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Perturbation Theory
PHYSICAL LIMITS OF PERTURBATION THEORY

For a given Hamiltonian H we take any solvable Hamiltonian H

that satisfies:
H ~ H,.

What does it mean ?
It means that we define the interaction V as

V=H-Hj

and the matrix elements of V must be “small”.
While mathematical bounds can be found for the asymptotic
convergence, the choice of H, usually stems from physics!

UNIVERSITY of CATANIA, ITALY @



Perturbation Theory
OPTIMIZATION

» There are infinite choices for Hy

UNIVERSITY of CATANIA, ITALY Q



Perturbation Theory
OPTIMIZATION

» There are infinite choices for Hy
» None of them can hold for any range of parameters

UNIVERSITY of CATANIA, ITALY 0



Perturbation Theory
OPTIMIZATION

» There are infinite choices for Hy
» None of them can hold for any range of parameters

» The choice of Hy, must be optimized for the physical range
in study

UNIVERSITY of CATANIA, ITALY %



Perturbation Theory
OPTIMIZATION

» There are infinite choices for Hy
» None of them can hold for any range of parameters

» The choice of Hy, must be optimized for the physical range
in study

In non-Abelian gauge theories we usually take
H, = free-particle Hamiltonian

» UV freedom — H, becomes exact

UNIVERSITY of CATANIA, ITALY @



Perturbation Theory
OPTIMIZATION

» There are infinite choices for Hy
» None of them can hold for any range of parameters

» The choice of Hy, must be optimized for the physical range
in study

In non-Abelian gauge theories we usually take
H, = free-particle Hamiltonian

» UV freedom — H, becomes exact
» IR slavery — H, becomes too bad

UNIVERSITY of CATANIA, ITALY @



Perturbation Theory
OPTIMIZATION

» There are infinite choices for Hy
» None of them can hold for any range of parameters

» The choice of Hy, must be optimized for the physical range
in study

In non-Abelian gauge theories we usually take
H, = free-particle Hamiltonian

» UV freedom — H, becomes exact
» IR slavery — H, becomes too bad

Perturbation Theory works in the UV but breaks down in the IR

UNIVERSITY of CATANIA, ITALY @



Perturbation Theory
OPTIMIZATION

» There are infinite choices for H

» None of them can hold for any range of parameters

» The choice of Hy, must be optimized for the physical range
in study

In non-Abelian gauge theories we usually take
H, = free-particle Hamiltonian
» UV freedom — H, becomes exact
» IR slavery — H, becomes too bad
Perturbation Theory works in the UV but breaks down in the IR

PT breaks down because of the bad choice of Hy:
optimization is mandatory, and must be based on physics
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First Order Optimized Perturbation Theory
THE VARIATIONAL METHOD IN QUANTUM MECHANICS

Hy(\) solvable — V() = H — Hyp()\)

Ho(M[¥ (X)) = Eo(A)[W(A))
ED () = Eo(A) + (T(N)V) [T ()

we find the well known result that
EM() = (W) H[T(N)).

The variational method yields the best Hy(\) ~ H
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First Order Optimized Perturbation Theory
FIELD THEORY: THE GAUSSIAN EFFECTIVE POTENTIAL (GEP)

In the Lagrangian formalism
S:S0+(S—So) - 85 =5—-5

But in field theory:
So solvable — Gaussian Functional

Solg; ¥] = / Wa(x)g ™" 4y (x,9) W (y)dxdy.

Here g.»(x,y) is a trial correlator and is equivalent to an infinite
set of free parameters.
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First Order Optimized Perturbation Theory
FIELD THEORY: THE GAUSSIAN EFFECTIVE POTENTIAL (GEP)

In the Lagrangian formalism
S:S0+(S—So) - 85 =5—-5

But in field theory:
So solvable — Gaussian Functional

Solg; ¥] = / Wa(x)g ™" 4y (x,9) W (y)dxdy.

