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Outline

• lepton mixing: parametrization and data

• combination of flavor and CP symmetries: general idea

• highlights of survey of Gf = ∆(3n2) and Gf = ∆(6n2) and CP

• examples for predictions of 0νββ decay and leptogenesis

• conclusions
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Lepton mixing: parametrization

Parametrization (PDG)

UPMNS = Ũ diag(1, eiα/2, ei(β/2+δ))

with

Ũ =









c12c13 s12c13 s13e
−iδ

−s12c23 − c12s23s13e
iδ c12c23 − s12s23s13e

iδ s23c13

s12s23 − c12c23s13e
iδ −c12s23 − s12c23s13e

iδ c23c13









and sij = sin θij , cij = cos θij
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Lepton mixing: data

Global fits (Gonzalez-Garcia et al. (’14) [after Neutrino’14])

best fit and 1σ error 3σ range

sin2 θ13 = 0.0219+0.0010
−0.0011 0.0188 ≤ sin2 θ13 ≤ 0.0251

sin2 θ12 = 0.304+0.012
−0.012 0.270 ≤ sin2 θ12 ≤ 0.344

sin2 θ23 =







[0.451+0.06
−0.03]

0.577+0.027
−0.035

0.385 ≤ sin2 θ23 ≤ 0.644

δ =
(

1.39+0.37
−0.33

)

π 0 ≤ δ ≤ 2π

α , β unconstrained
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Lepton mixing: data

Global fits NH [IH] (Gonzalez-Garcia et al. (’14) [after Neutrino’14])

||UPMNS|| ≈









0.83 0.55 0.15

0.39[4] 0.64[57] 0.66[75]

0.41[5] 0.54[62] 0.73[64]









and no information on Majorana phases
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Lepton mixing: data

Global fits NH [IH] (Gonzalez-Garcia et al. (’14) [after Neutrino’14])

||UPMNS|| ≈









0.83 0.55 0.15

0.39[4] 0.64[57] 0.66[75]

0.41[5] 0.54[62] 0.73[64]









and no information on Majorana phases

⇓
Mismatch in lepton flavor space is large!
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Lepton mixing: data

Global fits NH [IH] (Gonzalez-Garcia et al. (’14) [after Neutrino’14])

||UPMNS|| ≈









0.83 0.55 0.15

0.39[4] 0.64[57] 0.66[75]

0.41[5] 0.54[62] 0.73[64]









and no information on Majorana phases

⇓
CP phases have not been measured up to now!
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Lepton mixing: data

Global fits NH [IH] (Gonzalez-Garcia et al. (’14) [after Neutrino’14])

||UPMNS|| ≈









0.83 0.55 0.15

0.39[4] 0.64[57] 0.66[75]

0.41[5] 0.54[62] 0.73[64]









and no information on Majorana phases

⇓
Use flavor and CP symmetry to explain/predict these features
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General idea

• interpret this mismatch in lepton flavor space as
mismatch of residual symmetries Gν and Ge

• if we want to predict lepton mixing, we have to derive this
mismatch

• let us assume that there is a symmetry, broken to Gν and Ge

• this symmetry is in the following a combination of a

finite, discrete, non-abelian symmetry Gf and CP
(Grimus/Rebelo (’95), Feruglio et al. (’12,’13), Holthausen et al. (’12), Chen et al. (’14))

[Masses do not play a role in this approach.]
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General idea

• three generations of LH leptons are in 3 of group Gf
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General idea

• three generations of LH leptons are in 3 of group Gf

• effect of residual symmetry Ge in charged lepton sector:
constraints on mass matrix combination m†

lml for ecmll

Q†m†
lmlQ = m†

lml

for Q generating Ge

• matrix Ue diagonalizing m†
lml is determined by choice of Q
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General idea

• three generations of LH leptons are in 3 of group Gf

• effect of residual symmetry Gν = Z2 × CP in neutrino sector:
constraints on Majorana mass matrix mν

ZTmνZ = mν and XmνX = m⋆
ν

for Z generating Z2 and CP transformation X

• matrix Uν diagonalizing mν is constrained by choice of Z and X
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General idea

• three generations of LH leptons are in 3 of group Gf

• residual symmetries Ge and Gν = Z2 × CP

• matrix Ue diagonalizing m†
lml is determined by choice of Q

• matrix Uν diagonalizing mν is constrained by choice of Z and X

• PMNS mixing matrix

UPMNS = U †
eUν

is constrained by choice of Ge and Gν , i.e. (Q,Z,X)

[Masses are free parameters in this approach.]
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General idea

UPMNS = U †
eΩνR(θ)Kν

• UPMNS contains one parameter θ

• permutations of rows and columns of UPMNS possible

• 3 unphysical phases are removed by Ue → UeKe

⇓

Predictions:
Mixing angles and CP phases are predicted

in terms of one parameter θ only,
up to permutations of rows/columns
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General idea
To remember

