Symmetry Improved CJT Effective Potential

Apostolos Pilaftsis

School of Physics and Astronomy, University of Manchester, Manchester M13 9PL, United Kingdom

DISCRETE 2014 2-6 December 2014, King's College London, UK

Based on A.P. and D. Teresi, Nucl. Phys. B 874 (2013) 594 and arXiv:1412.nnnn

Motivation:

New Era of Precision QFT

- Improved Lattice Techniques
- Improved Solutions to Schwinger–Dyson Equations
- Geometric S-Matrix Approach in N = 4 SYM Theories

• Other Analytical Non-Perturbative Approaches?

÷.

Outline:

- The Standard Theory of Electroweak Symmetry Breaking: SM
- The CJT Effective Action and Field-Theoretic Problems
- Symmetry-Improved CJT Formalism
- $\overline{\mathrm{MS}}$ Renormalization in CJT
- Finite-Width Effects within Quantum Loops
- Symmetry-Improved Effective Higgs Potential in CJT
- Conclusions and Future Directions

DISCRETE 2014

• The Standard Theory of Electroweak Symmetry Breaking

Higgs Mechanism in SM: $SU(3)_{c} \otimes SU(2)_{L} \otimes U(1)_{Y} \rightarrow SU(3)_{c} \otimes U(1)_{em}$

[P. W. Higgs '64; F. Englert, R. Brout '64; G. S. Guralnik, C. R. Hagen, T. W. B. Kibble '64]

Higgs potential $V(\Phi)$

 $V(\Phi) = -m^2 \Phi^{\dagger} \Phi + \lambda (\Phi^{\dagger} \Phi)^2 .$ Ground state: $\sqrt{m^2} (0)$

$$\langle \Phi
angle \ = \ \sqrt{\frac{m^2}{2\lambda}} \ \left(\begin{array}{c} 0 \\ 1 \end{array}
ight)$$

carries weak charge, but no electric charge and colour.

After Spontaneous Symmetry Breaking:

 $\Rightarrow W^{\pm}$, Z bosons and matter feel the presence of $\langle \Phi \rangle$ and become massive, but not γ and g^a , e.g. $M_W = g_w \langle \Phi \rangle$

 \Rightarrow Quantum excitations of $\Phi = \langle \Phi \rangle + H \begin{pmatrix} 0 \\ 1 \end{pmatrix}$; *H* is the Higgs boson.

On the SM-like Higgs-Boson Discovery at the LHC:

Uncertainties of the SM Higgs potential at NNLO

[G. Degrassi et al, JHEP 1208 (2012) 098]

Higgs Potential versus Variations in Top Mass M_t by **0.1 MeV** [Analysis includes the Multi-Critical scenario: D.L. Bennett, H.B. Nielsen, IJMA9 (1994) 5155]

DISCRETE 2014

Symmetry Improved CJT Effective Potential

• The CJT Effective Action and Field-Theoretic Problems

[J.M. Cornwall, R. Jackiw, E. Tomboulis, PRD10 (1974) 2428]

Connected Generating Functional of 2PI Effective Action:

$$W[J,K] = -i \ln \int \mathcal{D}\phi^i \exp \left[i \left(S[\phi] + J_x^i \phi_x^i + \frac{1}{2} K_{xy}^{ij} \phi_x^i \phi_y^j \right) \right] ,$$

where $S[\phi] = \int_x \mathcal{L}[\phi]$ is the classical action of a $\mathbb{O}(N)$ theory.

Legendre transform of W[J, K] with respect to J and K:

$$\frac{\delta W[J,K]}{\delta J_x^i} \equiv \phi_x^i , \qquad \frac{\delta W[J,K]}{\delta K_{xy}^{ij}} = \frac{1}{2} \left(i \Delta_{xy}^{ij} + \phi_x^i \phi_y^j \right) ,$$

to get the 2PI effective action

$$\Gamma[\phi, \Delta] = W[J, K] - J_x^i \phi_x^i - \frac{1}{2} K_{xy}^{ij} \left(i \Delta_{xy}^{ij} + \phi_x^i \phi_y^j \right) .$$

The 2PI CJT Effective Action:

$$\Gamma[\phi, \Delta] = S[\phi] + \frac{i}{2} \operatorname{Tr} \ln \Delta^{-1} + \frac{i}{2} \operatorname{Tr} (\Delta^{0^{-1}} \Delta) - i \Gamma_{2\mathrm{PI}}^{(2)}[\phi, \Delta] ,$$

where $\Gamma_{2\mathrm{PI}}^{(2)}[\phi, \Delta] = \mathbf{Q} + \mathbf{A} +$

Equations of Motion:

•
$$\frac{\delta\Gamma[\phi,\Delta]}{\delta\phi} = 0$$

•
$$\frac{\delta\Gamma[\phi,\Delta]}{\delta\Delta} = 0 \Rightarrow \Delta^{-1} = \Delta^{0^{-1}} + \mathbf{O} + \mathbf{O}$$

$\mathcal{A}\mathit{rtist}$'s impression of the infinite HF-term!

