLI3 (2004),
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[Collins et al. PRLI3 (2004),

AN OPEN PROBLEM: THE Lifshitz theories (anisotropic scaling): lengo, Russo, Serone (2009)]
UN-NATURALNESS OF SMALL LV IN EFT

Dim 3,4 operators are tightly constrained: O(10-%), O(10-?7). This is why much attention was
focused on dim 5 and higher operators (which are already Planck suppressed).
Howevet
if one postulates classically a dispersion relation with only naively (no anisotropic scaling) non-

renormalizable operators (i.e. terms N®™p?/Mp™% with n=23 and 1W=0O(1) in disp.rel.) then

Radiative (loop) corrections involve integration up to the natural cutotf Mp; will generate the
terms associated to renormalizable operators (NYpMp;,®p?) which are unacceptable
observationally if n2=0O(1).

This is THE main problem with UV Lorentz breaking!

Three main Ways out siss .
Gravitational confinement

Assume only gravity LIV with Myiv<<MpL, then
percolation into the (constrained) matter sector is
suppressed by smallness of coupling constant GIN.

- E.g. Horava gravity coupled to LI Standard Model: Pospelov
Custodial symmetry & Shang arXiv.org/1010.5249v2

One needs another scale other from Eryv
(which we have so far assumed O(Mp).
So far main candidate SUSY but needs ESUSY not too high.

E.g. gr-qc/0402028 (Myers-Pospelov) or hep-ph/0404271 (Nibblink-
Pospelov) or gr-qc/0504019 (Jain-Ralston),
SUSY QED:hep-ph/0505029 (Bolokhov, Nibblink-Pospelov). See also
Pujolas-Sibiryakov (arXiv:1109.4495) for SUSY Einstein-Aether gravity. 9
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E.g. Horava gravity coupled to LI Standard Model: Pospelov

Custodial symmetry & Shang arXiv.org/1010.5249v2
One needs another scale other from Eryv
(which we have so far assumed O(Mp). Improved RG flow at HE
So far main candidate SUSY but needs ESUSY not too high.

Models with strong coupling at high energies

E.g. gr-qc/0402028 (Myers-Pospelov) or hep-ph/0404271 (Nibblink- improving RG flow a la Nielsen
Pospelov) or gr-qc/0504019 (Jain-Ralston),
SUSY QED:hep-ph/0505029 (Bolokhov, Nibblink-Pospelov). See also
Pujolas-Sibiryakov (arXiv:1109.4495) for SUSY Einstein-Aether gravity. 9
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percolation into the (constrained) matter sector is
suppressed by smallness of coupling constant GIN.

E.g. Horava gravity coupled to LI Standard Model: Pospelov

Custodial symmetry & Shang arXiv.org/1010.5249v2
One needs another scale other from Ejpjv
(which we have so far assumed O(Mp). Improved RG flow at HE
So far main candidate SUSY but needs ESUSY not too high. Moo thisttong Conpling at high energies
E.g. gr-qc/0402028 (Myers-Pospelov) or hep-ph/0404271 (Nibblink- improving RG flow a la Nielsen
Pospelov) or gr-qc/0504019 (Jain-Ralston), : >
SUSY QED:hep-ph/0505029 (Bolokhov, Nibblink-Pospelov). See also But let’s see what we can say “order by

Pujolas-Sibiryakov (arXiv:1109.4495) for SUSY Einstein-Aether gravity. order” for the moment... 9



MAIN CONSTRAINT ROUTES FROM HE
ASTROPHYSICS

Time of Flight constraints.
Ey — B4
T
M
10 msec & dape Egev

= Avl =¢

Birefringence (only for CPT odd EM-LIV like dim 5 ops).
0(t) = [wy —w_(k)|t/2 = Ek*t/2M
AO = ¢ (k5 — ki) d/2M, (where d = distance source-detector)

Threshold reactions

Dcrit fOr Ve Dcrit fOr € Derit fOr p*

P = mv~1 eV pzme=0.5 MeV pﬁmp20938

~1 GeV ~10 TeV ~1 PeV
~100 TeV ~100 PeV ~3 EeV

Synchrotron
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CONSTRAINTS ON QED
DIM 5 CPT OpD QED .
EXTENSION B oIS