• CP transformation X also acts on flavor space: φi
CP−→ Xijφ

⋆
j

(X unitary)

• only "useful" choice in this context: X symmetric

• combination of flavor and CP symmetry requires

(X⋆AX)
⋆
= A′ with in general A 6= A′ and A, A′ ∈ Gf

• in particular Gν = Z2 × CP: XZ⋆ − ZX = 0

• LH leptons in irred rep 3 to be mapped into c.c. under CP
(Chen et al. (’14))
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Group theory of∆(3n2) and∆(6n2)

• ∆(3n2) can be characterized with three generators a, c
and d (Luhn et al. (’07))

a3 = 1 , cn = 1 , dn = 1 ,

cd = dc , aca−1 = c−1d−1 , ada−1 = c

• all elements of the group can be written as

g = aαcγdδ with α = 0, 1, 2 , 0 ≤ γ, δ ≤ n− 1

• for n ≥ 2: group is non-abelian and has irred three-
dimensional reps 3
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Group theory of∆(3n2) and∆(6n2)

• ∆(6n2) can be characterized with the generators a, c, d
and b (Escobar/Luhn (’08))

b2 = 1 , (ab)2 = 1 ,

bcb−1 = d−1 , bdb−1 = c−1

• all elements of the group can be written as

g = aαbβcγdδ with α = 0, 1, 2 , β = 0, 1 , 0 ≤ γ, δ ≤ n−1

• for n ≥ 2: group is non-abelian and has irred three-
dimensional reps 3
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Group theory of∆(3n2) and∆(6n2)

• we can choose as representation matrices for 3

a =









1 0 0

0 ω 0

0 0 ω2









with ω = e2πi/3

and

c =
1

3









1 + 2 cosφn 1− cosφn −

√

3 sinφn 1− cosφn +
√

3 sinφn

1− cosφn +
√

3 sinφn 1 + 2 cosφn 1− cosφn −

√

3 sinφn

1− cosφn −

√

3 sinφn 1− cosφn +
√

3 sinφn 1 + 2 cosφn









with φn =
2π

n
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Group theory of∆(3n2) and∆(6n2)

• for 3 of ∆(6n2) we also choose

b = ±









1 0 0

0 0 ω2

0 ω 0









• Nota bene: we always take 3 ∤ n and, if necessary, n even
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Choice of CP transformation

• we consider in the following X in 3 to be of the form

X = g P23 with P23 =









1 0 0

0 0 1

0 1 0









with g representing an element of the flavor group

• fulfills relevant conditions
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Choice of (Q, Z, X)

Ge = Z3 Z X
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Choice of (Q, Z, X)

Ge = Z3 Z X

...
...

...

can be reduced to

Q = a Z = cn/2

Z = b cm dm

X = a b cs d2s P23 (Case 1)

X = cs dt P23 (Case 2)

X = b cs dn−s P23 (Case 3a,

Case 3b.1)

– p. 22/70



Choice of (Q, Z, X)

Ge = Z3 Z X

...
...

...

special cases have been discussed

(Feruglio et al. (’12,’13), Ding/Zhou (’13,’14), Ding/King (’14), King/Neder (’14))

recently, also Ge 6= Z3 has been studied

(Ding et al. (’14))
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Choice of (Q, Z, X)

• Q = a with a being diagonal in our basis tells us

Ue = 1

• the form of Z = cn/2 does not depend on n

Z =
1

3









−1 2 2

2 −1 2

2 2 −1
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Choice of (Q, Z, X)

• Q = a with a being diagonal in our basis tells us

Ue = 1

• non-degenerate eigenvalue of Z = cn/2 has trimaximal
eigenvector
thus one column of PMNS mixing matrix is trimaximal
consequently, we find in Case 1 and Case 2

sin2 θ12 =
1

3 cos2 θ13
&

1

3
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Case 2:(Q,Z,X) = (a, cn/2, cs dt P23)

• consider all permutations of rows and columns:
either pattern is excluded
or results of mixing angles and CP phases can be formally
written in unique way

• opportune choice of parameters

u = 2 s− t , v = 3 t
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Case 2

• results for mixing angles

sin2 θ13 =
1

3

(

1− cos
(π u

n

)

cos 2θ
)

, sin2 θ12 =
1

2 + cos
(

π u
n

)

cos 2θ
,

sin2 θ23 =
1

2

(

1 +

√
3 sin

(

π u
n

)

cos 2θ

2 + cos
(

π u
n

)

cos 2θ

)
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Case 2

First consider only the reactor mixing angle
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Case 2

For the particular choice n = 8 you find
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Case 2

Results for mixing angles put together
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Case 2

