

ChPT tests at the NA48/2 and NA62 experiments at CERN

M.Lenti INFN Sezione di Firenze On behalf of the NA48/2 and NA62 Collaborations

DISCRETE 2014, London December 2-6, 2014

Outlook

- NA48/2 NA62: the CERN Kaon facility
- $K^{\pm} \rightarrow \pi^{\pm} \gamma \gamma$: theory
- $K^{\pm} \rightarrow \pi^{\pm} \gamma \gamma$: data analysis
- $K^{\pm} \rightarrow \pi^{\pm} \gamma \gamma$: BR and \hat{c} parameter (NA48/2–NA62)
- Conclusions

M.Lenti

'*A*.5

CERN

The NA48/2 and NA62(R_K) beam line

2.5×10⁷ K/spill K decays in the vacuum tank: 22% (18%) Beam size: 4x4 mm², 10x10 μrad

M.Lenti

NA48-NA62 detectors

 $\mathcal{O}(p^4)$: cusp at $\pi^+\pi^-$ threshold $m_{\gamma\gamma}=2m_{\pi\pm}$ (z \approx 0.32) [Ecker, Pich, de Rafael NPB303(1988) 665] Rate and Spectrum depend on

ChPT description

 $\mathcal{O}(p^6)$: Unitarity corrections Increase BR at low z Non-zero rate at $m_{\gamma\gamma}=0$ [D'Ambrosio, Portoles PLB386(1996) 403]

NA

 $\frac{\text{BNL E787}}{\text{BR}}: 31 \text{ candidates with 5 bkg events}$ BR = (1.10±0.32)×10⁻⁶ [PRL79 (1997) 4079] O(p⁶) full kinematic range M.Lenti

Selection

Selection:

- One track compatible with a π^{\pm}
- CDA<3.5 cm w.r.t. beam axis (Vertex Definition)</p>
- ➤ 10(8)<p_π<40(50) GeV/c [NA48/2 (NA62)]</p>
- $> E_{\pi}/p_{\pi} < 0.85$
- Two clusters in the EM calorimeter
- \succ E_y>3 GeV
- > Distance γ - γ > 20 cm at the EM calorimeter
- > Distance γ - π [±] > 25 cm at the EM calorimeter
- $\gamma \gamma$ invariant mass (z = (m_{$\gamma\gamma$}/m_K)²), (m_{$\pi0$}/m_K)²=0.075
- > z>0.2 (signal candidates $K^{\pm} \rightarrow \pi^{\pm} \gamma \gamma$)
- > 0.064<z<0.086 (norm.candidate $K^{\pm} \rightarrow \pi^{\pm} \pi^{0}$)

$\langle \rangle$	
I CERN M V	
$\Lambda = \Lambda I$	

Events / (5 MeV/c²) 8 0 0

60

40

20

0

 $K_{3\pi}$ background

 $K_{\pi\gamma\gamma}$ signal

M.Lenti

4.1±0.4

134±12

 $K_{3\pi}$ background

 ${\tt K}_{\pi\gamma\gamma}$ signal

2.1±0.3

215±15

z parameter distribution

K⁺→ $\pi^+\pi^0$ peak is outside the plot (m_{yy}=135 MeV or z=0.075) Signal region: z>0.2 or m_{yy}> 220 MeV/c² (blue arrows) Data support the ChPT prediction of a cusp at the m_{yy}=2m_π threshold

 $z=(m_{\gamma\gamma}/m_{K})^{2}$

M.Lenti

Not able to discriminate $O(p^4)$ from $O(p^6)$ 10

Fully correlated systematic errors

c =	O(p ⁴)	O(p ⁶)
NA48/2 (2004)	$1.37{\pm}0.33_{stat}{\pm}0.14_{syst}$	$1.41 \pm 0.38_{stat} \pm 0.11_{syst}$
NA62 (2007)	$1.93{\pm}0.26_{stat}{\pm}0.08_{syst}$	2.10±0.28 _{stat} ±0.18 _{syst}
Combined	1.72±0.20 _{stat} ±0.06 _{syst} = 1.72±0.21	1.86±0.23 _{stat} ±0.11 _{syst} = 1.86±0.25

 $K^{\pm} \rightarrow \pi^{\pm} \gamma \gamma$

Using the fitted value of \hat{c} Using the $\mathcal{O}(p^6)$ dependence of the BR on \hat{c} A Model Dependent BR can be calculated

$$BR_{ChPT} = (1.003 \pm 0.056) \times 10^{-6}$$

Model Dependent BR: full kinematic range

 $K^{\pm} \rightarrow \pi^{\pm} \pi 0$

downscaled trigger D≈20

NA48/2 (2004): special run (3 days)

Normalization Channel

 $\pi^{\pm}\pi^{0}$ as normalization channel Calculate BR in bins of z

Final Results with 349 events (after background subtraction) Model Independent BR

 $BR_{MI} (z>0.2) =$ (0.965±0.061_{stat}±0.014_{syst})×10⁻⁶

 $z=(m_{\gamma\gamma}/m_{K})^{2}$

Conclusions

- Improved test of ChPT using $K^{\pm} \rightarrow \pi^{\pm} \gamma \gamma$
- Cusp behaviour supported by data
- Published papers
- PLB 730 (2013) 141 (NA48/2)
- ➢ PLB 732 (2014) 65 (NA62)

c =	O(p ⁴)	O(p ⁶)	
Combined	1.72±0.21	1.8	36±0.25	
BR _{ChPT} = (1.00	3±0.056)×10 ⁻⁶	Model D	ependent, full kinematio	c range
BR _{MI} (z>0.2) = (0.965±0.063)×10 ⁻⁶			Model Independent	

