Variational Study of SU(3) Gauge Theory by Stationary Variance

The Stationary Variance as a tool for QCD

Fabio Siringo

Department of Physics and Astronomy University of Catania, Italy

DISCRETE 2014 - London, 2-6 December 2014

Brief review of the method of Stationary Variance:

General Perturbation Theory (PT)

- General Perturbation Theory (PT)
- Why do we need to optimize it ?

- General Perturbation Theory (PT)
- Why do we need to optimize it ?
- Variational strategies and higher order extensions

- General Perturbation Theory (PT)
- Why do we need to optimize it ?
- Variational strategies and higher order extensions
- The Method of Stationary Variance

Brief review of the method of Stationary Variance:

- General Perturbation Theory (PT)
- Why do we need to optimize it ?
- Variational strategies and higher order extensions
- ► The Method of Stationary Variance

Brief review of the method of Stationary Variance:

- General Perturbation Theory (PT)
- Why do we need to optimize it?
- Variational strategies and higher order extensions
- ► The Method of Stationary Variance

Study of SU(3) by Stationary Variance:

Trial Gluon Propagator in Feynman Gauge

Brief review of the method of Stationary Variance:

- General Perturbation Theory (PT)
- Why do we need to optimize it?
- Variational strategies and higher order extensions
- The Method of Stationary Variance

- Trial Gluon Propagator in Feynman Gauge
- Renormalization and comparison with Lattice Data

Brief review of the method of Stationary Variance:

- General Perturbation Theory (PT)
- Why do we need to optimize it?
- Variational strategies and higher order extensions
- The Method of Stationary Variance

- Trial Gluon Propagator in Feynman Gauge
- Renormalization and comparison with Lattice Data
- Dynamical Mass and Constraints of Gauge Invariance

Brief review of the method of Stationary Variance:

- General Perturbation Theory (PT)
- Why do we need to optimize it ?
- Variational strategies and higher order extensions
- The Method of Stationary Variance

- Trial Gluon Propagator in Feynman Gauge
- Renormalization and comparison with Lattice Data
- Dynamical Mass and Constraints of Gauge Invariance
- Outlook: QCD by Stationary Variance

Perturbation Theory PHYSICAL LIMITS OF PERTURBATION THEORY

For a given Hamiltonian H we take any solvable Hamiltonian H_0 that satisfies:

$$H \approx H_0$$
.

What does it mean?

Perturbation Theory PHYSICAL LIMITS OF PERTURBATION THEORY

For a given Hamiltonian H we take any solvable Hamiltonian H_0 that satisfies:

$$H \approx H_0$$
.

What does it mean? It means that we *define* the interaction V as

$$V = H - H_0$$

and the matrix elements of V must be "small". While mathematical bounds can be found for the asymptotic convergence, the choice of H_0 usually stems from physics!

Perturbation Theory OPTIMIZATION

▶ There are infinite choices for H_0

OPTIMIZATION

- ► There are infinite choices for *H*₀
- None of them can hold for any range of parameters

- There are infinite choices for H₀
- None of them can hold for any range of parameters
- ► The choice of H_0 must be optimized for the physical range in study

- There are infinite choices for H₀
- None of them can hold for any range of parameters
- ► The choice of H_0 must be optimized for the physical range in study

In non-Abelian gauge theories we usually take H_0 = free-particle Hamiltonian

▶ UV freedom \rightarrow H_0 becomes exact

- There are infinite choices for H₀
- None of them can hold for any range of parameters
- ► The choice of H_0 must be optimized for the physical range in study

In non-Abelian gauge theories we usually take $H_0 =$ free-particle Hamiltonian

- ► UV freedom → H₀ becomes exact
- ▶ IR slavery \rightarrow H_0 becomes too bad

- There are infinite choices for H₀
- None of them can hold for any range of parameters
- ► The choice of H_0 must be optimized for the physical range in study

In non-Abelian gauge theories we usually take H_0 = free-particle Hamiltonian

- UV freedom → H₀ becomes exact
- ▶ IR slavery \rightarrow H_0 becomes too bad

Perturbation Theory works in the UV but breaks down in the IR

- There are infinite choices for H₀
- None of them can hold for any range of parameters
- ► The choice of H_0 must be optimized for the physical range in study

In non-Abelian gauge theories we usually take H_0 = free-particle Hamiltonian

- ► UV freedom → H₀ becomes exact
- ▶ IR slavery \rightarrow H_0 becomes too bad

Perturbation Theory works in the UV but breaks down in the IR PT breaks down because of the bad choice of H_0 : optimization is mandatory, and must be based on physics

First Order Optimized Perturbation Theory

THE VARIATIONAL METHOD IN QUANTUM MECHANICS

$$H_0(\lambda)$$
 solvable $o V(\lambda) = H - H_0(\lambda)$
$$H_0(\lambda)|\Psi(\lambda)\rangle = E_0(\lambda)|\Psi(\lambda)\rangle$$

$$E^{(1)}(\lambda) = E_0(\lambda) + \langle \Psi(\lambda)|V(\lambda)|\Psi(\lambda)\rangle$$

we find the well known result that

$$E^{(1)}(\lambda) = \langle \Psi(\lambda) | H | \Psi(\lambda) \rangle.$$

The variational method yields the best $H_0(\lambda) \approx H$

First Order Optimized Perturbation Theory FIELD THEORY: THE GAUSSIAN EFFECTIVE POTENTIAL (GEP)

In the Lagrangian formalism

$$S = S_0 + (S - S_0) \rightarrow S_I = S - S_0$$

But in field theory:

 S_0 solvable \rightarrow Gaussian Functional

$$S_0[g; \Psi] = \int \Psi_a(x) g^{-1}{}_{ab}(x, y) \Psi_b(y) dxdy.$$

Here $g_{ab}(x, y)$ is a trial correlator and is equivalent to **an infinite** set of free parameters.