Numerical example: n = 8

u sin2 θ13 sin2 θ12 sin2 θ23

u = 0 0.0218 0.341 0.5

u = −1 0.0254 0.342 0.387

u = 1 0.0254 0.342 0.613

– p. 31/70



Case 2

• results for CP phases
• in general all are non-trivial
• however, for particular values, e.g. θ = 0, some can

vanish
• most importantly:

sin δ and sinβ depend only on θ and u/n,
whereas sinα is the only quantity also depending on v

Here and in the following we set Kν = 1.
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Case 2

Numerical example: n = 8

u sin2 θ13 sin2 θ12 sin2 θ23 sin δ sin β

u = 0 0.0218 0.341 0.5 1 0

u = −1 0.0254 0.342 0.387 0 0

u = 1 0.0254 0.342 0.613 0 0

values of sinα for u = 0

sinα = 0 , sinα = 1 and sinα = −1/
√
2

values of sinα for u = ±1

sinα ≈ −0.924 and sinα ≈ 0.383
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Choice of (Q, Z, X)

• Q = a with a being diagonal in our basis tells us

Ue = 1

• non-degenerate eigenvalue of Z = b cm dm has eigenvector
of form

1√
6









−1 + e2πim/n

−ω2 + e2πim/n

−ω + e2πim/n
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Choice of (Q, Z, X)

• Q = a with a being diagonal in our basis tells us

Ue = 1

• this eigenvector can be identified with the third column
of the PMNS mixing matrix,
then we find sin2 θ13 and sin2 θ23 as functions of m/n

(Case 3a)
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Choice of (Q, Z, X)

• Q = a with a being diagonal in our basis tells us

Ue = 1

• this eigenvector can be identified with the first column
of the PMNS mixing matrix,
for m = n/2 the vector reads

1√
6









−2

ω

ω2
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Choice of (Q, Z, X)

• Q = a with a being diagonal in our basis tells us

Ue = 1

• this eigenvector can be identified with the first column
of the PMNS mixing matrix,
for m = n/2 we then know that

sin2 θ12 .
1

3

(special choice for Case 3b.1)
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Case 3a:

(Q,Z,X) = (a, b cm dm, b cs dn−s P23)

• sin2 θ13 and sin2 θ23 only depend on m/n

• m/n = 1/16 (m/n = 15/16) leads to good fit of data:

sin2 θ13 ≈ 0.0254 and sin2 θ23 ≈







0.613

0.387

• solar mixing angle depends on additional parameters s and θ
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Case 3a

Results for solar mixing angle for m/n = 1/16
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Case 3a

• CP phases depend on all parameters: m, n, s and θ

• CP phases are non-trivial in general

• particular choices of parameters lead to no CP violation
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Case 3a

Results for Dirac phase δ for m/n = 1/16
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Case 3a

Results for Majorana phases α and β for m/n = 1/16
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Case 3a

Numerical example: n = 16, m = 1

sin2 θ13 ≈ 0.0254 and sin2 θ23 ≈ 0.613

some viable choices of s

s sin2 θ12 sin δ sinα sinβ

s = 0 0.304 0 0 0

s = 1 0.304 0.458 0.939 0.662

0.304 0.0594 −0.939 0.0383

s = 3 0.317 −0.533 0 −0.357
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Neutrinoless double beta decay

• neutrinos can be their own antiparticles

• if true, a process called 0νββ decay is allowed
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Neutrinoless double beta decay

• neutrinos can be their own antiparticles

• if true, a process called 0νββ decay is allowed

mee =

∣

∣

∣cos
2 θ12 cos

2 θ13 m1 + sin
2 θ12 cos

2 θ13 e
iα m2 + sin

2 θ13 e
iβ m3

∣

∣

∣

using the experimentally preferred 3 σ ranges of sin2 θ13,
sin2 θ12 and of the mass splittings and
varying the unknown Majorana phases α and β and the light-
est neutrino mass we get ...
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Neutrinoless double beta decay

• neutrinos can be their own antiparticles

• if true, a process called 0νββ decay is allowed

excluded 0ΝΒΒ

ex
cl

ud
ed

co
sm

ol
og

y

10-4 0.001 0.010 0.100 110-4

0.001

0.010

0.100

1

m0 HeVL

m
ee
He

V
L
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Neutrinoless double beta decay

Case 2 with n = 8, u = 0 and normal ordering
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Neutrinoless double beta decay

Case 2 with n = 8, u = 0 and inverted ordering
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Neutrinoless double beta decay

Case 2 with n = 8, u = 1 and normal ordering
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Neutrinoless double beta decay

Case 2 with n = 8, u = 1 and inverted ordering
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Neutrinoless double beta decay

Case 3a with n = 16, m = 1, s = 0 and normal ordering
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Neutrinoless double beta decay