IR Optical

L:Maccione, SL, A.Celotti and J.G.Kirk: JCAP 0710 013 (2007)
L.Maccione, SL, A.Celotti and J.G.Kirk; P. Ubertini:Phys.Rev.D78:103003 (2008)
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The Crab nebula a supernova remnant (1054 A.D.) distance ~1.9 kpc from Earth.
Spectrum (and other SNR) well explained by synchrotron self-Compton (SSC)

, Electrons are accelerated to very high energies at pulsar: in LI QED ye=109+-1010

loa10(E/eV) High energy electrons emit synchrotron radiation

Synchrotron photons undergo inverse Compton with the high energy electrons

Synchrotron Inverse Compton

Currently the best two test come from the measurement of the spectrum and polarization of
Crab synchrotron emission.
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loa10(E/eV) High energy electrons emit synchrotron radiation
Synchrotron photons undergo inverse Compton with the high energy electrons

Synchrotron Inverse Compton

Currently the best two test come from the measurement of the spectrum and polarization of
Crab synchrotron emission.

The synchrotron spectrum is strongly affected by LIV: maximum gamma

factor for subliminal leptons and vacuum Cherekov limit for superluming

ones (there are both electrons and positrons and they have opposite n)-
Spectrum very well know via EGRET, now AGILE+FERMI
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The Crab nebula a supernova remnant (1054 A.D.) distance ~1.9 kpc from Earth.
Spectrum (and other SNR) well explained by synchrotron self-Compton (SSC)
Electrons are accelerated to very high energies at pulsar: in LI QED ye=109+-1010
High energy electrons emit synchrotron radiation
Synchrotron photons undergo inverse Compton with the high energy electrons

loa10(E/eV)

Synchrotron Inverse Compton

Currently the best two test come from the measurement of the spectrum and polarization of
Crab synchrotron emission.

The synchrotron spectrum is strongly affected by LIV: maximum gamma
factor for subliminal leptons and vacuum Cherekov limit for superiuminal
ones (there are both electrons and positrons and they have opposite n)-
Spectrum very well know via EGRET, now AGILE+FERMI

The polarization of the synchrotron spectrum is strongly affected by LIV:
there is a rotation of the angle of linear polarization with different rates at
different energies. Strong, LIV induced, depolarization effect.

A = ¢ (k5 — ki) d/2M, (where d = distance source-detector)

Polarization recently accurately measured by INTEGRAL mission: 40+3%
linear polarization in the 100 keV - 1 MeV band + angle 6obs= (123+1.5).

from the North
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The Greisen-Zatsepin-Kuzmin

0,0,0,0,.0_.0,.0,0,.0_.0.0_.0_.0_.0_.0,0,.0_.0_.0_0_.0_0_0_0_0_

In LI'theory UFE gamma rays are atténuated mainly by
pair production. yyo->€“€ onto LIVIb and URb (Universal
L’C‘.L'J.E/':t'ld‘lﬁ'l””lll'!i 1eading 1o a Iine '”5‘!"7”‘] ,-ilaor:w
photon fraction < 17 at 1019 eV and < 107 at 1020 eV.
Fresent limits on photon fraction- .97, 9.1 7, 5170, 990 /0
(9970 LL) at 10, 20, 40U, 10U EevVirom AUGER
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C O N STRAI NTS o N D l M 5"‘6 C PT Maccione, SL, arXiv:0805.2548. JCAP
EVEN LV QED

In this case we need ultra high energies:
Pcrit for e ~100 PeV

Cosmic Rays Photo pion production: TR Db biR Ry,
The Greisen-Zatsepin-Kuzmin effect

GZK photons are pair produced by decay of 1o produced in GZK process

0
The Greisen-Zatsepin-Kuzmin PR e N sasatetaserinetecesty

effect and secondary production Tt MV, — eV, VU, Ve

In LI theory UHE gamma rays are attenuated mainly by
pair production: yyo->e*e: onto CMB and URB (Universal
radio Background) leading to a theoretically expected
photon fraction < 1% at 1019 eV and < 10% at 1020 eV.
Present limits on photon fraction: 2.0%, 5.1%, 31%, 36%
(95% CL) at 10, 20, 40, 100 EeV from AUGER