DISCRETE 2014

Symmetry Improved CJT Effective Potential

- Field-Theoretic Problems in CJT
- Systematic formal resummation of high-order graphs:
 - Rigorous Derivation of Schwinger–Dyson Equations
 - Thermal Masses in the high-T Regime
 - Finite-Width Effects within Quantum Loops

[this talk]

• Non-Equilibrium QFT, through Kadanoff–Baym equations.

[For instance, P. Millington, AP, PRD88 (2013) 8, 085009; B.P.S. Dev, P. Millington, AP, D. Teresi, arXiv:1410.6434.]

- Field-Theoretic Problems in CJT
- Systematic formal resummation of high-order graphs:
 - Rigorous Derivation of Schwinger–Dyson Equations
 - Thermal Masses in the high-T Regime
 - Finite-Width Effects within Quantum Loops

[this talk]

• Non-Equilibrium QFT, through Kadanoff–Baym equations.

[For instance, P. Millington, AP, PRD88 (2013) 8, 085009; B.P.S. Dev, P. Millington, AP, D. Teresi, arXiv:1410.6434.]

BUT

- Truncations of CJT lead to residual violations of symmetries, e.g. global or local symmetries.
 - \rightarrow Erroneous First-Order Phase Transition in $\mathbb{O}(N)$ Theories
 - \rightarrow Goldstone Bosons become Massive
 - → Erroneous Thresholds for the Resummed Higgs-Boson Propagator.

→ • • •

Pertinent Literature to the Goldstone-Symmetry Problem

• G. Baym, G. Grinstein, Phys. Rev. D 15 (1977) 2897.

• G. Amelino-Camelia, Phys. Lett. B 407 (1997) 268.

- N. Petropoulos, J. Phys. G 25 (1999) 2225.
- Y. Nemoto, K. Naito, M. Oka, Eur. Phys. J. A 9 (2000) 245.
- J. T. Lenaghan, D. H. Rischke, J. Phys. G 26 (2000) 431.
- H. van Hees, J. Knoll, Phys. Rev. D 66 (2002) 025028.
- J. Baacke, S. Michalski, Phys. Rev. D 67 (2003) 085006.
- Y. Ivanov, F. Riek, H. van Hees, J. Knoll, Phys. Rev. D 72 (2005) 036008.
- E. Seel, S. Struber, F. Giacosa, D. H. Rischke, Phys. Rev. D 86 (2012) 125010.
- G. Markó, U. Reinosa, Z. Szép, Phys. Rev. D 87 (2013) 105001.

• Symmetry-Improved CJT Formalism

Equivalence between 1PI and 2PI Effective Actions to All Orders:

$$\Gamma^{1\mathrm{PI}}[\phi] \;=\; \Gamma[\phi\,,\,\Delta(\phi)]\,, \qquad ext{with} \quad rac{\delta\Gamma[\phi\,,\,\Delta(\phi)]}{\delta\Delta} \;=\; 0\;.$$

1PI Ward Identity (e.g. for $\mathbb{O}(2)$):

$$\frac{\delta\Gamma^{1\mathrm{PI}}[\phi]}{\delta\phi_x^i} T^a_{ij} \phi_x^j = 0 \implies v \int_x \frac{\delta^2\Gamma^{1\mathrm{PI}}[\phi]}{\delta G_y \,\delta G_x} = \frac{\delta\Gamma^{1\mathrm{PI}}[\phi]}{\delta H} \to 0.$$

Replace:

$$\frac{\delta^2 \Gamma^{1\mathrm{PI}}[\phi]}{\delta G_y \,\delta G_x} = \Delta_{xy}^{-1,G} \,,$$

to obtain the Symmetry-Improved Equations of Motion:

$$\frac{\delta \Gamma[v, \Delta]}{\delta \Delta_{H/G}} = 0,$$

$$v \Delta_G^{-1}(k = 0, v) = 0.$$

DISCRETE 2014

Symmetry Improved CJT Effective Potential

– O(2) Hartree–Fock Equations of Motion:

HF Approximation: $\Gamma_{\rm HF}^{(2)}[\Delta_H, \Delta_G] = \bigotimes_{\rm H}^{\rm H} + \bigotimes_{\rm G}^{\rm H} + \bigotimes_{\rm G}^{\rm G} + \bigotimes_{\rm G}^{\rm G}$

