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• the Bessel equation can be cast, by means of suitable transforma-

tions, into a system of two parametric oscillator equations, one for a

damped oscillator, the other one for an amplified one.

• the group contraction mechanism

is involved in such a relation of the Bessel equation with the dissipa-

tion/amplification system,

it introduces the breakdown of the loop-antiloop symmetry around a

preferred axis,

• this can be read off, in a given re-parametrization, as the breakdown

of time-reversal symmetry,

• relation between infinite dimensional loop-algebras, such as the

Virasoro-like algebra, and the Euclidean algebras e(2) and e(3).
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motivations:

• Special functions!...

Wigner∗: ”the role which is common to all special functions is to be

matrix elements of representations of the simplest Lie groups”.

• growing interest in the couple of damped/amplified oscillators

- dissipation at classical and quantum level

- inflationary models of the Universe

- thermal field theories

- Chern-Simons gauge theory

- Bloch electrons in metals

- the dissipative quantum model of brain

- fractal self-similarity

∗J.D. Talman, Special Functions. A group theoretical approach, (Benjamin, New
York, 1968)



• Preliminaries

Bessel functions describe solutions with different Pontryagin number

in the punctured plane R2/(0),

the elements of the homotopy group, Πn, represented by differential

operators acting on analytic functions:

Πn ≡
∂n

∂zn
, n ∈ N , (1)

with Πn · Πm = Πn+m,

n is the loop number around the hole.



Two different kinds of behaviors:

∂n

z∂zn
ϕm(z) = (−)m ϕm+n(z) , ϕm(z) =

Jm(z)

zm
(2)

and

∂n

z∂zn
ψm(z) = ψm−n(z) , ψm(z) = zmJm(z) , (3)

on ϕ, Πn acts in counter-clockwise way, on ψ in clockwise way.

Jm(z) is the planar Bessel function (Bessel function of integer order).

Eqs.(2) and (3) are the differential formulae for the planar Bessel

functions; analogous formulae are true for the functions

ϕm(z) = jm(z)z−m , ψm(z) = z(m+1)jm(z) , (4)

where the jm are the spherical Bessel functions.



We will relate below to these topological properties of the ϕ and ψ

functions (cf. the “x3- and x4-reversal symmetry breakdown” dis-

cussed in the following).



To start, consider the spherical Bessel equation of order n (also called

of fractional order):

η2 Jn;ηη + 2η Jn;η + [η2 − n(n+ 1)] Jn = 0 . (5)

n is an integer or zero number, (n = 0,±1,±2, ...) and “; η”. “; ηη”

denote first and second order derivatives, respectively.

the solutions of Eq. (5), so called spherical Bessel functions,

- constitute a complete set of (parametric) decaying functions,

- can be expressed in terms of the first and second kind Bessel func-

tions and their linear combinations (the Hankel functions).

Eq. (5) is invariant under the transformation n → −(n+ 1).

Jn and J−(n+1) are both solutions of the same equation:

are degenerate solutions corresponding to the same eigenvalue n(n+1)

of the operator η2 d2

dη2
+ 2η d

dη + η2.



in Eq.(5) change of variables : η → η ≡ ǫx with x ≡ e−t/α

ǫ and α: arbitrary parameters

t may be thought to denote, e.g., the time variable.

Put wn,l ≡ Jn · (x)−l, Eq.(5) then becomes:

..
wn,l −

2l+ 1

α

.
wn,l +

[

l(l+ 1) − n(n+ 1)

α2
+ (

ǫ

α
)2 e−2t/α

]

wn,l = 0, (6)

.
w denotes derivative of w with respect to time t.

the degeneracy between Jn and J−(n+1) is removed by putting l(l+1) =

n(n+ 1),

thus,a partition is induced between the two solution sectors {Jn} and

{J−(n+1)}: two different sets of equations are obtained, one for wn,l,

the other one for w−(n+1),l, respectively.



The set for wn,l is

..
wn,−(n+1) +

2n+ 1

α

.
wn,−(n+1) +[(

ǫ

α
)2 e−2t/α] wn,−(n+1) = 0,

..
wn,n −

2n+ 1

α

.
wn,n +[(

ǫ

α
)2 e−2t/α]wn,n = 0 ,

for l = −(n+ 1) and for l = n, respectively.

Similarly, two equations for w−(n+1),l are obtained:

..
w−(n+1),−(n+1) +

2n+ 1

α

.
w−(n+1),−(n+1) +[(

ǫ

α
)2e−2t/α]w−(n+1),−(n+1) = 0,

..
w−(n+1),n −

2n+ 1

α

.
w−(n+1),n +[(

ǫ

α
)2e−2t/α]w−(n+1),n = 0,

for l = −(n+ 1) and l = n, respectively.

Inspection of these equations shows that the symmetry under the

transformation n→ −(n+ 1) has been broken.