LIV strongly affects the threshold of this process: lower
and also upper thresholds.
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In this case we need ultra high energies:
Pcrit for e ~100 PeV

Cosmic Rays Photo pion production: TR T ~4-10'° eV
The Greisen-Zatsepin-Kuzmin effect

GZK photons are pair produced by decay of 1o produced in GZK process

0
The Greisen-Zatsepin-Kuzmin SR Ry

effect and secondary production Tt Uy, — eV, Ve

In LI theory UHE gamma rays are attenuated mainly by
pair production: yyo->e*e: onto CMB and URB (Universal
radio Background) leading to a theoretically expected
photon fraction < 1% at 1019 eV and < 10% at 1020 eV.
Present limits on photon fraction: 2.0%, 5.1%, 31%, 36%
(95% CL) at 10, 20, 40, 100 EeV from AUGER

LIV strongly affects the threshold of this process: lower
and also upper thresholds.
If kup < 10°° eV then photon fraction in UHECR much
larger than present upper limits
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In this case we need ultra high energies:
Pcrit for e ~100 PeV

Cosmic Rays Photo pion production: TR Db biR Ry,
The Greisen-Zatsepin-Kuzmin effect

GZK photons are pair produced by decay of 1o produced in GZK process

0
The Greisen-Zatsepin-Kuzmin SR TR Y

effect and secondary production Tt MV, — eV, VU, Ve

In LI theory UHE gamma rays are attenuated mainly by
pair production: yyo->e*e: onto CMB and URB (Universal
radio Background) leading to a theoretically expected
photon fraction < 1% at 1019 eV and < 10% at 1020 eV.
Present limits on photon fraction: 2.0%, 5.1%, 31%, 36%
(95% CL) at 10, 20, 40, 100 EeV from AUGER

LIV strongly affects the threshold of this process: lower
and also upper thresholds.
If kup < 10°° eV then photon fraction in UHECR much
larger than present upper limits
LIV also introduces competitive processes: y-decay
If photons above 10'° eV are detected then y-decay
threshold > 10'° eV




BEYOND QED ...

Theoretical reconstruction of Ultra High Energy
Cosmic Rays spectrum in a EFT with dim 6
operators and confrontation with data

» allowed by different UHECR

~107° <, £10°°
~10% < n, <1071 (n, > 0)

data. The\ orrespond respec tnel\ to an agreement w 1th data within 20 1111 30 CL.

< 10~© (n, <0). Maccione , Taylor, Mattingly, ,SL: JCAP
0904 (2009) 022

Constraints on Flavour-Dependent LIV
from Neutrino Oscillations: “LIV must be flavour blind”

Neutrino flavor oscillations yield constraints on LIV differences within the neutrino sector. Neutrino oscillations
depend on the differences in E-p between different neutrino eigenstates.
In standard neutrino oscillations, this difference is governed by the squared mass differences between the energy
eigenstates. With LV oscillations are governed by the differences in the effective mass squared,

;000 2 ST n—2
Ne=m: +&p" /M,
The transition probability between two flavors I,J is then ruled by the factor

SN2 = Am2. +p? g it where now E LIV:@“- 2583 n_2—§- 2Les e
¢ <9 P C . . C 0, - Mz g Mj

17 (]

The best constraint to date comes from survival of atmospheric muon
neutrinos observed by the former IceCube detector AMANDA-II in the energy
range 100 GeV + 10 TeV; and reads (Ac/c),, ., < 2.8 x 10727 at 90% CL.
Given that IceCube does not distinguish neutrinos from antineutrinos, the
same constraint applies to the corresponding antiparticles. 13
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See also constraints from pion decay
Hep-ph/1109.6667, 1206.0713
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Used to “disprove” OPERA claim of superluminal neutrino 14



A SMALL COMMENT ABOUT COHEN-GLASHOW
DISPROOF OF OPERA (FLAWED) CLAIM

Liberati, Maccione, Mattingly, JCAP (2012)

Cohen and Glashow used the fact that superluminal neutrinos should emit electron-
positron pairs to argue that the OPERA results were not even self-consistent

Here E is the energy on a neutrino starting with energy Eo after propagation
over the distance L and Eref is the energy at which we normalize the
parameter &,