<u>Ansatz:</u> $\Delta_{H/G}^{-1}(k) = k^2 - M_{H/G}^2 + i\varepsilon$

Equations of Motion:

$$M_H^2 = 3\lambda v^2 - m^2 + (\delta\lambda_1^A + 2\delta\lambda_1^B)v^2 - \delta m_1^2 + (3\lambda + \delta\lambda_2^A + 2\delta\lambda_2^B) \int_k i\Delta_H(k) + (\lambda + \delta\lambda_2^A) \int_k i\Delta_G(k) ,$$

$$M_G^2 = \lambda v^2 - m^2 + \delta \lambda_1^A v^2 - \delta m_1^2 + (\lambda + \delta \lambda_2^A) \int_k i \Delta_H(k) + (3\lambda + \delta \lambda_2^A + 2\delta \lambda_2^B) \int_k i \Delta_G(k) ,$$

 $v M_G^2 = 0$.

– Second-Order Phase Transition in the HF Approximation

[AP, D. Teresi, NPB874 (2013) 594]

DISCRETE 2014

Symmetry Improved CJT Effective Potential

$\bullet\ \overline{\rm MS}$ Renormalization in CJT

Naive Renormalization:

$$\underbrace{\mathbf{O}}_{k} = \int_{k} i\Delta(k) \sim M^{2} \frac{1}{\epsilon}, \quad \text{Naive CT:} \quad \delta m^{2} \stackrel{?}{=} M^{2} \frac{1}{\epsilon}.$$
But, $M^{2} = M^{2}(T) \implies T$ emperature-dependent CT?!

• $\overline{\mathrm{MS}}$ Renormalization in CJT

Naive Renormalization:

$$O = \int_k i\Delta(k) \sim M^2 \frac{1}{\epsilon} , \qquad \text{Naive CT:} \quad \delta m^2 \stackrel{?}{=} M^2 \frac{1}{\epsilon} .$$

But, $M^2 = M^2(T) \implies T$ emperature-dependent CT?!

What has gone wrong?

[J.-P. Blaizot, E. lancu, U. Reinosa, NPA736 (2004) 149; J. Berges *et al*, AP320 (2005) 344]

Is there any systematic renormalization, e.g. in the $\overline{\mathrm{MS}}$ scheme?

[W.A. Bardeen, A. Buras, D. Duke, T. Muta, PRD18 (1978) 3998]

DISCRETE 2014

Symmetry Improved CJT Effective Potential

– $\overline{\mathrm{MS}}$ Renormalization in the CJT Formalism

Procedure:

- Isolate UV infinities in EoMs, e.g. by Dimensional Regularization.
- Require that the UV-finite part of EoMs be UV finite:

$$(\ldots)_{\mathbf{UV}} \mathcal{T}_H^{\mathrm{fin}} + (\ldots)_{\mathbf{UV}} \mathcal{T}_G^{\mathrm{fin}} + (\ldots)_{\mathbf{UV}} v^2 + (\ldots)_{\mathbf{UV}} 1 \stackrel{!}{=} 0$$

- Cancel seperately the UV infinities $\propto T_H^{\text{fin}}(T)$, $T_G^{\text{fin}}(T)$, $v^2(T)$, 1.
- Check UV consistency:

 $4 \times 2 = 8$ Constraints, for $5 \text{ CTs}: \delta m_1^2, \delta \lambda_1^A, \delta \lambda_1^B, \delta \lambda_2^A, \delta \lambda_2^B$.

This is a non-trivial check!

DISCRETE 2014

– *T*-independent Resummed Counterterms in the HF approximation:

[AP, D. Teresi, NPB874 (2013) 594]

$$\begin{split} \delta\lambda_1^A &= \delta\lambda_2^A = \frac{2\lambda^2}{16\pi^2\epsilon} \frac{3 - \frac{4\lambda}{16\pi^2\epsilon}}{1 - \frac{6\lambda}{16\pi^2\epsilon} + \frac{8\lambda^2}{(16\pi^2\epsilon)^2}} \\ &= -\lambda + \frac{(16\pi^2\epsilon)^2}{8\lambda} + O(\epsilon^3) \;, \end{split}$$

$$\begin{split} \delta\lambda_1^B &= \delta\lambda_2^B = \frac{2\lambda^2}{16\pi^2\epsilon} \frac{1}{1 - \frac{2\lambda}{16\pi^2\epsilon}} \\ &= -\lambda - \frac{16\pi^2\epsilon}{2} - \frac{(16\pi^2\epsilon)^2}{4\lambda} + O(\epsilon^3) \;, \end{split}$$

$$\delta m_1^2 = \frac{4\lambda m^2}{16\pi^2 \epsilon} \frac{1}{1 - \frac{4\lambda}{16\pi^2 \epsilon}} = -m^2 - m^2 \frac{16\pi^2 \epsilon}{4\lambda} + O(\epsilon^2) \,.$$