Here g.»(x,y) is a trial correlator and is equivalent to an infinite
set of free parameters.
The first-order effective potential is V(1) = (0|H|0)

sy
og

= 0 = GEP = Optimized First Order P.T.
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First Order Optimized Perturbation Theory
THE EFFECTIVE POTENTIAL BY STANDARD P.T.

e T — Dy e S0l Y+Y] p=Si[g 1]
1PI

(effective action)

Jip DX =50

1
(X) = [ Dye—5] — V= Vo+9 log(e™")  (eff. potential)
N > 1
where : log(e S’ = Z iqsl - <SI>]2>
— 5105 (1) +
First and second order terms are:

1 1
Vi=—=(S Vo= ———([S1 — (S)))?
1 V< 1>7 2 2'V<[ 1 < [>] > UNIVERSITY of CATANIA, \TAL‘(°



Second Order Optimized Perturbation Theory
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Second Order Optimized Perturbation Theory
WHY DO WE NEED IT?

» Q.M. — Just enlarge |¥(\)) ensamble
» FT. — a solvable Sy must be Gaussian

Inclusion of second order terms is mandatory when (L;,;) =0 :
the first-order term V; = —%(SI) gives trivial results

The GEP is useless for gauge-interacting fermions: ¥~,A* ¥ is
odd and the Gaussian average is (¥~,A*¥) =0

Optimize by “Stationary Variance”:
0% ~ Vo = — g ([S1 — (SD)])
(So adds only disconnected graphs)
» V, ~ Error Estimate (of the asympthotic expansion)

» 02 = —V, > 0 and stationary when the trial propagator
approaches the exact propagator P



SU(3) Yang-Mills by Stationary Variance
LAGRANGIAN AND NOTATION

L= Lyy + Lpix
1 A 1 R R
Ly = =T (Fu )5 Lo = T [(8MA“)(8VA”)]
Quantum effective action — T — DAeiS W+aly Fp [A/ + A]

1PI
Faddev — Popov det. — Jpp[A] = / Dwyw*eisgh[""w’w*]

'l s * 3 *
Al =0 — T = DAMM*elSO[A,w,w ]elSI[A,w,w ]
1PI

Sior = So + 81 = /EYMd4x + /[,ﬁxd4x + Sen

but what is Sy ? W
UNIVERSITY of CATANIA, ITALY



SU(3) Yang-Mills by Stationary Variance

TRIAL FUNCTIONS

1
So = E/Aa#D—IZILAbu_i_/w; G—lab Wp

St = Stor — S0 = S + /d4X[£gh + L3+ L4]
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SU(3) Yang-Mills by Stationary Variance
TRIAL FUNCTIONS

1
So = 2/A“"“ D AP 4 /w; G wp

St = S0t —So = S$2 + /d4x [Egh + L3+ L4]

1
=3 /Aau {Doflf,’, - 1“”} AbY 4 /w; [Go ™ wp — G ap) wi

Do (p) = —%zb [nuu +(§ = 1)%} ;. Goa(p) = %
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SU(3) Yang-Mills by Stationary Variance
TRIAL FUNCTIONS

1
So = 2/A“"“ D AP 4 /w; G wp

St = Stor — S0 = S + /d4X[£gh + L3+ L4]

1
o= A oot ] [ 6o = 67 ]

Dol (p) = —%zb [Wu + (£ - 1)%} i Goap(p) = %

L3 = —g fupe(0uA%)APFAY

1
Lo = =18 fabcfascALALAV A
Loy = =8 fabe(Ouw) )wpA™H

UNIVERSITY of CATANIA, ITALY °



SU(3) Yang-Mills by Stationary Variance
VERTEX GRAPHS

The unknown trial propagators D, G are the free-particle lines:

G-— D -

Vertices: —a— + wa~ (S,)

UNIVERSITY of CATANIA, ITALY 0



SU(3) Yang-Mills by Stationary Variance
SELF-ENERGY GRAPHS

—iZ:—.—+—.—.—+—3ﬁb—

=i TT = e~ + M@W
(1a) (1b)
s+ i

S T S
(2a) (2b) (2c)

e

(2d) (2e)
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SU(3) Yang-Mills by Stationary Variance
STATIONARY EQUATIONS

By the general connection betweem self-enery and functional
derivatives (F. Siringo, Phys. Rev. D 88, 056020 (2013),
arXiv:1308.1836)