First Order Optimized Perturbation Theory FIELD THEORY: THE GAUSSIAN EFFECTIVE POTENTIAL (GEP)

In the Lagrangian formalism

$$S = S_0 + (S - S_0) \rightarrow S_I = S - S_0$$

But in field theory:

 S_0 solvable \rightarrow Gaussian Functional

$$S_0[g; \Psi] = \int \Psi_a(x) g^{-1}{}_{ab}(x, y) \Psi_b(y) dxdy.$$

Here $g_{ab}(x, y)$ is a trial correlator and is equivalent to **an infinite** set of free parameters.

The first-order effective potential is $V^{(1)} = \langle 0|H|0\rangle$

$$\frac{\delta V^{(1)}}{\delta g} = 0 \Longrightarrow \mathbf{GEP} = \mathbf{Optimized} \ \mathbf{First} \ \mathbf{Order} \ \mathbf{P.T.}$$

First Order Optimized Perturbation Theory

THE EFFECTIVE POTENTIAL BY STANDARD P.T.

$$e^{-\Gamma[\Psi]} = \int_{1PI} \mathcal{D}_{\Psi'} e^{-S_0[g;\Psi+\Psi']} e^{-S_I[g;\Psi+\Psi']} \qquad \text{(effective action)}$$

$$\langle X \rangle = \frac{\int_{1PI} \mathcal{D}_{\Psi} X \, e^{-S_0[\Psi]}}{\int \mathcal{D}_{\Psi} e^{-S_0[\Psi]}} \rightarrow V = V_0 + \frac{1}{\mathcal{V}} \log \langle e^{-S_I} \rangle \quad \text{(eff. potential)}$$

where:
$$\log \langle e^{-S_I} \rangle = \mathcal{V} \sum_{n=1}^{\infty} V_n = -\langle S_I \rangle - \frac{1}{2!} \langle [S_I - \langle S_I \rangle]^2 \rangle - \frac{1}{3!} \langle [S_I - \langle S_I \rangle]^3 \rangle + \dots$$

First and second order terms are:

$$V_1=-rac{1}{\mathcal{V}}\langle S_I
angle, \qquad V_2=-rac{1}{2!\mathcal{V}}\langle [S_I-\langle S_I
angle]^2
angle$$
 university of catania, italy

▶ Q.M. \longrightarrow Just enlarge $|\Psi(\lambda)\rangle$ ensamble

- ▶ Q.M. \longrightarrow Just enlarge $|\Psi(\lambda)\rangle$ ensamble
- ▶ F.T. \longrightarrow a solvable S_0 must be Gaussian

- ▶ Q.M. \longrightarrow Just enlarge $|\Psi(\lambda)\rangle$ ensamble
- ▶ F.T. \longrightarrow a solvable S_0 must be Gaussian

Inclusion of second order terms is **mandatory** when $\langle \mathcal{L}_{int} \rangle = 0$: the first-order term $V_1 = -\frac{1}{\mathcal{V}} \langle S_I \rangle$ gives **trivial results**

- ▶ Q.M. \longrightarrow Just enlarge $|\Psi(\lambda)\rangle$ ensamble
- ▶ F.T. \longrightarrow a solvable S_0 must be Gaussian

Inclusion of second order terms is **mandatory** when $\langle \mathcal{L}_{int} \rangle = 0$: the first-order term $V_1 = -\frac{1}{\mathcal{V}} \langle S_I \rangle$ gives **trivial results** The GEP is useless for gauge-interacting fermions: $\bar{\Psi} \gamma_\mu A^\mu \Psi$ is odd and the Gaussian average is $\langle \bar{\Psi} \gamma_\mu A^\mu \Psi \rangle = 0$

- ▶ Q.M. \longrightarrow Just enlarge $|\Psi(\lambda)\rangle$ ensamble
- ▶ F.T. \longrightarrow a solvable S_0 must be Gaussian

Inclusion of second order terms is **mandatory** when $\langle \mathcal{L}_{int} \rangle = 0$: the first-order term $V_1 = -\frac{1}{\mathcal{V}} \langle S_I \rangle$ gives **trivial results** The GEP is useless for gauge-interacting fermions: $\bar{\Psi} \gamma_\mu A^\mu \Psi$ is odd and the Gaussian average is $\langle \bar{\Psi} \gamma_\mu A^\mu \Psi \rangle = 0$

Optimize by "Stationary Variance":

$$\sigma^2 \sim V_2 = -\frac{1}{2!\mathcal{V}}\langle [S_I - \langle S_I \rangle]^2 \rangle$$
 (S_0 adds only disconnected graphs)

- ▶ Q.M. \longrightarrow Just enlarge $|\Psi(\lambda)\rangle$ ensamble
- ▶ F.T. \longrightarrow a solvable S_0 must be Gaussian

Inclusion of second order terms is **mandatory** when $\langle \mathcal{L}_{int} \rangle = 0$: the first-order term $V_1 = -\frac{1}{\mathcal{V}} \langle S_I \rangle$ gives **trivial results** The GEP is useless for gauge-interacting fermions: $\bar{\Psi} \gamma_\mu A^\mu \Psi$ is odd and the Gaussian average is $\langle \bar{\Psi} \gamma_\mu A^\mu \Psi \rangle = 0$

