F-Theory Model Building with Discrete Symmetry Discrete 2014

Andrew K Meadowcroft

University of Southampton

December 3, 2014

- Brief introduction to F-theory
- Discussion of an *SU*(5) GUT model with *A*₄ discrete symmetry based on:

Discrete Family Symmetry from F-Theory GUTs - A.Karozas,

S.F.King, G.K.Leontaris, AM.

Following from work:

Neutrino mass textures from F-theory - I. Antoniadis and G. K.

Leontaris

• Results and Prospects

In the context of this work we will consider a semi-local approximation:

- Local GUT surface a D7 Brane
- Points where the GUT surface intersects other D7 Branes give symmetry enhancements, where the maximum enhancement corresponds to a point of E_8

In the context of this work we will consider a semi-local approximation:

- Local GUT surface a D7 Brane
- Points where the GUT surface intersects other D7 Branes give symmetry enhancements, where the maximum enhancement corresponds to a point of E_8
- Symmetry enhancements are described by the Spectral cover equation...

= nar

In the context of this work we will consider a semi-local approximation:

- Local GUT surface a D7 Brane
- Points where the GUT surface intersects other D7 Branes give symmetry enhancements, where the maximum enhancement corresponds to a point of E_8
- Symmetry enhancements are described by the Spectral cover equation...

In the present work we consider an SU(5) GUT group, which by decomposition of $E_8 \rightarrow SU(5) \times SU(5)$ gives the bifundamental representations:

ELE NOR

A B < A B </p>

In the context of this work we will consider a semi-local approximation:

- Local GUT surface a D7 Brane
- Points where the GUT surface intersects other D7 Branes give symmetry enhancements, where the maximum enhancement corresponds to a point of E_8
- Symmetry enhancements are described by the Spectral cover equation...

In the present work we consider an SU(5) GUT group, which by decomposition of $E_8 \rightarrow SU(5) \times SU(5)$ gives the bifundamental representations:

$$248 \rightarrow (24,1) + (1,24) + (10,5) + (\bar{10},\bar{5}) + (5,\bar{10}) + (\bar{5},10)$$
 (1)

ELE NOR

A B < A B </p>

F-Theory - Spectral Cover Equation

The 10s of an SU(5) singularity are described by the Spectral cover equation:

$$C_5: b_5 + b_4s + b_3s^2 + b_2s^3 + b_1s^4 + b_0s^5 = b_0\prod_{i=1}^5(s+t_i)$$

The roots of the spectral cover equation are identified as the weights of the 5 of $SU(5)_{\perp}$, which in turn specifies the defining equation of the 10 representation of the GUT group:

$$\Sigma_{10}$$
: $t_i = 0$

F-Theory - Spectral Cover Equation

The 10s of an SU(5) singularity are described by the Spectral cover equation:

$$C_5: b_5 + b_4s + b_3s^2 + b_2s^3 + b_1s^4 + b_0s^5 = b_0\prod_{i=1}^5(s+t_i)$$

The roots of the spectral cover equation are identified as the weights of the 5 of $SU(5)_{\perp}$, which in turn specifies the defining equation of the 10 representation of the GUT group:

$$\Sigma_{10}$$
: $t_i = 0$

Similarly, we have a way to determine our five-curves of the GUT group:

$$\sum_{n=1}^{10} c_n s^{10-n} = b_0 \prod_{i < j} (s - t_i - t_j) = b_3^2 b_4 - b_2 b_3 b_5 + b_0 b_5^2.$$

This can be expressed in terms of the b_k coefficients by identification with the C_5 equation:

A.K. Meadowcroft (SHEP)

An F-theory A₄ model

Motivated by apparent symmetries of the neutrino sector, we might try to use our monodromy group to generate a realistic family symmetry. Historically A_4 has been associated with neutrino mixing, so we have focused on exploiting this case. This gives us a model with:

 $SU(5)_{\rm GUT} imes A_4 imes U(1)$.

An F-theory A₄ model

Motivated by apparent symmetries of the neutrino sector, we might try to use our monodromy group to generate a realistic family symmetry. Historically A_4 has been associated with neutrino mixing, so we have focused on exploiting this case. This gives us a model with:

 $SU(5)_{\rm GUT} imes A_4 imes U(1)$.

An A_4 monodromy requires a factorisation to a quartic part and a linear part:

$$\mathcal{C}_4 \times \mathcal{C}_1 : (a_1 + a_2 s + a_3 s^2 + a_4 s^3 + a_5 s^4) \ imes (a_6 + a_7 s) = 0$$

where a_i are necessarily in the same field as the original b_j - which prevents so-called branch cuts.

bi	a_j coefficients for 4+1					
b_0	a5 a7					
b_1	$a_5a_6 + a_4a_7$					
b_2	$a_4a_6+a_3a_7$					
b_3	$a_3 a_6 + a_2 a_7$					
b_4	$a_2a_6+a_1a_7$					
b_5	$a_1 a_6$					

An F-theory A_4 model - Which discrete symmetry?

