Thermal duality and gravitational collapse

Mike Hewitt Canterbury Christ Church University

Introduction – Black holes and discrete symmetries

- The family of classical black hole solutions is parameterised by mass, charge (e.g. standard model gauge charges) and angular momentum.
- Consider the effect of discrete symmetries on them. C and P are satisfactory but T is not time reversed BHs are not allowed.
- Radical violation of T and by extension CPT symmetry.

Introduction – Black holes and discrete symmetries

- Proposed resolution exploits thermal duality another discrete symmetry.
- BHs can in principle be produced in scattering experiments. The highest energy cosmic rays have about enough energy to form quasi stable BHs on collision.
- Short lived BHs could be produced at LHC in some scenarios so symmetry is not entirely a theoretical question.

Time reversal and the black hole interior

• The exterior solution for a non-rotating BH is T symmetric, e.g. neutral case

$$ds^{2} = \left(1 - \frac{R_{s}}{R}\right)dt^{2} - \left(1 - \frac{R_{s}}{R}\right)^{-1}dR^{2} - R^{2}(d\theta^{2} + \sin^{2}\theta d\phi^{2})$$

- In the rotating case, T is equivalent to P in the exterior region, so still produces a permitted state.
- Continuation inward is possible, but necessarily violates T symmetry (Finkelstein metrics).
- Time becomes correlated with topology events inside can be LATER than those outside but not vice-versa.

T and the quantum black hole

• The quantum version of a black hole (Hawking BH) can be in thermal equilibrium with an external heat bath in what appears to be a T reversible state to an external observer.

Black holes as particle accelerators

- Black holes are the ultimate particle accelerator.
- Divergent centre of mass energy of collapsing matter or any individual particle pair.
- Necessity of singularity (Penrose theorem) to prevent infinite energy collisions.
- Particles are isolated by hitting a space-like singularity time must end abruptly to prevent infinite energy collisions.
- Note that a problematic situation is already set up as a horizon is formed and crossed.

Black holes and strings

- If the energy released by the gravitational accelerator were converted to strings, the possible number of states produces increases exponentially with energy (due to the string spectrum).
- Within a certain (fixed) distance of the horizon, the effective string entropy would match and then exceed the Hawking-Bekenstein entropy. (Hewitt, Susskind 1993)

Information problems with black holes

- Information from collapsing matter is destroyed.
- New information is randomly created in the Hawking radiation process.
- Reconciliation of information problematic due to the monogamy of entanglement.
- Divergent horizon entanglement entropy.
- Holographic limit problem.

Evaporating black hole

- Note the causal disconnection between the original information and late Hawking radiation.
- Monogamy of entanglement prevents reconciliation of 'lost' and 'found' information.

Information problems contd...

- Entangled Hawking pairs are formed close to the horizon: one is destroyed at the singularity along with infalling matter.
- Both effects inconsistent with quantum information theory.
- Both are related to T asymmetry in the BH.
- Common sense suggests some kind of re-emergence of the original information, but studies show this is difficult to achieve this is the firewall paradox.
- Some kind of near horizon buffer apparently needed to store information.

Surface entropy

- Relationship of the Hawking entropy to entanglement entropy is unclear (both are proportional to the horizon area).
- The Hawking entropy is finite, and depends only the area.

$$S = \frac{A}{4}$$

 The thermal entanglement entropy diverges, and depends on the number of particle species.

$$s = \frac{N}{180\pi r^3}$$
 $S = \frac{NR^2}{90r^2}$

Holographic information problem

- If we accept the holographic principle, then even immediately after crossing the horizon the information density of collapsing matter exceeds the holographic bound based on the Hawking-Bekenstein entropy.
- Any holographic bound must in any case be violated in the approach to a singularity with zero surface area.
- A positive result from the Fermilab Holometer experiment (for example) would raise the status of this issue.
- This suggests that a new physical mechanism is needed to store information just OUTSIDE where a horizon would form during collapse.

Should black holes really be possible?

- Non-conservation of quantum information and infinite energy particles suggest that a true black hole may be physically impossible.
- However, it seems that the horizon neighbourhood is unremarkable unless some novel effect intervenes.

A stage illusion?

- Maybe the black hole is like a cosmic stage illusion we are misdirected by reasonable assumptions to believe that something impossible has happened.
- How? Because our assumptions about the situation lead us to miss the possibility that the trick has ALREADY HAPPENED earlier than we think.
- In this case, the infalling matter is converted to another, radically different form BEFORE a closed horizon can form.