-z
oV, . .
6Gab(P) (Eb @) EZ—I(p))

the stationary equations are

I (p) =TI ()
=5 (p) = (p)

UNIVERSITY of CATANIA, ITALY @



SU(3) Yang-Mills by Stationary Variance

LAZY GAUGE
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SU(3) Yang-Mills by Stationary Variance

LAZY GAUGE

Lorentz invariance — D% (p) = bus [ A(p) + PupvB(p))]
A less general choice — D% (p) = dapt,u (p)D(p)
Lazy gauge — tu = nu

In Feynman gauge that would simplify things:

DZIZ/(P) = abanD(p) = abnuuf_(]‘l;z :f(p)DOZIL

UNIVERSITY of CATANIA, ITALY 0



SU(3) Yang-Mills by Stationary Variance
FIRST ORDER

~i%{"(p) = iba [p* — G (p)]

_iHﬁlI’uab _ i5ab?7W [_pZ o D_l] ~ N

il = o™ (NI &N

4
2 an2/() _an2 [ dkE
M- =3Ng“l,’ = 3Ng / (271_)4D(k5)

II;, = D' — Al Ap) = 71
_p2 _|_M2

1

G(p) = s

D(p) = A(p)

J.M. Cornwall, Phys. Rev. D 26, 1453 (1982) @



SU(3) Yang-Mills by Stationary Variance
SECOND ORDER

I, = I3 + (II;)*D
Yo =35+ (X1)°G
Insertion of first order functions yields:

D(p) = A(p) = [AP)IP1T3(p)

(we only need 1PI graphs). In terms of dressing functions:

e) = |1 - 33 ()|

2 [1 _ 113 (pE) }

f(PE) E+M2 P12;+M2

UNIVERSITY of CATANIA, ITALY 0



SU(3) Yang-Mills by Stationary Variance
REGULARIZATION

Cutoff p2 < A2 A = A = g(A) — g()

— fB(P/Aué’)
Z(g, 1)

Z(g, 1) = fa(n/ A, 8(A))
_ fa(p/Ag(N)  felp/N,g(N))

Tr(p/ s 1)

Tr(p/ 1, 1)

 So(u/Ag(N)  fa(n/A, g(A))
fr is independent of A and g and

fo(p/A,8(N) = K(g,8) fs(p/A', 8(N))



SU(3) Yang-Mills by Stationary Variance

GLUON PROPAGATOR

1.2

0.8 -

0.6

D(p)/D(0)

04 r

0.2 -

g=0.25, 0.35, 0.45, 0.55, 0.65,
0.75, 0.85, 0.95, 1.00

0
0.001

0.01 0.1 1 10
2 2
p° (GeV?)

» Scale fixed by M = 0.5 GeV.
» dots are lattice data (Landau gauge, g = 1.02, L=96)

Bogolubsky et al., Phys. Lett. B 676, 69 (2009). s my

100



SU(3) Yang-Mills by Stationary Variance
SCALING OF GLUON PROPAGATOR

Dg(p)

001 L L L 5
0.001 0.01 0.1 1 10
pzl/\zg:1
» g(1) =1, for g = 1 the curve is not rescaled.

» Asymptotic behavior D(p) ~ z/p?, z = 0.085.
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SU(3) Yang-Mills by Stationary Variance

RENORMALIZED GLUON PROPAGATOR

Dgr(p) (Gev?d)

0.01 0.1 1 10 100
p* (Gev?)
» Scale fixed by lattice data of Bogolubsky et al., Phys. Lett.
B 676, 69 (2009). (Landau gauge, g = 1.02, L=96)NWERSWCAW Q



SU(3) Yang-Mills by Stationary Variance
EXPANSION AROUND THE TRIAL PROPAGATOR

The trial gluon propagator D is just the zeroth-order
approximation of the optimized perturbation expansion:

-1 _ -1 *
Dy =D =1,

Let us explore higher orders:

D), (p) = 1nuD(p)

jng
D) (p) = (7 + M%)

D(_z;uy(p) = UW(PZ +M2) - Euu(p)