We choose the arbitrary parameters α and ǫ to be n-dependent:

α→ αn and ǫ→ ǫn , which means that η → ηn ≡ ǫnxn with xn ≡ e−t/αn.

so that 2n+1
αn

≡ L and ǫn
αn

≡ ω0 do not depend on n (and on time).

By setting un ≡ wn,−(n+1), and vn ≡ wn,n, the equations for wn,l are rec-

ognized to be nothing else than the equations for the damped/amplified

parametric oscillators:
..
un +L

.
un +ωn

2(t)un = 0,
..
vn −L

.
vn +ωn

2(t)vn = 0, (7)

with frequency

ωn(t) = ω0 e
− Lt

2n+1. (8)

Eqs. (7) are sometimes called Hill-type equations.

Remarkably, the first of Eqs. (7), with n = 1 is commonly used in

expanding geometry (inflationary) models of the Universe. In that

case L denotes the Hubble constant.



• ωn(t) → ω0, which is time-independent, for n→ ∞:

the frequency time-dependence is thus ”graded” by the order n of

the original Bessel equation.

• L and ω0, which may be arbitrarily chosen, are characteristic param-

eters of the oscillator system.

Note that the choice of keeping L independent of n implies that

α−(n+1) = −αn.

Then the transformation n→ −(n+1) leads to solutions (corresponding

to J−(n+1)) which have frequencies exponentially increasing in time

(cf. Eq. (8)).

These solutions can be respectively obtained from the ones of Eqs.

(7) by time-reversal t → −t and exchanging u with v (”charge conju-

gation”).



In the large n limit (ωn → ω0) un and vn are each the time-reversed of

the other one and in that limit the two sectors {Ji}, i = n,−(n+1) are

mapped one into the other one.

• We thus recognize the core of the relation between the spherical

Bessel equation and the dissipation/amplification phenomenon:

breakdown of the n→ −(n+1) symmetry ⇔ breakdown of time-reversal

symmetry (the emergence of the arrow of time) in the manifold of the

solutions (the spherical Bessel functions) {Ji}, i = n,−(n+ 1).

Similar results can be obtained for the to the planar Bessel equation

of order n:

η2Jn;ηη + η Jn;η + [η2 − n2] Jn = 0, (9)

± values of n ⇔ positive/negative rotations (loop/antiloop) around

the x3 axis,

i.e., they correspond to different orientations of the x3 axis.

The related solutions are, therefore, different.



• well known: the representations of the Euclidean groups E(2) and

E(3) can be constructed in terms of the planar and spherical Bessel

functions, respectively

The root of the above symmetry breakdown features is in the struc-

ture of the E(2) and E(3) group (the Euclidean group in 3 and 4

dimensions, respectively):

• The (simpler) case of E(2) and of the planar Bessel equations.

E(2) is the group of the T(v)R(θ) transformations,

the group contraction of SO(3),

T(v): the translation in the plane by the vector v (≡ (a, b)).

R(θ): the rotation of the plane around the origin by the angle θ.



The associated Lie algebra: two translation generators Pa, Pb and of

the rotation generator M:

[Pa, Pb] = 0, [Pa,M ] = −Pb, [Pb,M ] = Pa. (10)

The invariant operator of E(2) is P2 = P2
a + P2

b = P+ P−=P− P+, with

P± ≡ Pa ± iPb, which has non-positive eigenvalue, −p2.

In order to study the P2 eigenvalue equation, consider the 3D-Laplace

equation ∇2ψ = 0,

which refers to an isotropic and homogeneous 3D-space.

Cylindrical coordinates (instead of the spherical or rectangular ones)

→ breakdown of the symmetry of 3D-spatial rotation group SO(3):

x3 is differently treated with respect to the two remaining coordinates

and this singles out a privileged axis for rotations.



Search for solutions of the 2D-Helmholtz equation of the type:

ψ(r, θ, x3) = ϕ(r, θ) · σ(x3),
∂2

∂x23
σ(x3) ≡ p2σ(x3). (11)

for positive x3, the solution: σ = e−x3p

for negative x3 the solution: σ = ex3p

Let ϕ(r, θ) ≡ f(r)·einθ, we obtain f(r) = Jn(pr), being Jn(pr) the solution

of the planar Bessel equation of order n, with η = pr:

η2Jn;ηη + η Jn;η + [η2 − n2] Jn = 0, (12)

breakdown of the rotational symmetry of SO(3) → contraction

to E(2) → difference (breakdown of loop-antiloop symmetry) in

the double choice of the x3 axis orientation: the mirror index ±n of

the Bessel functions is associated to the couple of damped/amplified

harmonic oscillators. It is a time-mirror index.



Note

the SO(3) contraction to E(2) manifests itself in local observations.

However, in the local observation process the x3 axis orientation is

”locked”

→ loss of symmetry under n→ −n = breakdown of loop-antiloop

symmetry.

Specifying the direction of the x3 axis (choosing one of the two pos-

sible forms for σ) produces topologically inequivalent configurations.



