Recent results* from the ALICE experiment

Lee Barnby, University of Birmingham
for the ALICE Collaboration

* a biased selection
ALICE overview

• **Design considerations**
 – High multiplicity environment
 • see next picture
 – Particle identification (PID)
 – Low p_T coverage ($B = 0.5$ T)

• **Datasets**

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Pb-Pb (2010)</td>
<td>2.76 TeV</td>
<td>10 μb</td>
</tr>
<tr>
<td>Pb-Pb (2011)</td>
<td>2.76 TeV</td>
<td>0.1 nb</td>
</tr>
<tr>
<td>pp (2010)</td>
<td>7 TeV</td>
<td>11 nb-1</td>
</tr>
<tr>
<td>pp (2011)</td>
<td>2.76 TeV</td>
<td>1.1 nb-1</td>
</tr>
<tr>
<td>pp (2011)</td>
<td>7 TeV</td>
<td>4.8 pb-1</td>
</tr>
<tr>
<td>pp (2012)</td>
<td>8 TeV</td>
<td>9.7 pb-1</td>
</tr>
<tr>
<td>p-Pb (2013)</td>
<td>5.02 TeV</td>
<td>15 nb</td>
</tr>
<tr>
<td>Pb-p (2013)</td>
<td>5.02 TeV</td>
<td>15 nb</td>
</tr>
</tbody>
</table>
Light flavour hadrons and (anti-)nuclei
Production of light flavour hadrons

• Thermal model fits
• Measurements of Nuclei
 – 3He and hypertriton ($^3\Lambda$H)
 – $\bar{\alpha}$ observation
 – Limits on exotic di-baryon particle production
A Large Ion Collider Experiment

Statistical model for particle yields

- dN/dy of particle species well described in Pb-Pb
- Single temperature ~156 MeV
- Discrepancy K^* and p
 - evidence for interactions with final hadronic stage

| Particle | dN/dy | ALICE Preliminary
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>$\pi^+\pi^-$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>K^+K^-</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$K^0\bar{K}^0$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$K^+\bar{K}^-$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$p+p$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Λ</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$\Omega+\bar{\Omega}$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>d</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$\frac{3}{2}H+\frac{3}{2}H$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$\frac{3}{2}He$</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Model</th>
<th>T (MeV)</th>
<th>V (fm3)</th>
<th>χ^2/NDF</th>
</tr>
</thead>
<tbody>
<tr>
<td>GSI-Heidelberg</td>
<td>156 ± 2</td>
<td>5330 ± 505</td>
<td>17.4/9</td>
</tr>
</tbody>
</table>

ALI-PREL-75448
K* suppression with centrality

- K*/K ratio shows clear suppression going from peripheral and pp collisions to central Pb-Pb
- ϕ/K does not show this
 - also others not shown
- Favoured explanation is re-scattering of decay daughters with final state hadrons
 - \(T_{K^*} \sim 4 \text{ fm/c} \)
Light nuclei measurements

Pb-Pb, 2011 run, $\sqrt{s_{NN}} = 2.76$ TeV

TPC ionization signal (a.u.)

$\frac{p}{Z}$ (GeV/c)
\(^3\)He measurement

- Measurements over large \(p_T\) range
- Fits with overall model of hydrodynamic expansion

\[
\frac{1}{N_{ev}} \frac{d^2N}{d^2p_T} ((GeV/c)^2)\]

ALICE preliminary

\[^3\text{He}\]

\begin{align*}
\text{Pb-Pb, } \sqrt{s_{NN}} = 2.76 \text{ TeV} \\
\text{0-20\%} & \quad \text{20-80\%} \\
\text{blast-wave fits} & \\

\end{align*}
Hypertriton measurement

- Extracted $^3_\Lambda$H signal
- Branching ratio not well known

- Described in thermal model even though weakly bound $B_\Lambda = 130$ keV
- Favours equilibrium model
\(\bar{\alpha} \) production

- First observed in heavy-ion collisions at RHIC
- ALICE measures in defined centrality interval to compare to other light nuclei
Exotic di-baryon limits

- Success of thermal model encouraged searches for other states
- H-dibaryon ($\Lambda-\Lambda$)
- Bound state ($\Lambda-N$)
- Weak decay modes
- 99% limits are factor of ~10 below the predictions
Momentum spectra, nuclear modification factors and p_T-dependent
Momentum spectra

- Pb-Pb and p-Pb compared
- low-p_T
- mid- to high-p_T
- R_{pPb}, Cronin, no high-p_T enhancement
- ie no effects from nuclear p.d.f2
Charged particle nuclear modification factor

\[R_{pPb} = \frac{dN_{pPb}/dp_T}{N_{coll} dN_{pp}/dp_T} \]

- ALICE finds no evidence for \(R_{pPb} \neq 1 \) at high \(p_T \)

![Graph showing charged particle nuclear modification factor](image-url)
R_{pPb} high-p_T comparisons

- CMS and ATLAS see rise to values > 1
- However jets do not show this rise
- Need more data including $\sqrt{s}=5$ TeV pp collisions
“Cronin” enhancement - identified particles