UNIVERSITY of CATANIA, ITALY 0



SU(3) Yang-Mills by Stationary Variance

BARE SECOND-ORDER PROPAGATOR

100 prove el 115

coorPrRPPN
roORBROOR
Soowomowm

D(z)(p) / D(z)(/\)

0.001 0.01 0.1 1
p2//\2
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SU(3) Yang-Mills by Stationary Variance
RENORMALIZED SECOND-ORDER PROPAGATOR

12

g=2.15 ——
9=1.9 -
g=1.65 -
10 g=1.4
9=1.15 -——--
~ 8l 9=0.9 -----
a 9=0.65 -~~~
> =04 -
o Lattice
~ 6
=2
S
o 4t
2 -
0.01 0.1 1 10 100 1000

. B (5
» Scale fixed by rough fit of lattice data

» Dots are lattice data (Landau gauge, g = 1.02, L=96) N
Bogolubsky et al., Phys. Lett. B 676, 69 (2009). ‘vversm e omnmy



SU(3) Yang-Mills by Stationary Variance
DYNAMICAL MASS AND GAUGE INVARIANCE

By Lorentz invariance:
PuPv
My (p) = |l (p) + 22511 (p)

D), (P) = muwDe) () + PupuDiy (p)
where the physical part reads:

Doy (p)] ™" =P+ M~ 11 (p).
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SU(3) Yang-Mills by Stationary Variance
DYNAMICAL MASS AND GAUGE INVARIANCE

By Lorentz invariance:
PuPv
My (p) = |l (p) + 22511 (p)

D), (P) = muwDe) () + PupuDiy (p)
where the physical part reads:

Doy (p)] ™" =P+ M~ 11 (p).

We actually find

5 PuPv .
ZMV(p) ~ _(5m2)77,ul/ - W(P) <77/,u/ - ;2 > s with 7'('(0) =0

as expected by gauge invariance (since I1;,,, ~ 7,,) &



SU(3) Yang-Mills by Stationary Variance
DYNAMICAL MASS AND GAUGE INVARIANCE
The constraint =115 (p) ~ —(6m*)nu — m(p) (TIW - ’%),

with 7(0) = 0 and 113, (p) = [mwl'[z’(p) + ’%Hz"(p)}

requires that:
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SU(3) Yang-Mills by Stationary Variance
DYNAMICAL MASS AND GAUGE INVARIANCE

The constraint = 115, (p) = —(dm*)n, — 7(p) (n,u, - ’%),

with 7(0) = 0 and 113, (p) = [nyyHZI(p) + ’%Hz"(p)}

requires that:

> —7(p) ~ [ (p) — T'(0)] ~ —TL"(p)
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SU(3) Yang-Mills by Stationary Variance
DYNAMICAL MASS AND GAUGE INVARIANCE

The constraint = 115, (p) = —(dm*)n, — 7(p) (n,u, - ’%),

with 7(0) = 0 and ng(p) = [mwﬂz'(p) + ’%qu(p)}
requires that:
> —7(p) & [IL'(p) — IL'(0)] ~ —IL,"(p)

> D&; =p* +m?*(p) where m?(p) = m*(0) + 7 (p)
(Dynamical Mass)
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SU(3) Yang-Mills by Stationary Variance
DYNAMICAL MASS AND GAUGE INVARIANCE

The constraint = 115, (p) = —(dm*)n, — 7(p) (Thw - ’%)

with 7(0) = 0 and 113, (p) = [nyyHZI(p) + ’%Hz"(p)}

requires that:

. () ~ () — IL(0)] ~ —T1"(9)

> DR\ =p*+mip)  where  m(p) = m*(0) +m(p)
(Dynamical Mass)
We actually find = m?(p) ~ (p?)~!?

for any coupling g =0.9 — 1.4

UNIVERSITY of CATANIA, ITALY 0



SU(3) Yang-Mills by Stationary Variance

POLARIZATION FUNCTIONS

/N2

0.025

0.02
0.015
0.01
0.005

-0.005
-0.01 |
-0.015
-0.02
-0.025

0 0.2 0.4 0.6
p//\

0.8 1

12
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SU(3) Yang-Mills by Stationary Variance

POLARIZATION FUNCTIONS (single terms)

0.03
—<>|'| (2 b)
0.025
0.02 +
o M
< I e
< 0015 ys
C oo01f
0.005 |- g nl .
0 e T
m "2 a)
0.005 . ‘ ‘ ‘ |
0 0.2 0.4 0.6 0.8 1 12
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SU(3) Yang-Mills by Stationary Variance

DYNAMICAL MASS

m?(p) (GeV?)