The $C_4 \times C_1$ factorisation admits S_4 or any of its discrete subgroups as possible symmetries.

To distinguish between the different cases, we can use Galois theory and examine partially symmetric polynomials of the roots of C_4 . See work by G.Leontaris and I.Antoniadis - *arXiv:1308.1581* [hep-th]

We can also argue from the reducibleness of the representations

arXiv:1308.1581 [hep-th]

Having asserted an A_4 monodromy group, we must now determine what the matter curve content of the model must be. The defining equation of the ten-curves is:

$$b_5 = a_1 a_6 = 0$$
.

bi	a_j coefficients for 4+1				
b_0	a5a7				
b_1	$a_5 a_6 + a_4 a_7$				
<i>b</i> ₂	$a_4a_6+a_3a_7$				
<i>b</i> ₃	$a_{3}a_{6}+a_{2}a_{7}$				
<i>b</i> ₄	$a_2a_6+a_1a_7$				
b_5	a_1a_6				

Having asserted an A_4 monodromy group, we must now determine what the matter curve content of the model must be. The defining equation of the ten-curves is:

$$b_5 = a_1 a_6 = 0$$
.

bi	a_j coefficients for 4+1					
b_0	a5 a7					
b_1	$a_5 a_6 + a_4 a_7$					
<i>b</i> ₂	$a_4a_6+a_3a_7$					
<i>b</i> ₃	$a_3 a_6 + a_2 a_7$					
<i>b</i> 4	$a_2a_6+a_1a_7$					
b_5	a_1a_6					

Before applying any constraints from Galois theory, the defining equation of the fives is:

$$R = \left(a_2^2 a_7 + a_2 a_3 a_6 \mp a_0 a_1 a_6^2\right) \left(a_3 a_6^2 + \left(a_2 a_6 + a_1 a_7\right) a_7\right) \,,$$

where we have taken $a_4 = \pm a_0 a_6$ and $a_5 = \mp a_0 a_7$ to satisfy the tracelessness condition of SU(5): $b_1 = 0$

Curve	Equation	Homology	Ν	М
10 _a	a ₁	$\eta - 5c_1 - \chi$	-N	$M_{10_{a}}$
10 _b	a ₆	χ	+N	$M_{10_{b}}$
5 _c	$a_2^2 a_7 + a_2 a_3 a_6 \mp a_0 a_1 a_6^2$	$2\eta - 7c_1 - \chi$	-N	M_{5_c}
5 _d	$a_3a_6^2 + (a_2a_6 + a_1a_7)a_7$	$\eta - 3c_1 + \chi$	+N	M_{5_d}

Table : Table of matter curves, their homologies, charges and multiplicities.

We have an A_4 quadruplet and an A_4 singlet for the ten-curves, while for the five-curves we have a sextet and a quadruplet. This summary of our five and ten-curves demonstrates that any attempt to build a model will be difficult.

Curve	Equation	Homology	Ν	М
10 _a	a ₁	$\eta - 5c_1 - \chi$	-N	$M_{10_{a}}$
10 _b	a ₆	χ	+N	$M_{10_{b}}$
5 _c	$a_2^2 a_7 + a_2 a_3 a_6 \mp a_0 a_1 a_6^2$	$2\eta - 7c_1 - \chi$	-N	M_{5_c}
5 _d	$a_3a_6^2 + (a_2a_6 + a_1a_7)a_7$	$\eta - 3c_1 + \chi$	+N	M_{5_d}

Table : Table of matter curves, their homologies, charges and multiplicities.

We have an A_4 quadruplet and an A_4 singlet for the ten-curves, while for the five-curves we have a sextet and a quadruplet. This summary of our five and ten-curves demonstrates that any attempt to build a model will be difficult. Seek Irreducible representations of the group!

In order to find the irreducible representations we observe the following:

• The 10s of the GUT group are given by $t_i = 0$.

In order to find the irreducible representations we observe the following:

- The 10s of the GUT group are given by $t_i = 0$.
- Under our monodromy action $t_{i=1,2,3,4}$ are related under A_4

In order to find the irreducible representations we observe the following:

- The 10s of the GUT group are given by $t_i = 0$.
- Under our monodromy action $t_{i=1,2,3,4}$ are related under A_4
- t₅ remains independent.

In order to find the irreducible representations we observe the following:

- The 10s of the GUT group are given by $t_i = 0$.
- Under our monodromy action $t_{i=1,2,3,4}$ are related under A_4
- t₅ remains independent.