Optimize by "Stationary Variance":

$$\sigma^2 \sim V_2 = -\frac{1}{2!\mathcal{V}}\langle [S_I - \langle S_I \rangle]^2 \rangle$$
 (S_0 adds only disconnected graphs)

- $V_2 \approx$ Error Estimate (of the asympthotic expansion)
- $\sigma^2 = -V_2 > 0$ and stationary when the trial propagator approaches the exact propagator

SU(3) Yang-Mills by Stationary Variance LAGRANGIAN AND NOTATION

$$\mathcal{L} = \mathcal{L}_{YM} + \mathcal{L}_{fix}$$

$$\mathcal{L}_{YM} = -\frac{1}{2} \operatorname{Tr} \left(\hat{F}_{\mu\nu} \hat{F}^{\mu\nu} \right); \quad \mathcal{L}_{fix} = -\frac{1}{\xi} \operatorname{Tr} \left[(\partial_{\mu} \hat{A}^{\mu})(\partial_{\nu} \hat{A}^{\nu}) \right]$$
Quantum effective action $\rightarrow e^{i\Gamma[A']} = \int_{1PI} \mathcal{D}_{A} e^{iS[A'+A]} J_{FP} [A'+A]$

$$\operatorname{Faddev} - \operatorname{Popov} \det. \rightarrow J_{FP} [A] = \int \mathcal{D}_{\omega,\omega^{\star}} e^{iS_{gh}[A,\omega,\omega^{\star}]}$$

$$A' = 0 \rightarrow e^{i\Gamma} = \int_{1PI} \mathcal{D}_{A,\omega,\omega^{\star}} e^{iS_{0}[A,\omega,\omega^{\star}]} e^{iS_{I}[A,\omega,\omega^{\star}]}$$

$$S_{tot} = S_{0} + S_{I} = \int \mathcal{L}_{YM} \mathrm{d}^{4}x + \int \mathcal{L}_{fix} \mathrm{d}^{4}x + S_{gh}$$

but what is S_0 ?

SU(3) Yang-Mills by Stationary Variance TRIAL FUNCTIONS

$$S_0 = rac{1}{2} \int A^{a\mu} D^{-1}{}^{ab}_{\mu\nu} A^{b
u} + \int \omega_a^{\star} G^{-1}{}_{ab} \omega_b$$

 $S_I = S_{tot} - S_0 = S_2 + \int \mathrm{d}^4 x \left[\mathcal{L}_{gh} + \mathcal{L}_3 + \mathcal{L}_4 \right]$

SU(3) Yang-Mills by Stationary Variance TRIAL FUNCTIONS

$$S_{0} = \frac{1}{2} \int A^{a\mu} D^{-1}{}_{\mu\nu}^{ab} A^{b\nu} + \int \omega_{a}^{\star} G^{-1}{}_{ab} \omega_{b}$$

$$S_{I} = S_{tot} - S_{0} = S_{2} + \int d^{4}x \left[\mathcal{L}_{gh} + \mathcal{L}_{3} + \mathcal{L}_{4} \right]$$

$$S_{2} = \frac{1}{2} \int A^{a\mu} \left[D_{0}{}_{\mu\nu}^{-1}{}_{ab}^{ab} - D^{-1}{}_{\mu\nu}^{ab} \right] A^{b\nu} + \int \omega_{a}^{\star} \left[G_{0}{}_{ab}^{-1} - G^{-1}{}_{ab} \right] \omega_{b}$$

$$D_{0}{}_{\mu\nu}^{ab}(p) = -\frac{\delta_{ab}}{p^{2}} \left[\eta_{\mu\nu} + (\xi - 1) \frac{p_{\mu}p_{\nu}}{p^{2}} \right]; \quad G_{0ab}(p) = \frac{\delta_{ab}}{p^{2}}$$

SU(3) Yang-Mills by Stationary Variance

$$S_{0} = \frac{1}{2} \int A^{a\mu} D^{-1}{}_{\mu\nu}^{ab} A^{b\nu} + \int \omega_{a}^{\star} G^{-1}{}_{ab} \omega_{b}$$

$$S_{I} = S_{tot} - S_{0} = S_{2} + \int d^{4}x \left[\mathcal{L}_{gh} + \mathcal{L}_{3} + \mathcal{L}_{4} \right]$$

$$S_{2} = \frac{1}{2} \int A^{a\mu} \left[D_{0}{}_{\mu\nu}^{-1} - D^{-1}{}_{\mu\nu}^{ab} \right] A^{b\nu} + \int \omega_{a}^{\star} \left[G_{0}{}_{ab}^{-1} - G^{-1}{}_{ab} \right] \omega_{b}$$

$$D_{0}{}_{\mu\nu}^{ab}(p) = -\frac{\delta_{ab}}{p^{2}} \left[\eta_{\mu\nu} + (\xi - 1) \frac{p_{\mu}p_{\nu}}{p^{2}} \right]; \quad G_{0ab}(p) = \frac{\delta_{ab}}{p^{2}}$$

$$\mathcal{L}_{3} = -g f_{abc} (\partial_{\mu}A_{\nu}^{a}) A^{b\mu} A^{c\nu}$$

$$\mathcal{L}_{4} = -\frac{1}{4} g^{2} f_{abc} f_{ade} A^{b}_{\mu} A^{c}_{\nu} A^{d\mu} A^{e\nu}$$

$$\mathcal{L}_{gh} = -g f_{abc} (\partial_{\mu}\omega_{a}^{a}) \omega_{b} A^{c\mu}$$