1
0.1}
g=0.9 ——
g=1.15 -
g=14
0.01 . .
0.01 0.1 1 10
p? (Gevd)

100
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CONCLUDING REMARKS

» Stationary Variance =—> Physical and sensible solution
» Non perturbative tool by perturbation theory

» Feynman gauge unexplored = confirm of Landau-gauge
scenario (Dynamical gluon mass, finite ghost dressing
function)

» The method can be improved in many ways (more general
gauge choice, dimensional regularization, finite external
background field...)

» Inclusion of Fermions is straightforward = QCD by
Stationary Variance

THANK YOU
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SU(3) Yang-Mills by Stationary Variance

GHOST DRESSING FUNCTION

-
o
]
coorPrRPPN
roORBROOR
ogouwoaou

X )

0.01 0.1 1
p2/\2
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Stationary Equations
TWO-POINT NON-LOCAL VERTEX

S[0] = / By (1) A=y (1, )T (y)dxdly + / Lo (x)dx

Ay (x,y) = standard free-particle propagators

Def. — Solg: ¥] = / W (1)8 4y (6,) U (y)dxdy.

§i[) = / T () (1, ) Ty (y)dacly + / Lon()d

where the new non-local vertex v, is
Vi (x,y) = [A s (x,y) — g 0 (x,)] = —-_—

Self Energy — Eﬁf =g ' wxy) — A7 w(x,y)

UNIVERSITY of CATANIA, ITALY %



Stationary Equations
VACUUM GRAPHS (scalar theory)

£1= o+ v16(x) + 1367 (x) + vag* (¥ /¢ 2, y)B(y)dly
Vo
\Z!
Q QO
w0 w0 @

(4X3) (4X3)/2 UNIVERSITY of CATANIA, ITALY @



Stationary Equations
SELF ENERGY GRAPHS (scalar theory)

Ly = vy +v1(x) + v3¢ (x) + vad* (x) /¢ X)va(x,y)$(y)d'y
v
S = —a-—
p2 + 3x4 *
Vo
@ Va_ V3 V4 Vg
+ + + + +
< () + €+
(4x3)(4x3) 3(3) 4(4h

+“MJ

(2x2) (4x3)(4x3) @



Stationary Equations
GENERAL CONNECTION

5

og
—

® =& ®
@t @

A
—
Va sV ;
5gab(k) 5 (B0 ~ T2, (0) 5;(k):i;2n<k)

F. Siringo, Phys. Rev. D 88, 056020 (2013), arXiv:1308.1836
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Stationary Equations
GAUSSIAN EFFECTIVE POTENTIAL (GEP)
The first order optimization equation

i sy
27T Sg

is equivalent to the self-consistency requirement ¥; = 0:
S = X0 4+ i = g — Ay — Mg, =0
yielding the gap equations of the GEP
8ay = Dy +OM,

Mz, = —Zinlg]
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The Method of Stationary Variance
A COMPARISON OF STRATEGIES

» Stationary Variance — Stationary V;

0= ;2 = 1 (Ty(k) - Ty (k) = Zhe(k) = Zhe(k)
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The Method of Stationary Variance
A COMPARISON OF STRATEGIES

» Stationary Variance — Stationary V,

0= ;2 = 1 (Ty(k) - Ty (k) = Zhe(k) = Zhe(k)

» Minimal Sensitivity — Stationary V(?) = Vo + V, + V,

0= V5 = £53(k) = a(k) =0

but V, < 0 and V(® can be unbounded — no solutions
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The Method of Stationary Variance
A COMPARISON OF STRATEGIES

» Stationary Variance — Stationary V,

0= ;2 = 1 (Ty(k) - Ty (k) = Zhe(k) = Zhe(k)