DISCRETE 2014

Symmetry Improved CJT Effective Potential

• Finite-Width Effects within Quantum Loops

Equations of Motion including Sunset Diagrams:

•
$$\Delta_{H}^{-1}(p) = p^{2} - (3\lambda + \delta\lambda_{1}^{A} + 2\delta\lambda_{1}^{B})v^{2} + m^{2} + \delta m_{1}^{2}$$

 $-i\left(\underbrace{-H}_{Q} + \underbrace{-G}_{Q} + -\underbrace{-H}_{H}_{Q} + -\underbrace{-G}_{G}_{Q} - i\right),$
• $\Delta_{G}^{-1}(p) = p^{2} - (\lambda + \delta\lambda_{1}^{A})v^{2} + m^{2} + \delta m_{1}^{2}$
 $-i\left(\underbrace{-H}_{Q} + \underbrace{-G}_{Q} + -\underbrace{-H}_{Q} - i\right),$

•
$$v \Delta_G^{-1}(0) = 0$$
.

Absorptive Effects:

Η

 ${\it G}$ consistently massless \iff threshold at $s\equiv p^2\,=\,0$

DISCRETE 2014

G

Н

Symmetry Improved CJT Effective Potential

• Symmetry-Improved Effective Higgs Potential in CJT

Symmetry-Improved Effective Potential $\widetilde{V}_{eff}(\phi)$ from 1PI Ward Identity:

$$\phi \Delta_G^{-1}(k=0;\phi) = -\frac{d\widetilde{V}_{\text{eff}}(\phi)}{d\phi}$$

Solution:

$$\begin{split} \widetilde{V}_{\text{eff}}(\phi) &= -\int_{0}^{\phi} d\phi \, \phi \, \Delta_{G}^{-1}(k=0;\phi) \, + \, \widetilde{V}_{\text{eff}}(\phi=0) \\ &= -\int_{v}^{\phi} d\phi \, \phi \, \Delta_{G}^{-1}(k=0;\phi) \, + \, P(T,\mu) \, , \end{split}$$

where $P(T, \mu)$ is the thermodynamic pressure = hydrostatic pressure, i.e. it satisfies Baym's thermodynamic consistency. [G. Baym, PR127 (1962) 1391]

- CJT Effective Higgs Potential

[AP, D. Teresi, NPB874 (2013) 594]

Note: $\operatorname{Im} \widetilde{V}_{\operatorname{eff}}(\phi) < 0$, for $0 < \phi < v$

 \implies Vacuum instability for the concave part of the potential.

[E.J. Weinberg, A.-Q. Wu, PRD36 (1987) 2474]

• Conclusions

- Maintaining symmetries in CJT loopwise is a long-standing problem
- Novel Approach to Global Symmetries:

→ Symmetry-Improved CJT Effective Action

- $\rightarrow \text{ Massless Goldstone Bosons}$
- $\rightarrow\,$ 2nd-Order Phase Transition in the HF Approximation
- $\overline{\mathrm{MS}}$ Renormalization with T-independent Resummed Counterterms
- Absorptive Effects properly described:
 - \rightarrow Smooth thresholds consistent with massless Goldstone bosons
 - $\rightarrow\,$ Consistent resummation within Quantum Loops.
- Symmetry-Improved Effective Higgs Potential is unique, with proper thermodynamic properties

• Solve the IR Problem of the SM Effective Potential

[D. Teresi, parallel talk]

- Extension: $2PI \rightarrow nPI$ Effective Actions
- Extension to Local Symmetries: $\mathbb{U}(1)$, $\mathbb{SU}(N)$
- Spontaneous Breaking of Local Gauge Symmetries
- Higher Precision Predictions in the 2PI Formalism

÷.

• Solve the IR Problem of the SM Effective Potential

[D. Teresi, parallel talk]

- Extension: $2PI \rightarrow nPI$ Effective Actions
- Extension to Local Symmetries: $\mathbb{U}(1)$, $\mathbb{SU}(N)$
- Spontaneous Breaking of Local Gauge Symmetries
- Higher Precision Predictions in the 2PI Formalism

New Era of Analytical Non-Perturbative QFT?

÷

DISCRETE 2014

Symmetry Improved CJT Effective Potential