Assumptions

 Take thermal duality of heterotic string models seriously and look at the consequences.

• Equivalence principle valid.

• BUT: don't assume space near collapsed object is necessarily 'normal'.

Key features of the final state

- Thermodynamic properties of Hawking radiation are used as a guide.
- Embedded in and in equilibrium with equivalent surrounding vacuum for BH – excise the BH and replace with stringy region.
- A thermal state, close to equilibrium, which slowly evaporates if surrounded by vacuum.
- Thermal state is (statistically) T reversible.

Geometry and radiation

- Rindler vacuum for accelerated observer has depleted energy.
- Unruh radiation the normal vacuum is a thermal excited state relative to the Rindler vacuum.
- Equivalence principle relates Unruh and Hawking radiation.
- Conjecture: Possible to excise the near horizon region of a BH and replace with a hot black body.

Proposal

- A hot string phase can replace black holes.
- A mechanism can convert collapsing matter to this hot string phase, avoiding production of BHs.

Hagedorn transition

- Nature of Hagedorn transition: strings of arbitrary length form.
- Condensate formation makes sense of this as a phase transition.
- Thermalons alter the effective string tension string thermalon coupling.
- Effective Lagrangian for hot phase is like a Ginsburg-Landau superconductor.

$$\mathcal{L} = \frac{1}{2}\sqrt{-g}\partial_{\mu}\phi\partial^{\mu}\phi + \frac{1}{2}m^{2}(\beta)\phi^{2} + \frac{1}{4!}\lambda(\beta)\phi^{4} + O(\phi^{6})$$

- Distinctive feature of heterotic models: thermal duality.
- Heterotic models do not have D-branes (Polchinski) so only a string based model can work.

Thermalon trajectories

• Non – heterotic

$$M^2 = -8 + \frac{\beta^2}{\pi^2} = -8 + 4r^2$$

Heterotic thermalon trajectory

Thermalon interactions

Thermalons are expected to interact with normal matter, as they regulate the thermal string spectrum by increasing the effective string tension.

However, the thermalon mass diverges as T approaches 0, so there are no long range forces between ordinary particles associated with them.

Feynman diagrams

- Feynman diagrams: string worldsheet sphere (plus torus....) with (2,4,...) punctures for potential in the weak field limit.
- The amplitude is on shell at the upper and lower transition points.
- Off shell issue (scattering amplitude only relevant on shell) takes a full calculation out of range of these simplistic methods.
- However, we will use only qualitative properties of the couplings.

Final state

- Almost constant temperature in the bulk.
- Expulsion of gravitational gradients due to energy polarisation in a gravitational gradient is a consequence of the thermal duality of Z.
- Surface energy positive at the outside, negative at the inside (unstable...)
 of a shell region.
- Hyperbolic spatial geometry

$$du^{2} = \frac{dr^{2}}{1 + a^{-2}r^{2}} + r^{2}(d\theta^{2} + \sin^{2}\theta d\phi^{2})$$

makes the bulk properties AREA dependent.

• The final state is in thermal equilibrium - so has T symmetry.

Holographic properties of the final state

- Effective holography information is conserved and stored in a quasi 2 dimensional form
- Relationship to non-commutative geometry (the fuzzy sphere)
- Differential version shells as 'quotients' of fuzzy spheres.

Free energy of black holes and strings

- The free energy of black hole and that of a broken symmetry region filled with string should be the same (to first order in 1/M) as Hawking's entropy calculation applies to both.
- Free energy of a BH is half its total energy in the Schwarzschild case.
- Simple Hagedorn string as zero free energy.
- This model has positive free energy in the surface layer making agreement possible.