The “termination” energy Er corresponds to the energy that a neutrino
would approach after sufficient propagation
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positron pairs to argue that the OPERA results were not even self-consistent

dN/dE (a.u.)
2

dN/dE (a.u.)
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15 20 25 30 15

E (GeV)

n=2 Exw~140 MeV, E1~12.5 GeV n=3 Exu~1.5 GeV, Er~15 GeV

FIG. 1. Neutrino and pair spectra for propagation over a baseline of 730 km. In red we show the propagated neutrino spectrum,
in blue the produced electron/positron spectrum. The left-hand panel refers to the case n = 2, while the right-hand panel to

the case n = 3.
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The argument was formally correct but did not worry about adjusting for the finite size of the baseline: a finite baseline can be of
the same order as the energy loss length of neutrinos undergoing pair production.
This allows for some neutrinos to undergo only one or a few Cherenkov emissions within their time of flight. Therefore the most
energetic neutrinos of the injection beam can still reach the end of the baseline with an energy larger than ET.
It is then necessary, in order to cast a robust constraint, to run a full Monte Carlo simulation of the propagation of neutrinos aimed
at computing the neutrino spectrum on arrival in the presence of this energy loss process. 19




HE NEUTRINOS CUT-OFF FROM LIV?
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FIG. 1: Separately calculated n = 2 neutrino spectra with CPT Odd to mepyile ] O( / M)

the VPE case shown in blue and the neutrino splitting case

shown in green. The black spectrum takes account of all three FIG. 5: Calculated n = 1 neutrino spectra assuming 100%
processes (redshifting, splitting, and VPE) occurring simulta- (black), 50% (blue) and 0% (red) initial superluminal neutri-
neously. The rates for all cases are fixed by setting the rest nos (antineutrinos). The neutrino spectra are normalized to
frame threshold energy for VPE at 10 PeV. The neutrino the IceCube data [6].

spectra are normalized to the IceCube data both with (gray)

and without (black) an estimated flux of prompt atmospheric

neutrinos subtracted. [6].
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TESTING LORENTZ VIOLATIONS:
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Table 2. Summary of typical strengths of the available constrains on the SME at
different n orders for rotational invariant, neutrino flavour independent LIV operators.
GRB=gamma rays burst, CR=cosmic rays. ¢ From neutrino oscillations we have
constraints on the difference of LIV coefficients of different flavors up to O(10728) on
dim 4, O(10~%) and expected up to O(1071%) on dim 5 (ICE3), expected up to O(10~%)
on dim 6 op. * Expected constraint from future experiments.
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It there Is Lorentz violation, and It Is described by the same modified dispersion

Should we conclude that we have deviations
from Special Relativity enough?
Mission Accomplished?
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CAVEAT:. A POTENTIAL PROBLEM WITH
THE UHECR DATA?

o

ege0030000000309

JJJ IR Jg
I

o JJJJJJJJggngJJJ 0g0e0e0s

egeS0000000 0gege 2333

o266 0262602020 02062026200 P
J ¢ 33339333333 j jajgg 3 jojoJJJJJJJJJJijJjJJJQ)

J

J
o

059
J)JJ
)

3 )3 3 3333333 J 3J3JJ oo Seses 33333 egege00se JJJJJ 3
J °%% JJJJjJ j Ja JJajaJJJ J JJJJJ 3JJJ JJJJ JJJJJ) J)J)J 2
JJJJJJJJJ J J 020 J J Jo JJJJJJ J J J)J JJJJ 0g000
J
J J )
J
059
) )
J
)
¢ ( o}
020%6°%
J J .0
J
)
)J) 000 )J 0000 J 0s0 3
e0000006000000000000 3 3=
)JJﬂj)))JJ)))J))) 20 o
@0 . 0_0_0_0_

0o 2> ))J ))ﬁ
oo S0 2
<)
)

0
4

J 4 A

®
®
D

)



CAVEAT. A POTENTIAL PROBLEM WITH
THE UHECR DATA?

With increased statistics the composition of UHECR beyond 10"° eV seems more and more
dominated by iron ions rather than protons at AUGER. But Telescope Array (TA) in Utah is instead
Ok with purely proton composition. Are we really seeing the GZK?