We may then write down the generators of the group for a quadruplet of A_4 , then use unitary matrices to block diagonalise into an irreducible basis. Doing this gives a singlet and triplet for the related weights:

$$t_s = t_1 + t_2 + t_3 + t_4 \tag{2}$$

$$\{t_a = t_1 + t_2 - t_3 - t_4, t_b = t_1 - t_2 + t_3 - t_4, t_c = t_1 - t_2 - t_3 + t_4\}$$

In order to find the irreducible representations we observe the following:

- The 10s of the GUT group are given by $t_i = 0$.
- Under our monodromy action $t_{i=1,2,3,4}$ are related under A_4
- t₅ remains independent.

We may then write down the generators of the group for a quadruplet of A_4 , then use unitary matrices to block diagonalise into an irreducible basis. Doing this gives a singlet and triplet for the related weights:

$$t_s = t_1 + t_2 + t_3 + t_4 \tag{2}$$

$$\{t_a = t_1 + t_2 - t_3 - t_4, t_b = t_1 - t_2 + t_3 - t_4, t_c = t_1 - t_2 - t_3 + t_4\}$$

So for the 10s of the GUT group we have a triplet and two singlets (one charged under t_5 , one under t_s).

An F-theory A₄ model

We can deploy a similar procedure when considering the 5s and 1s of the GUT group. Doing this, we see that we now have four 5s and a large number of singlets.

An F-theory A₄ model

We can deploy a similar procedure when considering the 5s and 1s of the GUT group. Doing this, we see that we now have four 5s and a large number of singlets.

Curve	Rep'n	N	М	Matter content	
101	$(10,3)_0$	0	M_{T1}	$3[M_{T1}Q_L + u_L^c(M_{T1} - N_Y) + e_L^c(M_{T1} + N_Y)]$	
102	$(10,1)_0$	-N	M_{T2}	$M_{T2}Q_L + u_L^c(M_{T2} - N_Y) + e_L^c(M_{T2} + N_Y)$	
103	$(10,1)_{t_5}$	+N	M_{T3}	$M_{T3}Q_L + u_L^c(M_{T3} - N_Y) + e_L^c(M_{T3} + N_Y)$	
51	$(5,3)_0$	0	M_{F1}	$3\left[M_{F1}\bar{d}_L^c + (M_{F1} + N_Y)\bar{L}\right]$	
5 ₂	(5,3) ₀	-N	M_{F2}	$3\left[M_{F2}\overline{D}+(M_{F2}+N_Y)\overline{H}_d) ight]$	
5 ₃	$(5,3)_{t_5}$	+N	M_{F3}	$3[M_{F3}D + (M_{F3} + N_Y)H_u]$	
54	$(5,1)_{t_5}$	0	M_{F4}	$M_{F4}ar{d}_L^c + (M_{F4} + N_Y)ar{L}$	

Table : Table summarising matter content for an $SU(5) \times A_4$ model

An F-theory A_4 model - N = 0

Choosing the simplest possible case, we assign N = 0 and select a realistic set of M_i :

 $M_{T1} = M_{F4} = 0$ $M_{T2} = 1$ $M_{T3} = 2$ $M_{F1} = M_{F2} = -M_{F3} = -1$

This will give us the necessary generations of quarks and leptons.

I DOC

Curve	Rep'n	R-sym	Matter content
101	$(10,3)_0$	1	_
$10_2 = T_3$	$(10, 1)_0$	1	$Q_{I} + u_{I}^{c} + e_{I}^{c}$
$10_{3} = T$	$(10,1)_{t_5}$	1	$2Q_L + 2u_L^c + 2e_L^c$
$\overline{5}_1 = F$	$(\bar{5},3)_0$	1	$3L + \overline{3}d_{I}^{c}$
$\overline{5}_2 = H_d$	$(\bar{5},3)_0$	0	$3\bar{D} + 3\bar{H_d}$
$5_3 = H_u$	$(5,3)_{t_5}$	0	$3D + 3H_{u}$
54	$(5,1)_{t_5}$	1	-
θ_a	$(1,3)_{-t_5}$	0	Higgs Flavons
θ_b	$(1,1)_{-t_5}$	0	Flavon
θ_{c}	$(1,3)_0$	1	ν_R
θ_d	$(1,3)_0$	0	Flavons
	$\begin{array}{c} \text{Curve} \\ 10_1 \\ 10_2 = T_3 \\ 10_3 = T \\ \overline{5}_1 = F \\ \overline{5}_2 = H_d \\ 5_3 = H_u \\ 5_4 \\ \theta_a \\ \theta_b \\ \theta_c \\ \theta_d \end{array}$	$\begin{array}{c c} Curve & Rep'n \\ \hline 10_1 & (10,3)_0 \\ 10_2 = T_3 & (10,1)_0 \\ 10_3 = T & (10,1)_{t_5} \\ \hline 5_1 = F & (\overline{5},3)_0 \\ \hline 5_2 = H_d & (\overline{5},3)_0 \\ 5_3 = H_u & (5,3)_{t_5} \\ 5_4 & (5,1)_{t_5} \\ \theta_a & (1,3)_{-t_5} \\ \theta_b & (1,1)_{-t_5} \\ \theta_c & (1,3)_0 \\ \theta_d & (1,3)_0 \end{array}$	$\begin{array}{c ccc} Curve & Rep'n & R-sym \\ \hline 10_1 & (10,3)_0 & 1 \\ 10_2 = T_3 & (10,1)_0 & 1 \\ 10_3 = T & (10,1)_{t_5} & 1 \\ \hline 5_1 = F & (\overline{5},3)_0 & 1 \\ \hline 5_2 = H_d & (\overline{5},3)_0 & 0 \\ 5_3 = H_u & (5,3)_{t_5} & 0 \\ 5_4 & (5,1)_{t_5} & 1 \\ \theta_a & (1,3)_{-t_5} & 0 \\ \theta_b & (1,1)_{-t_5} & 0 \\ \theta_c & (1,3)_0 & 1 \\ \theta_d & (1,3)_0 & 0 \\ \end{array}$