• The case of E(3) and of the spherical Bessel equation:

similar analysis and similar results.

E(3), which is the group contraction of SO(4), has six generators Pi
(translations) and Mi (rotations), i = 1,2,3:

[Pi, Pj] = 0, [Mi,Mj] = ǫijkMk, [Pi,Mj] = ǫijkPk; (13)

The SO(3) subgroup generated by the M ′
is is left unchanged in the

contraction process. The algebra e(3) has two invariants, P2 = ΣP2
i

and ΣPi ·Mi.

Now, one may search for solutions of the type

ψ(x1, x2, x3, x4) = ϕ(r, θ, φ)·σ(x4), (r, θ, φ spherical coordinates, σ = e±x4p)

x4 may be considered to play the role of time t.

The resulting equation is solved by the function ϕ = Yn,m(θ, φ) · Jn(pr)

where Yn,m is the spherical harmonics and Jn is the solution of the

spherical Bessel equation.



Again, the breakdown of the symmetry under the transformation n→

−(n+ 1) is built in in the geometrical structure of the E(3) group:

such a symmetry breakdown is nothing but the breakdown of the x4
axis reversal symmetry (breakdown of the loop-antiloop symmetry),

i.e. of time-reversal symmetry when x4 plays the role of time variable.

Also in the present case, the SO(4) contraction to E(3) manifests itself

in local observations and the x4 axis orientation then gets ”locked”.



• The loop-antiloop symmetry breakdown suggests to us to investi-

gate the relation between the Euclidean groups and the loop algebras.

For the case of the Virasoro algebra, which plays a central role in the

conformal field theories, this goes as follows.

The Virasoro algebra L of central charge c ([c, T ] = 0 for all the T ’s):

[Tn, Tm] = (n−m)Tn+m +
c

12
(n3 − n)δn+m,0 , m, n ∈ Z . (14)

The Z2-grading: divide the Tn into an even set L0 ≡ {An, c} and an

odd set L1 ≡ {Bn}

An =
1

2

(

T2n +
c

8
δn,0

)

, Bn =
1

2
T2n+1 , (15)

so that L = L0
⊕

L1 and [L0, L0] ⊆ L0 , [L0, L1] ⊆ L1 , [L1, L1] ⊆ L0 .



Explicitly, the commutation relations of the graded generators:

[An, Am] = (n−m)An+m +
2c

12
(n3 − n)δn+m,0 , (16)

[Bn, Bm] = (n−m)An+m+1 +
2c

12
(n−

1

2
)(n+

1

2
)(n+

3

2
)δn+m+1,0 , (17)

[An, Bm] = (n−m−
1

2
)Bn+m . (18)

{An, c} is again a Virasoro algebra but with central charge 2c.

Consider then the Z2-graded contraction:

[An, Am] = (n−m)An+m +
2c

12
(n3 − n)δn+m,0 , (19)

[Bn, Bm] = 0 , (20)

[An, Bm] = (n−m−
1

2
)Bn+m . (21)



Remark 1: in the centerless case (c = 0), the A0 and A±1 generators
close the algebra isomorphic to so(3) ∼ su(2)

Remark 2: these generators and the operators B
−1

2
, B1

2
and B

−3
2

close

the e(3) isomorphic algebra.

This is shown by setting:

M+ ≡ A1 , M− ≡ A−1 , M3 ≡ iA0 ,

P+ ≡ B1
2
, P− ≡ B

−3
2
, P3 ≡ iB

−1
2
, (22)

where the Ms and Ps satisfy the e(3) commutation relations (13).

General extension of this result:
the algebra En ≡ {A0, A±n}

⊕

{B
−1

2
, B

±n−1
2
} reproduces the e(3) alge-

bra for each integer value of n, provided the following positions are
assumed:

M+ ≡ 1
nAn , M− ≡ 1

nA−n , M3 ≡ i
nA0 ,

P+ ≡ B
n−1

2
, P− ≡ B

−n−1
2
, P3 ≡ iB

−1
2
. (23)



As final remark we notice that the e(2)-algebra can be obtained as a

subalgebra of (23) by choosing A±n = 0, for non-zero values of n.

The conclusion is that the extension of the Virasoro algebra by means

of its Z2-grading with the subsequent step of the Z2-graded contrac-

tion appears as a n-graded hierarchy of Euclidean algebras.

This establish the relation between the couple of damped/amplified

parametric oscillators graded by n and the loop algebras here consid-

ered.



Summing up,

the relation between the Bessel equation and the dissipation/amplification

processes has been shown.

The breakdown of the n → −(n+1) (n → −n) symmetry of the spherical

(planar) Bessel equation may be represented as the breakdown of

time-reversal symmetry in the manifold of the solutions (the Bessel

functions).

In connection with the loop-antiloop symmetry of the Bessel equation,

a n-graded hierarchy of Euclidean algebras appears as the extension

of the Virasoro algebra.