SU(3) Yang-Mills by Stationary Variance VERTEX GRAPHS

The unknown trial propagators *D*, *G* are the free-particle lines:

SU(3) Yang-Mills by Stationary Variance SELF-ENERGY GRAPHS

SU(3) Yang-Mills by Stationary Variance STATIONARY EQUATIONS

By the general connection betweem self-enery and functional derivatives (F. Siringo, Phys. Rev. D **88**, 056020 (2013), arXiv:1308.1836)

$$\frac{\delta V_n}{\delta D_{\mu\nu}^{ab}(p)} = \frac{i}{2} \left(\Pi_n^{\nu\mu,ba}(p) - \Pi_{n-1}^{\nu\mu,ba}(p) \right)$$
$$\frac{\delta V_n}{\delta G_{ab}(p)} = -i \left(\Sigma_n^{ba}(p) - \Sigma_{n-1}^{ba}(p) \right)$$

the stationary equations are

$$\Pi_2^{\nu\mu,ab}(p) = \Pi_1^{\nu\mu,ab}(p)$$

$$\Sigma_2^{ba}(p) = \Sigma_1^{ba}(p)$$

Lorentz invariance $o D^{ab}_{\mu\nu}(p) = \delta_{ab} \left[\eta_{\mu\nu} A(p) + p_{\mu} p_{\nu} B(p) \right]$

SU(3) Yang-Mills by Stationary Variance LAZY GAUGE

Lorentz invariance
$$o D^{ab}_{\mu\nu}(p) = \delta_{ab} \left[\eta_{\mu\nu} A(p) + p_{\mu} p_{\nu} B(p) \right]$$

A less general choice $ightarrow D^{ab}_{\mu
u}(p) = \delta_{ab} t_{\mu
u}(p) D(p)$

Lorentz invariance $o D^{ab}_{\mu\nu}(p) = \delta_{ab} \left[\eta_{\mu\nu} A(p) + p_{\mu} p_{\nu} B(p) \right]$

A less general choice $ightarrow D^{ab}_{\mu
u}(p) = \delta_{ab} t_{\mu
u}(p) D(p)$

Lazy gauge $o t_{\mu
u} = \eta_{\mu
u}$

SU(3) Yang-Mills by Stationary Variance LAZY GAUGE

Lorentz invariance $o D^{ab}_{\mu\nu}(p) = \delta_{ab} \left[\eta_{\mu\nu} A(p) + p_{\mu} p_{\nu} B(p) \right]$

A less general choice $ightarrow D^{ab}_{\mu
u}(p) = \delta_{ab} t_{\mu
u}(p) D(p)$

Lazy gauge $ightarrow t_{\mu
u} = \eta_{\mu
u}$

In Feynman gauge that would simplify things:

$$D^{ab}_{\mu\nu}(p) = \delta_{ab}\eta_{\mu\nu}D(p) = \delta_{ab}\eta_{\mu\nu}\frac{f(p)}{-p^2} = f(p)D_0^{ab}_{\mu\nu}$$

FIRST ORDER

$$-i\Sigma_1^{ab}(p) = i\delta_{ab} \left[p^2 - G^{-1}(p) \right]$$

$$-i\Pi_{1a}^{\mu\nu,ab} = i\delta_{ab}\eta^{\mu\nu} \left[-p^2 - D^{-1} \right]$$

$$-i\Pi_{1b}^{\mu\nu,ab} = i\delta_{ab}\eta^{\mu\nu} (3Ng^2)I_0^{(1)}$$

$$M^2 = 3Ng^2I_0^{(1)} = 3Ng^2 \int \frac{\mathrm{d}^4k_E}{(2\pi)^4}D(k_E)$$

$$\Pi_1 = D^{-1} - \Delta^{-1} \qquad \Delta(p) = \frac{1}{-p^2 + M^2}$$

$$G(p) = \frac{1}{p^2}$$

$$D(p) = \Delta(p)$$

J.M. Cornwall, Phys. Rev. D 26, 1453 (1982)

SU(3) Yang-Mills by Stationary Variance SECOND ORDER

$$\Pi_2 = \Pi_2^* + (\Pi_1)^2 D$$
$$\Sigma_2 = \Sigma_2^* + (\Sigma_1)^2 G$$

Insertion of first order functions yields:

$$G(p) = \frac{1}{p^2} - \frac{\sum_{2}^{\star}(p)}{p^4}$$
$$D(p) = \Delta(p) - [\Delta(p)]^2 \Pi_2^{\star}(p)$$

(we only need 1PI graphs). In terms of dressing functions:

$$\chi(p_E) = \left[1 + \frac{1}{p_E^2} \Sigma_2^*(p_E) \right]$$

$$f(p_E) = \frac{p_E^2}{p_E^2 + M^2} \left[1 - \frac{\Pi_2^*(p_E)}{p_E^2 + M^2} \right]$$

SU(3) Yang-Mills by Stationary Variance REGULARIZATION

$$\begin{split} \text{Cutoff } p_E^2 < \Lambda^2 \colon \quad \Lambda \to \Lambda' &\Longrightarrow g(\Lambda) \to g(\Lambda') \\ f_R(p/\mu, \ \mu) &= \frac{f_B(p/\Lambda, g)}{Z(g, \mu)} \\ Z(g, \mu) &= f_B(\mu/\Lambda, g(\Lambda)) \\ f_R(p/\mu, \mu) &= \frac{f_B(p/\Lambda, g(\Lambda))}{f_B(\mu/\Lambda, g(\Lambda))} = \frac{f_B(p/\Lambda', g(\Lambda'))}{f_B(\mu/\Lambda', g(\Lambda'))} \end{split}$$

 f_R is independent of Λ and g and

$$f_B(p/\Lambda, g(\Lambda)) = K(g, g') f_B(p/\Lambda', g(\Lambda'))$$

- Scale fixed by M = 0.5 GeV.
- ▶ dots are lattice data (Landau gauge, g=1.02, L=96) Bogolubsky et al., Phys. Lett. B 676, 69 (2009).