» Minimal Sensitivity — Stationary V(?) = Vo + V, + V,

0= V5 = £53(k) = a(k) =0

but V, < 0 and V(® can be unbounded — no solutions

» GEP: optimal g(x y) fixed at higher orders
0= 8V5 = £43i(k) = Ti(k) =0
(useless when (L) =0 —  g(x,y) = A(x,y))
All of them can be extended to higher orders
Convergence — differences should decrease order by order
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SU(3) Yang-Mills by Stationary Variance
FEYNMAN GAUGE

The choice £ = 1 would simplify things if

DZI;/(p) = ab"?/u/D(p) = abnul/f_(lp;g :f@)DOZZ

UNIVERSITY of CATANIA, ITALY Q



SU(3) Yang-Mills by Stationary Variance
FEYNMAN GAUGE

The choice £ = 1 would simplify things if

D,Zbu(p) = ab"?/u/D(p) = abnuuf_(ig :f@)DOZZ

but at each order of P.T., in Feynman gauge

PuPv
p2

D™, (p) = D™ (p)P,, + p;p Y where Py, = 1 —
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SU(3) Yang-Mills by Stationary Variance

FEYNMAN GAUGE

The choice £ = 1 would simplify things if

DZI;/(p) = abnuuD(p) = abnuuf_(l’;g :f(P)DOZZ

but at each order of P.T., in Feynman gauge

D™, (p) = D™ (p)P,, + p;p Y where Py, = 1 — PZIZ’V

Here we have the freedom of taking D¢ l,(p) as general as we
can (no mass would arise for the gluon at each order of P.T.)
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SU(3) Yang-Mills by Stationary Variance

LAZY GAUGE

Lorentz invariance — Dl“jl’,(p) = Oab MuA(P) + pupvB(p))
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SU(3) Yang-Mills by Stationary Variance
LAZY GAUGE

Lorentz invariance — D% (p) = b [ A(P) + PupvB(p))]

A less general choice — D% (p) = dapt,u (p)D(p)

5 _ d DK 5 5
oD(p) Zab“u,y f (2m)* 55(])) (SDéﬁbV(k) - Zab,;u/ 5abt;w(P) 5DZby(P)
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SU(3) Yang-Mills by Stationary Variance

LAZY GAUGE

Lorentz invariance — D, (p) = Sa [1,wA(p) + pupuB(p)]

A less general choice — D% (p) = dapt,u (p)D(p)

5 _ dk DK 5 5
5D(p) - Zabnu'l’f (271‘)4 65(])) (SDﬁby(k) - Zab“u,y 5abtuu(p) 6D(Z,,by(]7)

Defining 1L, (p) = m > abyuw Saptyu (p)TIE ()
the stationary equation reads
Va i

S () = 2 () = IL2°(p)) = Thalp) = THi(p)
iz
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SU(3) Yang-Mills by Stationary Variance
LAZY GAUGE

Lorentz invariance — D, (p) = Sa [1,wA(p) + pupuB(p)]

A less general choice — D% (p) = dapt,u (p)D(p)

5 _ dk DK 5 5
5D(p) - Zabnu'l’f (271‘)4 65(])) (SDﬁby(k) - Zab“u,y 5abtuu(p) 6D(Z,,by(]7)

Defining 1L, (p) = m > abyuw Saptyu (p)TIE ()
the stationary equation reads
Va i

S () = 2 () = IL2°(p)) = Thalp) = THi(p)
iz

Lazy gauge — 1, = N
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The Method of Stationary Variance
EXACT PROPAGATOR

S[w] ~ / Uy ()G (3, ) T (y)drdy

S = / U(x) [G ap(x,y) — g (3, )] W (y)dxdy

¥ =g ' = G~! — higher-order graphs are reducible
Yo=%182 — then X, factorizes

Y% (k) =0 (fixed first order GEP)
34 (k) [6ep — gea (k)29 (k)] =0 (minimal variance)
S4°(k) [gea(k)S{P(k)] =0 (minimal sensitivity)
They are all satisfyed by 31 = 0 = g (k) = Gup(k) (exact)
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