This will give us the necessary generations of quarks and leptons.

Table : Table of Matter content in N = 0 model

From this model, the Top-type quark couplings are non-renormalisable. This is due to the t_5 charges present on the T and H_u curves, which must be canceled by GUT-singlets to form an invariant coupling.

From this model, the Top-type quark couplings are non-renormalisable. This is due to the t_5 charges present on the T and H_u curves, which must be canceled by GUT-singlets to form an invariant coupling.

• $\langle H_u \rangle = (v, 0, 0)^{\mathsf{T}}$, • $\langle \theta_a \rangle = (a, 0, 0)^{\mathsf{T}}$, • $\langle \theta_b \rangle = b$.

From this model, the Top-type quark couplings are non-renormalisable. This is due to the t_5 charges present on the T and H_u curves, which must be canceled by GUT-singlets to form an invariant coupling.

•
$$\langle H_u \rangle = (v, 0, 0)^{\mathsf{T}}$$
,
• $\langle \theta_a \rangle = (a, 0, 0)^{\mathsf{T}}$,
• $\langle \theta_b \rangle = b$.

$$m_{u,c,t} = va \begin{pmatrix} y_3b^2 + y_4a^2 & y_3b^2 + y_4a^2 & y_2b \\ y_3b^2 + y_4a^2 & y_3b^2 + y_4a^2 & y_2b \\ y_2b & y_2b & y_1 \end{pmatrix}$$
(3)

From this model, the Top-type quark couplings are non-renormalisable. This is due to the t_5 charges present on the T and H_u curves, which must be canceled by GUT-singlets to form an invariant coupling.

• $\langle H_u \rangle = (v, 0, 0)^{\mathsf{T}}$, • $\langle \theta_a \rangle = (a, 0, 0)^{\mathsf{T}}$, • $\langle \theta_b \rangle = b$.

$$m_{u,c,t} = va \begin{pmatrix} y_3b^2 + y_4a^2 & y_3b^2 + y_4a^2 & y_2b \\ y_3b^2 + y_4a^2 & y_3b^2 + y_4a^2 & y_2b \\ y_2b & y_2b & y_1 \end{pmatrix}$$
(3)

Due to the so-called Rank Theorem the lightest quark remains massless It will get a small mass due to non-commutative fluxes and instanton effects.

An F-theory A₄ model - Bottom Quark/Charged Lepton Couplings

The Bottom quark and charged Lepton couplings come from the same operators in SU(5) GUTs. The mass matrix takes the form:

$$m_{1,2,3} = v \begin{pmatrix} y_7 d_2 b + y_{11} d_3 a & y_7 d_2 b + y_{11} d_3 a & y_3 d_2 \\ y_5 a & y_5 a & y_2 d_1 \\ y_4 b & y_4 b & y_1 \end{pmatrix} .$$
(4)

An F-theory A₄ model - Bottom Quark/Charged Lepton Couplings

The Bottom quark and charged Lepton couplings come from the same operators in SU(5) GUTs. The mass matrix takes the form:

$$m_{1,2,3} = v \begin{pmatrix} y_7 d_2 b + y_{11} d_3 a & y_7 d_2 b + y_{11} d_3 a & y_3 d_2 \\ y_5 a & y_5 a & y_2 d_1 \\ y_4 b & y_4 b & y_1 \end{pmatrix} .$$
(4)

Note: The Standard Model doublets of SU(2) are triplets under A_4 . As such we can again argue that the lightest generation gets a mass from some other mechanism.