SU(3) Yang-Mills by Stationary Variance SCALING OF GLUON PROPAGATOR

- ightharpoonup g(1) = 1, for g = 1 the curve is not rescaled.
- ▶ Asymptotic behavior $D(p) \approx z/p^2$, z = 0.085.

► Scale fixed by lattice data of Bogolubsky et al., Phys. Lett. B 676, 69 (2009). (Landau gauge, *g* = 1.02, L=96)

SU(3) Yang-Mills by Stationary Variance EXPANSION AROUND THE TRIAL PROPAGATOR

The trial gluon propagator D is just the zeroth-order approximation of the optimized perturbation expansion:

$$D_{(n)}^{-1} = D^{-1} - \Pi_{(n)}^{\star}$$

Let us explore higher orders:

$$D_{(0)}{}_{\mu\nu}(p)=\eta_{\mu\nu}D(p)$$

$$D_{(1)}^{-1}{}_{\mu\nu}(p) = \eta_{\mu\nu}(p^2 + M^2)$$

$$D_{(2)}^{-1}(p) = \eta_{\mu\nu}(p^2 + M^2) - \Pi_{2\mu\nu}^{\star}(p)$$

SU(3) Yang-Mills by Stationary Variance BARE SECOND-ORDER PROPAGATOR

SU(3) Yang-Mills by Stationary Variance RENORMALIZED SECOND-ORDER PROPAGATOR

- Scale fixed by rough fit of lattice data
- ▶ Dots are lattice data (Landau gauge, g = 1.02, L=96) Bogolubsky et al., Phys. Lett. B 676, 69 (2009).

SU(3) Yang-Mills by Stationary Variance DYNAMICAL MASS AND GAUGE INVARIANCE

By Lorentz invariance:

$$\Pi_{\mu\nu}(p) = \left[\eta_{\mu\nu}\Pi'(p) + \frac{p_{\mu}p_{\nu}}{p^2}\Pi''(p)\right]$$

$$D_{(2)}{}_{\mu\nu}(p) = \eta_{\mu\nu}D_{(2)}(p) + p_{\mu}p_{\nu}D_{(2)}''(p)$$

where the physical part reads:

$$[D_{(2)}(p)]^{-1} = p^2 + M^2 - \Pi_2^{\star\prime}(p).$$

By Lorentz invariance:

$$\Pi_{\mu\nu}(p) = \left[\eta_{\mu\nu}\Pi'(p) + \frac{p_{\mu}p_{\nu}}{p^2}\Pi''(p)\right]$$

$$D_{(2)}{}_{\mu\nu}(p) = \eta_{\mu\nu}D_{(2)}(p) + p_{\mu}p_{\nu}D_{(2)}''(p)$$

where the physical part reads:

$$[D_{(2)}(p)]^{-1} = p^2 + M^2 - \Pi_2^{\star\prime}(p).$$

We actually find

$$\Pi_{2\mu\nu}^{\star}(p) \approx -(\delta m^2)\eta_{\mu\nu} - \pi(p)\left(\eta_{\mu\nu} - \frac{p_{\mu}p_{\nu}}{p^2}\right), \text{ with } \pi(0) = 0$$

as expected by gauge invariance (since $\Pi_{1\mu\nu} \sim \eta_{\mu\nu}$)

DYNAMICAL MASS AND GAUGE INVARIANCE

The constraint
$$\Longrightarrow \Pi_{2\,\mu\nu}^{\star}(p) \approx -(\delta m^2)\eta_{\mu\nu} - \pi(p)\left(\eta_{\mu\nu} - \frac{p_{\mu}p_{\nu}}{p^2}\right)$$
,

with
$$\pi(0)=0$$
 and $\Pi^\star_{2\mu\nu}(p)=\left[\eta_{\mu\nu}\Pi_2{}'(p)+\frac{p_\mu p_\nu}{p^2}\Pi_2{}''(p)\right]$

requires that:

DYNAMICAL MASS AND GAUGE INVARIANCE

The constraint
$$\Longrightarrow \Pi_{2\mu\nu}^\star(p) \approx -(\delta m^2)\eta_{\mu\nu} - \pi(p)\left(\eta_{\mu\nu} - \frac{p_\mu p_\nu}{p^2}\right)$$
, with $\pi(0) = 0$ and $\Pi_{2\mu\nu}^\star(p) = \left[\eta_{\mu\nu}\Pi_2{}'(p) + \frac{p_\mu p_\nu}{p^2}\Pi_2{}''(p)\right]$ requires that:

 $-\pi(p) \approx [\Pi_2'(p) - \Pi_2'(0)] \approx -\Pi_2''(p)$

DYNAMICAL MASS AND GAUGE INVARIANCE

The constraint
$$\Longrightarrow \Pi_{2\mu\nu}^{\star}(p) \approx -(\delta m^2)\eta_{\mu\nu} - \pi(p)\left(\eta_{\mu\nu} - \frac{p_{\mu}p_{\nu}}{p^2}\right)$$
, with $\pi(0) = 0$ and $\Pi_{2\mu\nu}^{\star}(p) = \left[\eta_{\mu\nu}\Pi_2{}'(p) + \frac{p_{\mu}p_{\nu}}{p^2}\Pi_2{}''(p)\right]$ requires that:

- $-\pi(p) \approx [\Pi_2'(p) \Pi_2'(0)] \approx -\Pi_2''(p)$
- ▶ $D_{(2)}^{-1} = p^2 + m^2(p)$ where $m^2(p) = m^2(0) + \pi(p)$ (Dynamical Mass)

DYNAMICAL MASS AND GAUGE INVARIANCE

The constraint
$$\Longrightarrow \Pi_{2\mu\nu}^{\star}(p) \approx -(\delta m^2)\eta_{\mu\nu} - \pi(p)\left(\eta_{\mu\nu} - \frac{p_{\mu}p_{\nu}}{p^2}\right),$$
 with $\pi(0) = 0$ and $\Pi_{2\mu\nu}^{\star}(p) = \left[\eta_{\mu\nu}\Pi_2{}'(p) + \frac{p_{\mu}p_{\nu}}{p^2}\Pi_2{}''(p)\right]$

requires that:

$$-\pi(p) \approx [\Pi_2'(p) - \Pi_2'(0)] \approx -\Pi_2''(p)$$

▶
$$D_{(2)}^{-1} = p^2 + m^2(p)$$
 where $m^2(p) = m^2(0) + \pi(p)$ (Dynamical Mass)

We actually find $\Longrightarrow m^2(p) \sim (p^2)^{-1.5}$

for any coupling g = 0.9 - 1.4

SU(3) Yang-Mills by Stationary Variance POLARIZATION FUNCTIONS

POLARIZATION FUNCTIONS (single terms)

SU(3) Yang-Mills by Stationary Variance DYNAMICAL MASS

► Stationary Variance ⇒ Physical and sensible solution

- ► Stationary Variance ⇒ Physical and sensible solution
- Non perturbative tool by perturbation theory

- ► Stationary Variance ⇒ Physical and sensible solution
- Non perturbative tool by perturbation theory
- ► Feynman gauge unexplored ⇒ confirm of Landau-gauge scenario (Dynamical gluon mass, finite ghost dressing function)

- ► Stationary Variance ⇒ Physical and sensible solution
- Non perturbative tool by perturbation theory
- Feynman gauge unexplored

 confirm of Landau-gauge scenario (Dynamical gluon mass, finite ghost dressing function)
- ► The method can be improved in many ways (more general gauge choice, dimensional regularization, finite external background field...)

- ► Stationary Variance ⇒ Physical and sensible solution
- Non perturbative tool by perturbation theory
- Feynman gauge unexplored

 confirm of Landau-gauge scenario (Dynamical gluon mass, finite ghost dressing function)
- The method can be improved in many ways (more general gauge choice, dimensional regularization, finite external background field...)
- ► Inclusion of Fermions is straightforward ⇒ QCD by Stationary Variance

- ► Stationary Variance ⇒ Physical and sensible solution
- Non perturbative tool by perturbation theory
- Feynman gauge unexplored

 confirm of Landau-gauge scenario (Dynamical gluon mass, finite ghost dressing function)
- The method can be improved in many ways (more general gauge choice, dimensional regularization, finite external background field...)
- ▶ Inclusion of Fermions is straightforward ⇒ QCD by Stationary Variance

THANK YOU

Variational Study of SU(3) Gauge Theory by Stationary Variance

The Stationary Variance as a tool for QCD

Fabio Siringo

Department of Physics and Astronomy University of Catania, Italy

DISCRETE 2014 - London, 2-6 December 2014

SU(3) Yang-Mills by Stationary Variance GHOST DRESSING FUNCTION

TWO-POINT NON-LOCAL VERTEX

$$S[\Psi] = \int \Psi_a(x) \Delta^{-1}{}_{ab}(x, y) \Psi_b(y) dx dy + \int \mathcal{L}_{int}(x) dx$$

 $\Delta_{ab}(x,y)$ = standard free-particle propagators

Def.
$$\rightarrow S_0[g; \Psi] = \int \Psi_a(x) g^{-1}{}_{ab}(x, y) \Psi_b(y) dxdy.$$

$$S_I[\Psi] = \int \Psi_a(x) v_2^{ab}(x, y) \Psi_b(y) dxdy + \int \mathcal{L}_{int}(x) dx$$

where the new non-local vertex v_2 is

$$v_2^{ab}(x,y) = \left[\Delta^{-1}{}_{ab}(x,y) - g^{-1}{}_{ab}(x,y)\right] =$$

Self Energy
$$\rightarrow$$
 $\Sigma^{ab}_{v_2} = g^{-1}{}_{ab}(x,y) - \Delta^{-1}{}_{ab}(x,y)$

VACUUM GRAPHS (scalar theory)

$$\mathcal{L}_I = v_0 + v_1 \phi(x) + v_3 \phi^3(x) + v_4 \phi^4(x) + \int \phi(x) v_2(x, y) \phi(y) d^4y$$