With improved statistic the correlated AUGER UHECR-AGN events have decreased from 70% to
40%: large deflections? i.e. heavy (high Z) ions?

Also no evidence at the TA for AGN correlation. But some hint of correlation with LLS for E>57 EeV

lons do photodisintegration rather than the GZK reaction, this may generate much less protons
which are able to create pions via GZK and hence UHE photons.

Shaky n=4 constraints? See e.g. arXiv:1408.5213 H OWGVGF Sete®

Astro-ph [HE]:1007.1306;, D..Hooper, A.-Taylor, S.Sarkar
They find the flux-of: UHE-photons is just suppressed by one order of magnitude.
LIV effects would increase the flux by about four orders...perhaps we are safe?

Astro-ph [HE]:1101.2903, A. Saveliev, L. Maccione, G. Sigl

and vacuum Cherenkov the get the following tentative constraints

n= generic LIV ) E, ..=1020¢eV
coefficient of 7x10°5<n<1x104

dim 6 opsS fOI‘ — 9 % 10—3 < n < 3 % 10—2
single nucleon

Assuming UHECR are heavy nucley and they are not loosing energy by LV spontaneous decay

18


http://arxiv.org/pdf/1007.1306

BEYOND DISPERSION, DISSIPATIVE EFFECTS
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CONSTRAINTS ON DISSIPATION

Let’s then take the lowest order and rescale quantities using the Planck scale as the
natural scale of the new physics and so define a dimensionless coefficient o=(4vMpi)/3c

The energy loss rate 'can be computed a la Breit- ngner -

For an ultra-relativistic particle with momentum k travellng over a long distance D, a constraint is
obtained by requiring its lifetime tto be Iarger than the propagatlon time D/c, that is T>D/c or ch/I'>D.

Let us consider the observed 80 TeV photons from the Crab nebula, DCrab =1.9 kpc. We get

\\J \\./ \\J \\J D ‘J )\J D )J D Sl - \J -y \/ \J » )\/ ) il il sl

‘ Similar con5|derat|ons Ieads to
Electfon/positron c‘< 10 ces (From Crab and 1 pc traveled)
Neutrinos o< 10'27 (detection of a bunch of extraterrestrial neutrinos with energies between 30 and 250 TeV by Ice-Cube)
Gravitational waves could'in principle provide constraints in case of detection. Unfortunately, current experiments are

sensitive to waves which are far too low energy (below 1 Hz) for providing meaningful constraints.
Next order would be

Noticeably one cannot get constraints better than O(1). But if indeed spacetime would behave like a superfluid

phase of fundamental constituents this would be the first non-zero terms. Worth keep looking... 9



UV LORENTZ BREAKING GRAVITY
WITH A PREFERRED FOLlATlON HORAVA GRAV]TY
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[atd. 1.'.¢ denioterarcollection|o i thiand 6th ordet ,'.r.wcum respecuvely and
Vigisithe scale that Ssuppresses these operators.
cd (L) LLorentziviolations are€ controlied by threc dimensionless parameters that take the
ka.w A=l c=1in—UanGencrallRelatvity (GR)1iy coimncides with Binstein-Aether gravity in the
Iimit o1 hypersuriaceorthogonal ;u:xd.!w.', Constrained but not ruled out.

Unfortunately Ly and L contain a very large number o1 operators (~10%) and so have been proposed
several w@w-.v:w.-a to the theory to limit them. In particular
jectability; IN=IN(t) [ Detailed balance

".”J'a:w'.uwﬂ.‘ébm ‘M'"'luh% constraints, we shall not deal with them here




CONSTRAINTS ON HORAVA-LIFSHITZ GRAVITY

How much can be M*? It iIs iIndeed bounded from below and above

M. < M < 10026GeN Mops &~ few meV  (from sub mm tests)

Due to the reduced symmetry with respect toGR, the theory propagates an extra scalat'mode. If -one chooses to
restore diffeomorphism invariance; then this'mode manifests as;a foliation-defining scalar.
Blas,Pujolas,Sibiryakov,
Phys. Lett. B 688, 350 (2010).
The condition M*<10'® GeV
is a consequence of the need to protect perturbative renormalizability by assuring that the mass scale of the Horava
scalar mode Msc>M* (ie. strong coupling only when UV terms become non negligible)
Plus Solar System constraints on L that generically imply Msc<10'® GeV.
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restore diffeomorphism invariance; then this'mode manifests as;a foliation-defining scalar.