- Enhanced production at moderate p_T (~3 GeV/c)
- First observed, at lower \sqrt{s}, Cronin et al PRD 11, 3105 (1975)
- Traditionally explained by multiple soft scattering prior to hard interaction
“Cronin” enhancement - identified particles

- Effect absent for π, larger for p
“Cronin” enhancement

- Effect absent for π, larger for p
- K are very close to π
- Clear mass-dependence to effects
“Cronin” enhancement

- Apparently reaches even higher values for Ξ
- Mass ordering reminiscent of collective behaviour (hydrodynamics?)

\[R_{p\text{Pb}} \]
R_{pPb} of \phi at mid-rapidity

- However...
- \(m_{\phi} > m_p \) so this is not following this trend
\(R_{pPb} \) of \(\phi \) away from mid-rapidity

- \(\phi \) is the only particle for which we can perform measurements at different rapidities, via \(\mu \mu \) channel
- Picture is obviously more complicated
Possible collective effects

- Investigate collective effects
- p_T dependent particle ratios have centrality dependence in Pb-Pb …
- … and also a multiplicity dependence in p-Pb
Particle ratio in jets

• Investigate role of hard and soft mechanisms in the enhancement

• Ratio \((\Lambda+\bar{\Lambda})/2K_s\) measured in jets with \(\sum p_T\) charged > 10 GeV/c

\[\frac{\Lambda^0 + \bar{\Lambda}^0}{2K_s} \]

\[p_{T,V} > 10 \text{ GeV/c}, \ anti-k_T \]

\[|\eta_{\text{jet}}| < 0.75 - R, |\eta| < 0.75 \]

\[s_{NN} = 5.02 \text{ TeV} \]

0-10%, V0A Multiplicity Class (Pb-Side)

ALICE Preliminary

ALI-DER-89401
Further interesting results (in brief)
Ultra peripheral collisions (b>2r)
• LHC as γPb, γp and γγ collider to study
 – (Pb-Pb) exclusive vector meson (J/ψ) cross sections to investigate the gluon distribution in the nuclei
 – (Pb-Pb) results agree with EPS09 gluon distribution, favouring the presence of gluon shadowing
 – (Pb-Pb) ψ’ vector meson photo-production measured
 – (Pb-Pb) γγ cross section constraints QED processes

• 3 ALICE papers
 – arXiv:1406.7819, accepted PRL (J/ψ photo-production off protons in ultra-peripheral p-Pb collisions)
Quantum Coherence

• Extend $\pi\pi$ interferometry (HBT, aka femtoscopy) to 3- and 4-pion correlations
 – Increased sensitivity to coherent emission
• Measure r_3 ratio of 3π to 2π quantum correlations
• extrapolate $Q3 \rightarrow 0$
• fully chaotic means r_3

$P_{RC\ 89\ (2014)\ 024911}$

$\frac{r_3}{Q_{3}} = c_{3}(Q_{3}) - 1 \sqrt{(C_{2}^{2}\ QS_{12}(Q_{12}) - 1)(C_{2}^{2}\ QS_{13}(Q_{13}) - 1)(C_{2}^{2}\ QS_{23}(Q_{23}) - 1)}$
Summary

• ALICE measurements in Pb-Pb imply a picture where:
 – overall particle yields, even rare ones, closely match statistical thermal model
 – momentum spectra (and their harmonic decomposition) support collective effects described by hydrodynamics
 – hadrons at high-p_T from partons fragmentation are suppressed, regardless of colour charge

• p-Pb collisions show several surprising features analogous to Pb-Pb

• Heavy-ion collisions can serve as a laboratory for interesting physics not directly related to the quark gluon plasma
Backup
Statistical model - pp collisions

\[\frac{\pi^+ + \pi^-}{2}, \frac{K^+ + K^-}{2}, K^0, \frac{K^+_s + K^-_s}{2}, \phi, \frac{p + \bar{p}}{2}, \Lambda, \frac{\Xi^+ + \Xi^-}{2}, \Omega + \bar{\Omega}, d, \frac{^3H + ^3H}{2}, ^3\text{He} \]

\[dN/dy \]

Not in fit

ALICE Preliminary
pp \(s = 7 \) TeV

<table>
<thead>
<tr>
<th>Model</th>
<th>T (MeV)</th>
<th>V (fm)</th>
<th>(\gamma_\phi)</th>
<th>(\chi^2/\text{NDF})</th>
</tr>
</thead>
<tbody>
<tr>
<td>GSI-Heidelberg</td>
<td>146 ± 2</td>
<td>25 ± 2</td>
<td>1 (fix)</td>
<td>78.2/7</td>
</tr>
<tr>
<td>GSI-Heidelberg</td>
<td>150 ± 2</td>
<td>23 ± 2</td>
<td>0.88</td>
<td>45.6/7</td>
</tr>
</tbody>
</table>

\[\frac{\text{(mod.-data)} - \text{mod.}}{\text{mod.}} \]

ALI-PREL-74533
$\bar{\alpha}$ extraction with TOF

ALICE preliminary
Pb-Pb $\sqrt{s_{\text{NN}}} = 2.76$ TeV
negative particles

$\frac{p}{Z}$ (GeV/c)