An F-theory A₄ model - Neutrinos

The Neutrinos are unique in the SM in that they are the only particles that may be Majorana - that is, the neutrino could be its own anti-particle. The possible couplings allowed in this model are:

	Full coupling
Dirac-type mass	$\theta_c \cdot F \cdot H_u \cdot \theta_a$
	$\theta_c \cdot F \cdot H_u \cdot \theta_a \cdot (\theta_d)^n$
	$\theta_c \cdot F \cdot H_u \cdot \theta_b$
	$\theta_c \cdot F \cdot H_u \cdot \theta_b \cdot (\theta_d)^n$
Right-handed neutrinos	$M\theta_c \cdot \theta_c$
	$(\theta_d)^n \cdot \theta_c \cdot \theta_c$

The Neutrinos are unique in the SM in that they are the only particles that may be Majorana - that is, the neutrino could be its own anti-particle. The possible couplings allowed in this model are:

	Full coupling
Dirac-type mass	$\theta_c \cdot F \cdot H_u \cdot \theta_a$
	$\theta_c \cdot F \cdot H_u \cdot \theta_a \cdot (\theta_d)^n$
	$\theta_c \cdot F \cdot H_u \cdot \theta_b$
	$\theta_c \cdot F \cdot H_u \cdot \theta_b \cdot (\theta_d)^n$
Right-handed neutrinos	$M\theta_c \cdot \theta_c$
	$(\theta_d)^n \cdot \theta_c \cdot \theta_c$

Reminder: $\langle \theta_a \rangle = (a, 0, 0)^{\mathsf{T}}$. This preserves the S generator, which is associated with the Z_2 part of A_4 . Likewise, we have $\langle H_u \rangle = (v, 0, 0)^{\mathsf{T}}$.

An F-theory A_4 model - Neutrinos

The first four operators correspond to Dirac mass terms, coupling left and right-handed neutrinos. Taking the lowest order couplings for simplicity, the Dirac mass matrix is:

$$M_{D} = \begin{pmatrix} y_{0}va & z_{3}vd_{2}b & z_{2}vd_{3}b \\ z_{1}vd_{2}b & y_{1}va & y_{9}bv \\ z_{4}vd_{3}b & y_{8}bv & y_{1}va \end{pmatrix}$$
(5)

The first four operators correspond to Dirac mass terms, coupling left and right-handed neutrinos. Taking the lowest order couplings for simplicity, the Dirac mass matrix is:

$$M_{D} = \begin{pmatrix} y_{0}va & z_{3}vd_{2}b & z_{2}vd_{3}b \\ z_{1}vd_{2}b & y_{1}va & y_{9}bv \\ z_{4}vd_{3}b & y_{8}bv & y_{1}va \end{pmatrix}$$
(5)

Higher order operators may serve to add small corrections. To the Dirac matrix. Similarly the dominating contribution to the right-handed mass matrix is the diagonal operator:

$$M_R = M \left(\begin{array}{ccc} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{array} \right) \tag{6}$$

N.b. $y_0 = y_1 + y_2 + y_3$

An F-theory A₄ model - Neutrinos

In order to reduce the number of free parameters, we observe that the following definitions will simplify our analysis:

$$Y_{1} = \frac{y_{1}}{y_{0}} \le 1$$
$$Y_{2,3} = \frac{y_{8,9}b}{y_{0}a}$$
$$Z_{1} = \frac{z_{1}d_{2}b}{y_{0}a}$$
$$Z_{2} = \frac{z_{2}d_{3}b}{y_{0}a}$$
$$m_{0} = \frac{y_{0}^{2}v^{2}a^{2}}{M}$$

An F-theory A_4 model - Neutrinos

In order to reduce the number of free parameters, we observe that the following definitions will simplify our analysis:

$$Y_{1} = \frac{y_{1}}{y_{0}} \le 1$$
$$Y_{2,3} = \frac{y_{8,9}b}{y_{0}a}$$
$$Z_{1} = \frac{z_{1}d_{2}b}{y_{0}a}$$
$$Z_{2} = \frac{z_{2}d_{3}b}{y_{0}a}$$
$$m_{0} = \frac{y_{0}^{2}v^{2}a^{2}}{M}$$

We can the proceed to use the see-saw mechanism. Assuming a Type I see-saw, the effective operator $M_{eff} = M_D M_R^{-1} M_D^{\mathsf{T}}$, gives an effective mass matrix:

In order to reduce the number of free parameters, we observe that the following definitions will simplify our analysis:

$$Y_{1} = \frac{y_{1}}{y_{0}} \le 1$$
$$Y_{2,3} = \frac{y_{8,9}b}{y_{0}a}$$
$$Z_{1} = \frac{z_{1}d_{2}b}{y_{0}a}$$
$$Z_{2} = \frac{z_{2}d_{3}b}{y_{0}a}$$
$$m_{0} = \frac{y_{0}^{2}v^{2}a^{2}}{M}$$