Thermalon weak field solutions

Effective mass depends on distance from the horizon

$$m^2(r) = \left(\frac{1}{4r^2} + 4r^2 - 6\right)$$

• Field equation in Rindler coordinates is

$$\frac{\partial^2 \phi}{\partial r^2} + \frac{1}{r} \frac{\partial \phi}{\partial r} = m^2(\beta(r))\phi = (\frac{1}{4r^2} + 4r^2 - 6)\phi$$

Accelerating wall solution

$$\phi = \epsilon \sqrt{r} \exp(-r^2)$$

 ϕ/ϵ for the weak heterotic solution

Back reaction on metric

The gravitational source

$$\mu = \rho + Tr(p)$$

is given by

$$\mu = \frac{1}{2} \frac{\partial(\theta V)}{\partial \theta} = \frac{1}{2} \frac{\partial(yV)}{\partial y} = \frac{1}{2} (\frac{1}{4r^2} - 3)\phi^2$$

where

$$\theta = \beta^{-2} = T^2$$

Red shifted source (seen from infinity)

- Note the negative energy density close to the horizon
- Source is zero at $r = \frac{1}{2\sqrt{3}}$

Area difference across the wall

$$2\pi\delta A \sim 4\pi GA \int_0^\infty \mu \beta dr = 2\pi GA(\frac{\pi}{2})^{3/2} \epsilon^2$$

This can be described by a 'warp factor' w:

$$w - 1 = G(\frac{\pi}{2})^{3/2} \epsilon^2$$

Mechanics of the solution

 High pressure region squeezed between accelerating boundaries with positive (leading side) and negative (trailing side) inertia.

 Newtonian mechanics allow this configuration to undergo self sustained acceleration.

Where is a thermal deformation possible?

- Impossibility of thermalon distortions in free space, due to warp factor
- Only become possible near a collapsed object.
- This is a geometric feature which allows a conversion mechanism from matter to deformed regions only near collapsed objects.
- Accelerated thermalon modes remain unexcited in empty space.

Thermalon traps

- There can be a 'thermalon trap' near collapsed objects, with temperatures defined relative to a local timelike Killing vector.
- Thermalon deformation gives an interpolation between Schwarzschild solutions of different mass
- Difference in area across the deformation is related to energy.

'Enhanced' black hole

- The thermalon trap around a black hole could be excited (non-zero deformation).
- This would give an increased surface area and mass to the collapsed entity.
- The number of quantum states would increase the hole would acquire 'stringy hair'
- The entropy would increase in proportion to the area difference across the thermalon region.
- This would maintain consistency with Hawking's law.

What does this give?

- So far have we have a possibility of thermalon energy 'in orbit' near horizon
- •
- Dressed black hole with extra information to specify observable state.
- Still a black hole at centre, still nothing to stop particles falling in.

Space filling solution

• A solution to the thermalon 'field equation' with constant φ and constant temperature is possible at the point (β_s, ϕ_s)

where T^2V is a minimum, so that the gravitational source vanishes.

- Such a point must exist by the mean value theorem.
- This gives a stable space filling thermalon solution.

Expelled gradients

The London response

$$\frac{\partial \mu}{\partial \beta}$$

has opposite signs on either side of the stable temperature for the bulk region.

- This has the effect of expelling gravitational gradients from the bulk.
- The gravitational source (positive and negative) is confined close to the boundaries.

Ball solution

Hyperbolic geometry of interior region

$$du^{2} = \frac{dr^{2}}{1 + a^{-2}r^{2}} + r^{2}(d\theta^{2} + \sin^{2}\theta d\phi^{2})$$
$$a^{-2} = -8\pi GV > 0$$
$$ds^{2} = dt^{2} - du^{2}$$

- Surface layer carries the gravitational source .
- Expelled gravitational gradients in the interior like a gravitational magnetic superconductor .

Intermediate cases

- Transition to strong phi gives increasing nonlinearity, with increasing area difference and thickness of shell.
- Pendulum analogy, with solution in elliptic functions.
- Parameterization of shells by warp factor.
- Deviation from spherical symmetry gives non-uniform thickness and warp.
- Build of opacity as shell thickens.

Transition mechanism requirements

Locality.

• Single particle energy conversion is possible.

Thermalisation of kinetic energy.

Space crushing model of transition

- Infalling matter couples to thermalon traps.
- Thermalon traps contract space as the energy of decelerating particles is converted.
- Deformation of space gives a thermalisation mechanism for kinetic energy.
- The trap is analogous to a crumple zone or shock front.
- Matter bound to a trap appears almost static to an outside observer, but moving close to c to an interior one.

