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The (lattice) calculable region of the QCD phase diagram
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Sign problem prohibits direct simulation, circumvented by approximate methods:
reweigthing, Taylor expansion, imaginary chem. pot., need

No critical point in the controllable region

Flux representations + worm algorithm, complex Langevin:  only particular models   

µ/T <∼ 1 (µ = µB/3)

Large densities ?!?
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Effective theories!

Yang-Mills theory has a finite T phase tranisition, breaking of center symmetry (ZN)

Dimensional reduction uses scale “hierarchy”:

Integrate hard scale perturbatively, treat eff. 3d theory on lattice, 
valid for weak coupling (deconfined phase)

Does not work for transition, perturbative dim. red. breaks Z(N) of  YM theory 

Bottom-up construction of Z(N)-invariant theory by matching: 

works for SU(2), unfinished for SU(3) 
Vuorinen, Yaffe; de Forcrand, Kurkela; Kurkela, Vuorinen;  ....  

Here: solution for YM by strong coupling expansion (confined phase)!

QCD with heavy fermions:  sign problem of eff. theory mild, curable!
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Starting point:  Wilson’s lattice Yang-Mills action

Plaquette:
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The effective theory, Yang-Mills

Expansion parameter:
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Effective one-coupling theory for SU(3) YM
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Im L
(L= Tr W)
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Subleading couplings
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Numerical results for SU(3), one coupling
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Second order (3d Ising) phase transition for SU(2):

10



The influence of a second coupling

...gets very small for large       !Nτ
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Mapping back to 4d finite T Yang-Mills

Inverting

λ1(Nτ , β)→ βc(λ1,c, Nτ ) ...points at reasonable convergence 

SU(3)
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Comparison with 4d Monte Carlo
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What does and does not work?

Correlation functions and spectrum:
                        NO
  

couplings over large distances needed

Thermodynamics and critical coupling:
                        YES
  

partition function needed, ultra-local!

e-3p
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Continuum limit feasible!

-error bars: difference between last two orders in strong coupling exp.

-using non-perturbative beta-function (4d T=0 lattice)

-all data points from one single 3d MC simulation!
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How is this possible?

β = 0 β =∞

strong coupling limit continuum limit
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How is this possible?

β = 0 β =∞

strong coupling limit continuum limit

radius of convergence
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How is this possible?

β = 0 β =∞

strong coupling limit continuum limit

radius of convergence scaling region
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How is this possible?

β = 0 β =∞

strong coupling limit continuum limit

continuum extrapolation

radius of convergence scaling region
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Including heavy, dynamical Wilson fermions

Similar to de Pietri, Feo, Seiler, Stamatescu 07,  Aarts, Stamatescu 08 ...
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QCD: first order deconfinement transition region
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The critical point

Mapping back to QCD:
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Accuracy ~5%, predictions for Nt=6,8,... available!
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The fully calculated deconfinement transition
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The equation of state for nuclear matter

mπ = 20 GeV, T = 10 MeV, a = 0.17 fm

Effect of binding between baryons: 

n
B
/m

3 B

µB/mB

Nf = 1
Nf = 2

µc < mB

Transition is smooth crossover: 

Binding energy per nucleon: ε =
µc −mB

mB
∼ 10−3

T > Tc ∼ ε mB

Seff ∼ κnum, n + m = 4
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Binding energy per nucleon 
ε/
m

B
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ε =
e− nBmB

nBmB
=

e

nBmB
− 1
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Binding energy per nucleon 
ε/
m

B

µB/mB

ε =
e− nBmB

nBmB
=

e

nBmB
− 1

ε ∼ 10−3

... to be continued...

consistent with the location of the onset transition 

Minimum:  access to nucl. binding energy, nucl. saturation density!
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Conclusions

Two-step treatment of QCD phase transitions:

I. Derivation of effective action by strong coupling expansion
II. Simulation of effective theory

Z(N)-invariant effective theory for Yang-Mills, correct order of phase trans.
Tc with 10% accuracy in the continuum limit!

Finite T deconf. transition for heavy fermions and all chemical potentials

Silver blaze property + phase transition to nuclear matter at T=0
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