We can the proceed to use the see-saw mechanism. Assuming a Type I see-saw, the effective operator $M_{eff} = M_D M_R^{-1} M_D^{\mathsf{T}}$, gives an effective mass matrix:

$$M_{eff} = m_0 \begin{pmatrix} 1 + Z_1^2 + Z_2^2 & Y_1Z_1 + Y_3Z_2 + Z_1 & Y_2Z_1 + Y_1Z_2 + Z_2 \\ Y_1Z_1 + Y_3Z_2 + Z_1 & Y_1^2 + Y_3^2 + Z_1^2 & Y_1(Y_2 + Y_3) + Z_1Z_2 \\ Y_2Z_1 + Y_1Z_2 + Z_2 & Y_1(Y_2 + Y_3) + Z_1Z_2 & Y_1^2 + Y_2^2 + Z_2^2 \end{pmatrix},$$
(7)

We proceed to numerically fit for known neutrino parameters, centering our analysis on the value:

$$R = \left| \frac{m_3^2 - m_2^2}{m_2^2 - m_1^2} \right| \,,$$

In this way, we are able to make predictions about the absolute neutrino mass scale in our model.

Parameter	Central value	$Min \to Max$
$\theta_{12}/^{\circ}$	33.57	32.82→34.34
$\theta_{23}/^{\circ}$	41.9	41.5→42.4
$\theta_{13}/^{\circ}$	8.73	8.37→9.08
$\Delta m^2_{21}/10^{-5} \mathrm{eV}$	7.45	$7.29 \rightarrow 7.64$
$\Delta m_{31}^2/10^{-3}{ m eV}$	2.417	$2.403 \rightarrow 2.431$
$R = rac{\Delta m_{31}^2}{\Delta m_{21}^2}$	32.0	$31.1 \rightarrow 33.0$

Table : Summary of neutrino parameters, using best fit values as found at nu-fit.org .

An F-theory A_4 model - Neutrinos

Figure : Plots of lines with the best fit value of R = 32 in the parameter space of (Y_1, Y_2) . Left: The full range of the space examined. Right: A close plot of a small portion of the parameter space taken from the full plot. The curves have (Y_3, Z_1, Z_2) values set as follows: A = (1.08, 0.05, 0.02), B = (1.08, 0.0, 0.08), C = (1.07, 0.002, 0.77), and D = (1.06, 0.01, 0.065).

A.K. Meadowcroft (SHEP)

F-theory Model Building

An F-theory A_4 model - Neutrinos

Figure : The figures show plots of two large neutrino mixing angles at their current best fit values. Left: Plot of $\sin^2(\theta_{12}) = 0.306$, Right: Plot of $\sin^2(\theta_{23}) = 0.446$. The curves have (Y_3, Z_1, Z_2) values set as follows: A = (1.08, 0.05, 0.02), B = (1.08, 0.0, 0.08), C = (1.07, 0.002, 0.77), and <math>D = (1.06, 0.01, 0.065).

A.K. Meadowcroft (SHEP)

An F-theory A4 model - Neutrinos

Inputs				
Y_1	0.08	0.09	0.09	0.10
Y ₂	1.09	1.10	1.10	1.11
Y ₃	1.07	1.08	1.08	1.09
Z_1	0.01	0.01	0.00	0.01
Z ₂	0.07	0.08	0.08	0.08
m_0	54.0meV	51.6meV	50.3meV	47.8meV
Outputs				
θ_{12}	33.5	33.2	33.1	32.8
θ_{13}	8.70	8.82	9.05	9.05
θ_{23}	41.9	41.7	41.7	41.5
m_1	53.4meV	51.1meV	49.8meV	47.3meV
<i>m</i> ₂	54.1meV	51.8meV	50.5meV	48.1meV
<i>m</i> 3	73.2meV	71.5meV	70.8meV	69.1meV

Table : Table of Benchmark values in the Parameter space, where all experimental constraints are satisfied within errors. These point are samples of the space of all possible points, where we assume θ_{23} is in the first octant. All inputs are given to two decimal places, while the outputs are given to 3s, f. =

A.K. Meadowcroft (SHEP)

F-theory Model Building

An F-theory A_4 model - Neutrinos

Outputs				
θ_{12}	33.5	33.2	33.1	32.8
θ_{13}	8.70	8.82	9.05	9.05
θ_{23}	41.9	41.7	41.7	41.5
m_1	53.4meV	51.1meV	49.8meV	47.3meV
<i>m</i> ₂	54.1meV	51.8meV	50.5meV	48.1meV
<i>m</i> 3	73.2meV	71.5meV	70.8meV	69.1meV

Parameter	Central value	$Min \to Max$
$\theta_{12}/^{\circ}$	33.57	32.82→34.34
$\theta_{23}/^{\circ}$	41.9	41.5→42.4
$\theta_{13}/^{\circ}$	8.73	8.37→9.08
$\Delta m_{21}^2/10^{-5} \mathrm{eV}$	7.45	7.29 ightarrow 7.64
$\Delta m_{31}^2 / 10^{-3} {\rm eV}$	2.417	$2.403 \rightarrow 2.431$
$R = \frac{\Delta m_{31}^2}{\Delta m_{21}^2}$	32.0	31.1 ightarrow 33.0