SELF ENERGY GRAPHS (scalar theory)

$$\mathcal{L}_{I} = v_{0} + v_{1}\phi(x) + v_{3}\phi^{3}(x) + v_{4}\phi^{4}(x) + \int \phi(x)v_{2}(x,y)\phi(y)d^{4}y$$

$$-i\Sigma = \frac{V_2}{2} + \frac{V_4}{3x4} + \frac{V_2}{4!} + \frac{V_4}{(4x3)(4x3)} + \frac{V_3}{3(3!)} + \frac{V_4}{4!} + \frac{V_4}{4!} + \frac{V_2}{(2x2)} + \frac{V_2}{(4x3)(4x3)} + \frac{V_2}{4!} + \frac{V_4}{4!} + \frac$$

GENERAL CONNECTION

F. Siringo, Phys. Rev. D 88, 056020 (2013), arXiv:1308.1836

Stationary Equations

GAUSSIAN EFFECTIVE POTENTIAL (GEP)

The first order optimization equation

$$\frac{i}{2}\Sigma_1 = \frac{\delta V^{(1)}}{\delta g} = 0$$

is equivalent to the self-consistency requirement $\Sigma_1=0$:

$$\Sigma_{1}^{ab} = \Sigma_{v2}^{ab} + \Sigma_{int}^{ab} = g_{ab}^{-1} - \Delta_{ab}^{-1} - \delta M_{ab}^{2} = 0$$

yielding the gap equations of the GEP

$$g_{ab}^{-1} = \Delta_{ab}^{-1} + \delta M_{ab}^2$$
$$\delta M_{ab}^2 = -\Sigma_{int}^{ab}[g]$$

A COMPARISON OF STRATEGIES

Stationary Variance → Stationary V₂

$$0 = \frac{\delta V_2}{\delta g_{ab}(k)} = \pm \frac{i}{2} \left(\Sigma_2(k) - \Sigma_1(k) \right) \Longrightarrow \frac{\Sigma_2^{ba}(k) = \Sigma_1^{ba}(k)}{\sum_{k=1}^{ba} (k)}$$

A COMPARISON OF STRATEGIES

Stationary Variance \rightarrow Stationary V_2 $0 = \frac{\delta V_2}{\delta a_1(k)} = \pm \frac{i}{2} \left(\Sigma_2(k) - \Sigma_1(k) \right) \Longrightarrow \frac{\Sigma_2^{ba}(k) = \Sigma_1^{ba}(k)}{2}$

Minimal Sensitivity \rightarrow Stationary $V^{(2)} = V_0 + V_1 + V_2$ $0 = \frac{\delta V^{(2)}}{\delta g(k)} = \pm \frac{i}{2} \Sigma_2(k) \Longrightarrow \frac{\Sigma_2(k) = 0}{\delta g(k)}$ but $V_2 < 0$ and $V^{(2)}$ can be unbounded \rightarrow no solutions

A COMPARISON OF STRATEGIES

Stationary Variance \rightarrow Stationary V_2 $0 = \frac{\delta V_2}{\delta g_{+}(k)} = \pm \frac{i}{2} \left(\Sigma_2(k) - \Sigma_1(k) \right) \Longrightarrow \frac{\Sigma_2^{ba}(k) = \Sigma_1^{ba}(k)}{2}$

- Minimal Sensitivity \rightarrow Stationary $V^{(2)} = V_0 + V_1 + V_2$ $0 = \frac{\delta V^{(2)}}{\delta g(k)} = \pm \frac{i}{2} \Sigma_2(k) \Longrightarrow \frac{\Sigma_2(k) = 0}{\delta g(k)}$ but $V_2 < 0$ and $V^{(2)}$ can be unbounded \rightarrow no solutions
- ► GEP: optimal g(x,y) fixed at higher orders $0 = \frac{\delta V^{(1)}}{\delta g(k)} = \pm \frac{i}{2} \Sigma_1(k) \Longrightarrow \frac{\Sigma_1(k) = 0}{(\text{useless when } \langle \mathcal{L}_{int} \rangle = 0} \rightarrow g(x,y) = \Delta(x,y))$

All of them can be extended to higher orders Convergence \Longrightarrow differences should decrease order by order

The choice $\xi = 1$ would simplify things if

$$D^{ab}_{\mu\nu}(p) = \delta_{ab}\eta_{\mu\nu}D(p) = \delta_{ab}\eta_{\mu\nu}\frac{f(p)}{-p^2} = f(p)D_{0\mu\nu}^{ab}$$

The choice $\xi = 1$ would simplify things if

$$D^{ab}_{\mu\nu}(p) = \delta_{ab}\eta_{\mu\nu}D(p) = \delta_{ab}\eta_{\mu\nu}\frac{f(p)}{-p^2} = f(p)D_{0\mu\nu}^{ab}$$

but at each order of P.T., in Feynman gauge

$$D^{(n)}{}_{\mu\nu}(p) = D^{(n)}(p)P_{\mu\nu} + rac{p_{\mu}p_{\nu}}{p^4}, ext{ where } P_{\mu\nu} = \eta_{\mu\nu} - rac{p_{\mu}p_{\nu}}{p^2}$$

The choice $\xi = 1$ would simplify things if

$$D^{ab}_{\mu\nu}(p) = \delta_{ab}\eta_{\mu\nu}D(p) = \delta_{ab}\eta_{\mu\nu}\frac{f(p)}{-p^2} = f(p)D_{0\mu\nu}^{ab}$$

but at each order of P.T., in Feynman gauge

$$D^{(n)}_{\mu\nu}(p) = D^{(n)}(p)P_{\mu\nu} + \frac{p_{\mu}p_{\nu}}{p^4}$$
, where $P_{\mu\nu} = \eta_{\mu\nu} - \frac{p_{\mu}p_{\nu}}{p^2}$

Here we have the freedom of taking $D^{ab}_{\mu\nu}(p)$ as general as we can (no mass would arise for the gluon at each order of P.T.)