Blas,Pujolas,Sibiryakov,
Phys. Lett. B 688, 350 (2010).

The condition M*<10'® GeV
is a consequence of the need to protect perturbative renormalizability by assuring that the mass scale of the Horava
scalar mode Msc>M* (ie. strong coupling only when UV terms become non negligible)
Plus Solar System constraints on L that generically imply Msc<10'® GeV.

However we have already seen:that' LIV.cannot be confined to gravity!

Higher order operators will always induce lower order ones by radiative corrections!

The symmetries of the LIV operators in Horava-Lifshitz action naturally leads to
the expectation for matter MDR
(we assume no LIV at three level in matter and that CPT, P even nature of LIV in
gravity sector 1s maintained in the LIV terms induced in matter)

Ei=mi+pi+n & :O( % )
My My

Using time delay from GRB one can infer Mw>10'" GeV. Can we improve this without using UHECR? 22
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4 6
v. =5 2 2 | p | p "
i i nMI%V l O(Mffv) . So is Mpuv~M* or
Miv>M* ?
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SYNCHROTRON RADIATION CONSTRAINT FOR
HORAVA-LIFSHITZ GRAVITY

Sk, Maccione, Sotiriou. Phys.Rev.Lett. 109 (2012) 151602

Crab Nebula spectrum for the LI case (blue, solid curve), for the LV
case n=4, with My = 10> GeV and >0 (red, dashed curve), and for
the case with same parameters but 1N1<0 (magenta, dot-dashed curve).
While, as discussed, the N1<0 case would lead to premature fall off of

the synchrotron spectrum, we see here that for >0 there is a sudden
surge of emission at high frequencies, followed by a dramatic drop
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>
S
8’_
-

M. = 10" GeV (1> 0) 2 e <24,
o : : L due to the onset of vacuum Cerenkov emission at the characteristic
threshold energy Em=[mMiy]/2/nV4.

e My =10 GeV (<) et

Log10(v/eV)

Dependence of the reduced y> on MLV. 507 CL oxclusion
By considering the offset from the minimum of the reduced 659% CL oxclusion
%> we set exclusion limits at 90%, 95% and 99% Confidence I .
o CL exclusion
Level (CL).

Mass scales Miv=2 X 1010 GeV are excluded at 95%
CL. The window for Miy~M?* is closed.

Therefore a mechanism, suppressing the
petcolation of LV in the matter sector, must be
present in HLL. models, and such mechanism
should not only protect lower order operatots.




WHAT NEXT?

Tests of Lorentz Violations
We need better data from UHECR and Cosmogenic Neutrinos to'constraint O(k?)
The gravity sector needs more exploration: apparently consistent models'need sub-Planck LIV scale,
can we test it directly or indirectly?

Other mesoscopic physics without Lorentz violation?
One might try to relax other principles rather than the relativity one... but nothing seems to work...

Nonetheless we do have concrete QG models of emergent gravity like Causal Sets which predict
exact Lorentz invariance below the Planck scale in spite of discreteness. The key point is that
spacetime comes from a statistical averaging over many microscopic configurations. This produces
Lorentz invariance physics which however has non-locality (EFT with infinite series of higher order
derivatives). Also Deformed Special Relativity attempt led to Non-Locality (Relative Locality).

3 - - p See e.g.
Conjecture: Discreetness + Lorentz Invariance = Non-Locality Bl een i Benincasa and 8L
arXiv:1411.6513
Is this the new phenomenology we have to seek for? 31

More Soon...
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Break Precausality = Hell breaks loose, better not!
Break Principle of relativity = Preferred frame, Modified dispersion relations

Break kinematical Isotropy = Finsler geometries.
E.g. Very Special Relativity (Glashow, Gibbons et al.) but reduced symmetry group... alteady very
constrained.
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underlying assumption of euclidean space locally used to start posing von Ingnatovski theorem.
Can this lead to Finsler again? True geometry on the phase space?
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