= 990

An F-theory A₄ model - Neutrinos

Outputs				
θ_{12}	33.5	33.2	33.1	32.8
θ_{13}	8.70	8.82	9.05	9.05
θ_{23}	41.9	41.7	41.7	41.5
m_1	53.4meV	51.1meV	49.8meV	47.3meV
<i>m</i> ₂	54.1meV	51.8meV	50.5meV	48.1meV
<i>m</i> 3	73.2meV	71.5meV	70.8meV	69.1meV

These benchmark values show that it is possible to fine-tune the free parameters of this model to satisfy the constraints on neutrino parameters from experiment.

• Model disfavours inverted hierarchy

Outputs				
θ_{12}	33.5	33.2	33.1	32.8
θ_{13}	8.70	8.82	9.05	9.05
θ_{23}	41.9	41.7	41.7	41.5
m_1	53.4meV	51.1meV	49.8meV	47.3meV
<i>m</i> ₂	54.1meV	51.8meV	50.5meV	48.1meV
<i>m</i> 3	73.2meV	71.5meV	70.8meV	69.1meV

These benchmark values show that it is possible to fine-tune the free parameters of this model to satisfy the constraints on neutrino parameters from experiment.

- Model disfavours inverted hierarchy
- Model prefers first octant θ_{23}

Outputs				
θ_{12}	33.5	33.2	33.1	32.8
θ_{13}	8.70	8.82	9.05	9.05
θ_{23}	41.9	41.7	41.7	41.5
m_1	53.4meV	51.1meV	49.8meV	47.3meV
<i>m</i> ₂	54.1meV	51.8meV	50.5meV	48.1meV
<i>m</i> 3	73.2meV	71.5meV	70.8meV	69.1meV

These benchmark values show that it is possible to fine-tune the free parameters of this model to satisfy the constraints on neutrino parameters from experiment.

- Model disfavours inverted hierarchy
- Model prefers first octant θ_{23}
- The absolute scale for the neutrino mass is $\geq 40 meV$, with most values being $\sim 50 meV$

Outputs				
θ_{12}	33.5	33.2	33.1	32.8
θ_{13}	8.70	8.82	9.05	9.05
θ_{23}	41.9	41.7	41.7	41.5
m_1	53.4meV	51.1meV	49.8meV	47.3meV
<i>m</i> ₂	54.1meV	51.8meV	50.5meV	48.1meV
<i>m</i> 3	73.2meV	71.5meV	70.8meV	69.1meV

These benchmark values show that it is possible to fine-tune the free parameters of this model to satisfy the constraints on neutrino parameters from experiment.

- Model disfavours inverted hierarchy
- Model prefers first octant θ_{23}
- The absolute scale for the neutrino mass is $\geq 40 meV$, with most values being $\sim 50 meV$
- The sum of neutrino masses is predicted to be < 200 meV

- F-theory provides a natural frame work to generate discrete groups
- The $SU(5) \times A_4$ model discussed is able to match known neutrino parameters, while also predicting an absolute mass scale for neutrinos of about $m_1 > 45 mev$
- The model insists upon a normal ordered hierarchy, with $\theta_{\rm 23}$ in the first octant
- In our next work we plan to examine D_4 models in F-theory

- 1 Discrete Family Symmetry from F-Theory GUTs A.Karozas, S.F.King, G.K.Leontaris, AM. *ArXiv:1406.6290*
- 2 Neutrino mass textures from F-theory I. Antoniadis and G. K. Leontaris, Eur. Phys. J. C 73 (2013) 2670 [arXiv:1308.1581 [hep-th]].
- 3 Aspects of F-Theory GUTs G.K.Leontaris,

F-Theory - Spectral Cover Equation

Elliptically fibred spaces are described by the Weierstrass equation:

$$y^{2} + a_{1}xy + a_{3}y = x^{3} + a_{2}x^{2} + a_{4}x + a_{6}$$
(8)

Since we are assuming an SU(5) unifying symmetry, the coefficients of the Weierstrass equation are constrained by the Kodaira classification of elliptic fibration to have vanishing orders:

$$a_1 = -b_5, \ a_2 = b_4 z, \ a_3 = -b_3 z^2, \ a_4 = b_2 z^3, \ a_6 = b_0 z^5.$$

The resulting equation can be simplified to the so-called spectral cover equation by means of well chosen homogenous coordinates $(z \rightarrow U, x \rightarrow V^2, y \rightarrow V^3)$, which may be written in terms of an affine parameter, $s = \frac{U}{V}$:

$$C_5: b_5 + b_4 s + b_3 s^2 + b_2 s^3 + b_1 s^4 + b_0 s^5 \tag{9}$$

Monodromy groups are discrete groups that **relate the roots** of the spectral cover equation. These are required by F-theory in order to allow for a tree level Top quark Yukawa:

 $5_H \times 10_M \times 10_M$ $t_j + t_k - 2t_i = 0$

In order for the charges to cancel, two of the weights must be identified by some monodromy action - Z_2 being the minimal case. This amounts to requiring that two of the roots of the spectral cover equation must not factorise:

$$(a_1 + a_2s + a_3s^2)(a_4 + a_5s)(a_6 + a_7s)(a_8 + a_9s) = 0$$

The monodromy is best understood by closely examining the quadratic part of the factorised spectral cover:

$$(a_1 + a_2 s + a_3 s^2) = 0$$

 $s_{\pm} = \frac{-a_2 \pm \sqrt{a_2 - 4a_1 a_3}}{2a_3}$

we see that since $\sqrt{a_2 - 4a_1a_3} = e^{i\theta/2}\sqrt{|a_2 - 4a_1a_3|}$, under $\theta \to \theta + 2\pi$, the two solutions interchange.

Since we do not know anything about the global geometry, in semi-local F-theory we must choose our monodromy group.

An F-theory A₄ model - Rank Theorem

Rank theorem (*arXiv: 0811.2417*) - In F-theory, the Yukawa couplings of quarks and leptons to the Higgs are given by triple overlap integral:

$$\lambda^{ij} = \int_{\mathcal{S}} \Lambda \Psi^i \Phi^j \,,$$

over their intersection in the GUT surface - S. Since this constitutes points of intsections (p), it amounts to a sum of the products of the wavefunctions at those points,

$$\lambda^{ij} = \sum_p \Lambda(p) \Psi^i(p) \Phi^j(p) \,.$$

The triple-intersection points of interest are those corresponding to the superpotential terms $10_M \cdot 10_M \cdot 5_{H_u}$ and $10_M \cdot \overline{5}_M \cdot \overline{5}_{H_d}$. Multiple triple-intersection points may exist. However, the minimal case will only have **one intersection** and so only **one Yukawa interaction**. We expect the sub-matrix of Yukawa interactions to have only one non-zero entry and as such to be trivially **rank one**.

A.K. Meadowcroft (SHEP)

Extra Stuff - Table of Operators

Coupling type	Generations	Full coupling
Top-type	Third generation	$T_3 \cdot T_3 \cdot H_u \cdot \theta_a$
	Third-First/Second generation	$T \cdot T_3 \cdot H_u \cdot \theta_a \cdot \theta_b$
		$T \cdot T_3 \cdot H_u \cdot (\theta_a)^2$
	First/Second generation	$T \cdot T \cdot H_u \cdot \theta_a \cdot (\theta_b)^2$
		$T \cdot T \cdot H_u \cdot (\theta_a)^2 \cdot \theta_b$
		$T \cdot T \cdot H_u \cdot (\theta_a)^3$
Bottom-type/Charged Leptons	Third generation	$F \cdot H_d \cdot T_3$
		$F \cdot H_d \cdot T_3 \cdot \theta_d$
	First/Second generation	$F \cdot H_d \cdot T \cdot \theta_b$
		$F \cdot H_d \cdot T \cdot \theta_a$
		$F \cdot H_d \cdot T \cdot \theta_a \cdot \theta_d$
		$F \cdot H_d \cdot T \cdot \theta_b \cdot \theta_d$
Neutrinos	Dirac-type mass	$\theta_c \cdot F \cdot H_u \cdot \theta_a$
		$\theta_c \cdot F \cdot H_u \cdot \theta_a \cdot \theta_d$
		$\theta_c \cdot F \cdot H_u \cdot \theta_b$
		$\theta_c \cdot F \cdot H_u \cdot \theta_b \cdot \theta_d$
	Right-handed neutrinos	$M\theta_c \cdot \theta_c$
		$(\theta_d)^n \cdot \theta_c \cdot \theta_c$

Table : Table of all mass operators for N = 0 model.

The generators for the triplets of A_4 are:

$$S = \begin{pmatrix} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & -1 \end{pmatrix} \qquad \qquad T = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0 \end{pmatrix}$$

The bases of the triplets are such that for two triplet $3_a = (a_1, a_2, a_3)^T$ and $3_b = (b_1, b_2, b_3)^T$ the product of those triplet $3_a \times 3_b = 1 + 1' + 1'' + 3_1 + 3_2$, behaves as:

$$1 = a_1b_2 + a_2b_2 + a_3b_3$$

$$1' = a_1b_2 + \omega a_2b_2 + \omega^2 a_3b_3$$

$$1'' = a_1b_2 + \omega^2 a_2b_2 + \omega a_3b_3$$

$$3_1 = (a_2b_3, a_3b_1, a_1b_2)^T$$

$$3_2 = (a_3b_2, a_1b_3, a_2b_1)^T$$