Lorentz invariance $o D^{ab}_{\mu\nu}(p) = \delta_{ab} \left[\eta_{\mu\nu} A(p) + p_{\mu} p_{\nu} B(p) \right]$

Lorentz invariance $o D^{ab}_{\mu
u}(p) = \delta_{ab} \left[\eta_{\mu
u} A(p) + p_{\mu} p_{
u} B(p) \right]$

A less general choice $ightarrow D^{ab}_{\mu
u}(p) = \delta_{ab} t_{\mu
u}(p) D(p)$

$$\frac{\delta}{\delta D(p)} = \sum_{ab,\mu\nu} \int \frac{\mathrm{d}^4k}{(2\pi)^4} \frac{\delta D_{\mu\nu}^{ab}(\vec{k})}{\delta D(p)} \frac{\delta}{\delta D_{\mu\nu}^{ab}(k)} = \sum_{ab,\mu\nu} \delta_{ab} t_{\mu\nu}(p) \frac{\delta}{\delta D_{\mu\nu}^{ab}(p)}$$

SU(3) Yang-Mills by Stationary Variance LAZY GAUGE

Lorentz invariance $o D^{ab}_{\mu\nu}(p) = \delta_{ab} \left[\eta_{\mu\nu} A(p) + p_{\mu} p_{\nu} B(p) \right]$

A less general choice $ightarrow D^{ab}_{\mu
u}(p) = \delta_{ab} t_{\mu
u}(p) D(p)$

$$\frac{\delta}{\delta D(p)} = \sum_{ab,\mu\nu} \int \frac{\mathrm{d}^4k}{(2\pi)^4} \frac{\delta D_{\mu\nu}^{ab}(k)}{\delta D(p)} \frac{\delta}{\delta D_{\mu\nu}^{ab}(k)} = \sum_{ab,\mu\nu} \delta_{ab} t_{\mu\nu}(p) \frac{\delta}{\delta D_{\mu\nu}^{ab}(p)}$$

Defining $\Pi_n(p) = \frac{1}{4(N^2-1)} \sum_{ab,\mu\nu} \delta_{ab} t_{\mu\nu}(p) \Pi_n^{\mu\nu,ab}(p)$ the stationary equation reads

$$\frac{\delta V_n}{\delta D_{n\nu}^{ab}(p)} = \frac{i}{2} \left(\Pi_n^{\nu\mu,ba}(p) - \Pi_{n-1}^{\nu\mu,ba}(p) \right) \Longrightarrow \Pi_2(p) = \Pi_1(p)$$

Lorentz invariance $o D^{ab}_{\mu
u}(p) = \delta_{ab} \left[\eta_{\mu
u} A(p) + p_{\mu} p_{
u} B(p)
ight]$

A less general choice $ightarrow D^{ab}_{\mu
u}(p) = \delta_{ab} t_{\mu
u}(p) D(p)$

$$\frac{\delta}{\delta D(p)} = \sum_{ab,\mu\nu} \int \frac{\mathrm{d}^4k}{(2\pi)^4} \frac{\delta D_{\mu\nu}^{ab}(k)}{\delta D(p)} \frac{\delta}{\delta D_{\mu\nu}^{ab}(k)} = \sum_{ab,\mu\nu} \delta_{ab} t_{\mu\nu}(p) \frac{\delta}{\delta D_{\mu\nu}^{ab}(p)}$$

Defining $\Pi_n(p) = \frac{1}{4(N^2-1)} \sum_{ab,\mu\nu} \delta_{ab} t_{\mu\nu}(p) \Pi_n^{\mu\nu,ab}(p)$ the stationary equation reads

$$\frac{\delta V_n}{\delta D_{nn}^{ab}(p)} = \frac{i}{2} \left(\Pi_n^{\nu\mu,ba}(p) - \Pi_{n-1}^{\nu\mu,ba}(p) \right) \Longrightarrow \Pi_2(p) = \Pi_1(p)$$

Lazy gauge $\rightarrow t_{\mu\nu} = \eta_{\mu\nu}$

$$S[\Psi] \approx \int \Psi_a(x) G^{-1}{}_{ab}(x, y) \Psi_b(y) dx dy$$

$$S_I = \int \Psi_a(x) \left[G^{-1}{}_{ab}(x, y) - g^{-1}{}_{ab}(x, y) \right] \Psi_b(y) dx dy$$

 $\Sigma_1=g^{-1}-G^{-1} o ext{higher-order graphs are reducible}$ $\Sigma_2=\Sigma_1\ g\ \Sigma_1\ o ext{then}\ \Sigma_1\ ext{factorizes}$

$$\Sigma_1^{ab}(k) = 0$$
 (fixed first order GEP)

$$\Sigma_1^{ac}(k) \left[\delta_{cb} - g_{cd}(k) \Sigma_1^{db}(k) \right] = 0$$
 (minimal variance)

$$\Sigma_1^{ac}(k) \left[g_{cd}(k) \Sigma_1^{db}(k) \right] = 0$$
 (minimal sensitivity)

They are all satisfyed by $\Sigma_1 = 0 \Longrightarrow g_{ab}(k) = G_{ab}(k)$ (exact)