Trap location

- Where will a trap form during gravitational collapse?
- A spherical shell of mass m falling onto existing collapsed object of mass M will cause a trap to form at a distance $d \sim G\left(\frac{GMm}{d}\right)$ from the surface, due to the Schwarzschild neck geometry.
- A point particle of mass m falling onto existing collapsed object of mass M will increase in kinetic energy for local static observers, so that at a distance d from the surface of M it has energy $\sim \frac{GMm}{d}$.
- This will form a horizon which will meet M when $d \sim G\left(\frac{GMm}{d}\right)$ and again $d \sim G\sqrt{Mm}$

Newtonian formalism

Re-arranging the criterion for trap formation in these cases gives $\frac{GMm}{d^2} \sim 1$ At a distance d from a virtual horizon, mass scales as $\frac{GMm}{d}$ and acceleration as $\frac{1}{d}$ due to blue-shift factors.

So the effective gravitational force scales as $\frac{GMm}{d^2}$, like the classical Newton formula.

Restoring the string tension scale, the criterion for trap formation becomes $F \sim T$ i.e. that the Newtonian gravitational force is comparable to the string tension as two bodies approach.

This shows the mutual nature of the trap formation process, and that it is a kind of epiphenomenon of the gravitational interaction.

Deformation generation mechanism

- Possibility of self-consistent feed mechanism for decelerating matter to thermalons on reaching a thermalon trap.
- 4 puncture model of simplest matter- thermalon interaction.
- Larmor radiation comparison: $P \sim (\dot{J})^2$
- Thermalon couples to left-moving energy (on heterotic strings).
- E and t are $\sim \sqrt{Mm}$ and $G\sqrt{Mm}$ at a trap, so $P \sim 1/G$ here.
- This is consistent with $P \sim GP^2$
- Power may drain consistently from matter into a thermalon trap.
- Earth's magnetic field analogy for a stable self-sustaining field and current configuration.

Spontaneous deceleration

- Spontaneous deceleration gives alternative reinforcing particle trajectories, in addition to the conventional one in Feynman's picture of quantum processes.
- Decelerating trajectories can be dominant, due to a higher overall probability (the entropy is related to many possible final states in the thermalon phase).
- Reduction in free energy during conversion shows a dissipative process.

Energy and distance scales

- Apply the criterion to typical particle energies in collapse:
- Electron and 10 solar mass object case.
- Energy release: ~ 10^{26} J
- Distance scale: $\sim 10^{-26}$ m

Spherical collapse case

- Thin spherical shell collapsing inwards.
- Partly realistic, due to extreme Lorentz contraction.
- Solution peels from the outside mass of shell remains critical for its area as it contracts.
- Kinetic energy progressively converted to thermalon warp form.
- Space becomes longitudinally compressed.
- Similar to shock deceleration.

Single particle case

- Critical gravity surface develops 'finger' towards infalling particle.
- Nucleation begins as finger and particle meet.
- Similar to numerical simulations of merging BHs.
- Trap surface evolves into a spherical form (for radial collapse, zero angular momentum case).
- Energy diffuses around the thermalon trap.
- Radial compression is greatest the near particle location.

Colliding particles case

 Particle –particle collision case: both particles become string nucleation sites when their mutual gravity becomes critical (~T).

Energy propagation around a trap

• Thermalon Green's function determines transverse spread for point particle case.

• Increment of surface area is consistent with the \sqrt{Mm} scale - the extra area ~ Mm is comparable to the area over which thermalons spread around the trap as the particle falls to the existing surface.

Timescales and scaling.

- Time for conversion $\sim M^2$
- Time for diffusion across trap $\sim M^2$
- Time for evaporation $\sim M^3$ (as for a Hawking BH).
- Shell conversion would still be underway for collapsing astrophysical objects in their current state.
- Thickness of shells is $\sim \log(M)$ only a few hundred Planck lengths thick.
- They are effectively holograms of the collapsed objects.

Entanglement entropy

- No horizon in this model, so there is no infinite horizon entanglement.
- The Hawking entropy may be realised as an entanglement through mixing between even and odd thermal parity sectors, so that short and long string sectors become entangled.
- In this way, the field theory state is entangled with the long string sector, and has incomplete state information by itself.

Rotating black hole case

- Deceleration of charged particles should produce radiation.
- Forward and backward photons produced, relative to the direction of rotation.

Energy extraction mechanism?

$$E \sim p \frac{a}{2M}$$

for a (angular momentum per unit mass small) or

$$E \sim p$$

for near critical rotation.

Possibility of a strong Penrose mechanism and the production of high energy particles – if they can escape!