Case 3a with n = 16, m = 1, s = 0 and inverted ordering
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Neutrinoless double beta decay

Case 3a with n = 16, m = 1, s = 1 and normal ordering
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Neutrinoless double beta decay

Case 3a with n = 16, m = 1, s = 1 and inverted ordering
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Neutrinoless double beta decay

Case 3a with n = 16, m = 1, s = 3 and normal ordering
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Neutrinoless double beta decay

Case 3a with n = 16, m = 1, s = 3 and inverted ordering
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Leptogenesis

• baryon asymmetry of the Universe is measured well

YB =
nB − nB̄

s

∣

∣

∣

∣

0

= (8.77±0.24)×10−11
(WMAP (’08), Planck (’13))

• this asymmetry can be explained by decay of heavy
right-handed neutrinos (Fukugita/Yanagida (’86))

• the three Sakharov conditions are fulfilled (Sakharov (’67))
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Leptogenesis

• baryon asymmetry of the Universe is measured well

YB =
nB − nB̄

s

∣

∣

∣

∣

0

= (8.77±0.24)×10−11
(WMAP (’08), Planck (’13))

• this asymmetry can be explained by decay of heavy
right-handed neutrinos (Fukugita/Yanagida (’86))

• the three Sakharov conditions are fulfilled (Sakharov (’67))

• simplest scenario:

YB ∼ 10−3 ǫ η with ǫ CP asymmetry , η washout factor
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Leptogenesis

• CP asymmetry ǫi for right-handed neutrino Ni

ǫi = −Γ(Ni → Hl)− Γ(Ni → H⋆ l̄)

Γ(Ni → Hl) + Γ(Ni → H⋆ l̄)

• computation of ǫi in case of unflavored leptogenesis

ǫi = − 1

8π

∑

j 6=i

Im
(

(Ŷ †
DŶD)2ij

)

(Ŷ †
DŶD)ii

f(xji)

with ŶD = YDUR and UT
RMRUR = diag(M1,M2,M3)

[YD: Dirac neutrino coupling,
MR: Majorana mass matrix of right-handed neutrinos]
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Leptogenesis in models with flavor andCP

Case 2 with n = 8, u = 0, v = 0:
Prediction for ǫ1 and ǫ3 vs lightest neutrino mass

for normal ordering, κ = 1.6× 10−3

– p. 60/70



Leptogenesis in models with flavor andCP

Case 2 with n = 8, u = 0, v = 0:
Prediction for ǫ1 and ǫ3 vs lightest neutrino mass

for inverted ordering, κ = 1.6× 10−3
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Leptogenesis in models with flavor andCP

Case 2 with n = 8, u = 0, v = 6:
Prediction for ǫ1 and ǫ3 vs lightest neutrino mass

for normal ordering, κ = 1.6× 10−3

– p. 62/70



Leptogenesis in models with flavor andCP

Case 2 with n = 8, u = 0, v = 6:
Prediction for ǫ1 and ǫ3 vs lightest neutrino mass

for inverted ordering, κ = 1.6× 10−3
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Leptogenesis in models with flavor andCP

Case 2 with n = 8, u = 1, v = 3:
Prediction for ǫ1 and ǫ3 vs lightest neutrino mass

for normal ordering, κ = 1.6× 10−3
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Leptogenesis in models with flavor andCP

Case 2 with n = 8, u = 1, v = 3:
Prediction for ǫ1 and ǫ3 vs lightest neutrino mass

for inverted ordering, κ = 1.6× 10−3
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Leptogenesis in models with flavor andCP

Case 3a with n = 16, m = 1, s = 1:
Prediction for ǫ1 and ǫ3 vs lightest neutrino mass

for normal ordering, κ = 1.6× 10−3
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Leptogenesis in models with flavor andCP

Case 3a with n = 16, m = 1, s = 1:
Prediction for ǫ1 and ǫ3 vs lightest neutrino mass

for inverted ordering, κ = 1.6× 10−3

– p. 67/70



Leptogenesis in models with flavor andCP

Case 3a with n = 16, m = 1, s = 3:
Prediction for ǫ1 and ǫ3 vs lightest neutrino mass

for normal ordering, κ = 1.6× 10−3
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Leptogenesis in models with flavor andCP

Case 3a with n = 16, m = 1, s = 3:
Prediction for ǫ1 and ǫ3 vs lightest neutrino mass

for inverted ordering, κ = 1.6× 10−3
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Conclusions

• approach with flavor and CP symmetry very interesting:
allows to predict CP phases and free parameter θ helps to
accommodate mixing angles

• very rich structure of results for Gf = ∆(3n2) and ∆(6n2)

• comprehensive study and analytical understanding of results

• study of 0νββ decay and leptogenesis in progress:
constraints and correlations possible

Thank you for your attention.
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