Magnetized Iron Neutrino Detectors (MIND) at LBNO & Baby-MIND

Etam NOAH - UNIGE

July 10, 2014

Etam NOAH - UNIGE

Magnetized Iron Neutrino Detectors (MIND

July 10, 2014 1 / 23

Introduction

Future neutrino detectors with MINDs

Etam NOAH - UNIGE

The B2 experiment: water $\nu \sigma$ measurements

The B2 experiment

July 10, 2014 4 / 23

The B2 experiment

Etam NOAH - UNIGE

Magnetized Iron Neutrino Detectors (MIND

July 10, 2014 5 / 23

Energy range of neutrino beams

- Although energy range at future neutrino beam facilities can extend to tens of GeV, area of interest is < 10 GeV:</p>
 - ▶ e.g. LBNO: first and second maxima, $3 < E_{\nu} < 6$ GeV and $1.2 < E_{\nu} < 1.8$ GeV;

Reconstruction efficiencies for μ^+ , from left: a) 3 cm steel, 1.5 cm scintillator. b) 2 cm/1.5 cm. c) 3 cm/3.5 cm. d) 2 cm/3.5 cm.

Etam NOAH - UNIGE

Reconstruction efficiencies for π^+ , from left: a) 3 cm steel, 1.5 cm scintillator. b) 2 cm/1.5 cm. c) 3 cm/3.5 cm. d) 2 cm/3.5 cm.

Etam NOAH - UNIGE

MIND (& TASD) prototyping

- Totally Active Scintillating Detector (TASD):
 - Stopping properties of π and μ (MICE EMR at RAL);
 - e and μ charge separation inside a B field, in particular e charge ID in ν_e interactions for the platinum channel at a NF: 0.5 5 GeV/c (MORPURGO).
- MIND:
 - μ charge ID, for wrong sign μ signature of a ν oscillation event: golden channel at νSTORM, NF: requires correct sign background rejection of 1 in 10⁴: test beam 0.8 to 5 GeV/c (babyMIND);
 - Hadronic shower reconstruction for identification of charged current ν interactions and rejection of neutral current ν interactions: test beam p/ π 0.5 to 9 GeV/c (babyMIND).
- Technology:
 - Better computing and new software tools are leading to better capabilities for event reconstruction BUT... Need test beam data to benchmark new reconstruction techniques;
 - Improvements in components (e.g. photosensors, electronics);
 - Review and update costing models for planned large detectors.

July 10, 2014 10 / 23

MICE Electron Muon Ranger (EMR)

Etam NOAH - UNIGE

Magnetized Iron Neutrino Detectors (MIND

July 10, 2014 11 / 23

MIND and TASD: H8 beamline in North Area

- ▶ Beam tests 2015;
- Requires beamline (studied by AIDA WP8.2.1).

MIND downstream of LAr at EHN1: option in WA105

Detector modules

- Extruded scintillator slabs produced at Uniplast company, Vladimir, Russia:
 - polysterene-based, 1.5% paraterphenyl (PTP) and 0.01% POPOP.
 - Dimensions: $900 \times 10 \times 7 \text{ mm}^3$
- Slabs are etched with a chemical agent (Uniplast) to create a 30-100 µm layer that acts as a diffusive reflector;
- WLS fiber embedded in 2 mm-deep groove along length of plastic slab and threaded through custom connectors either end;
- Of 10000 required bars, 3000 are produced.

Etam NOAH - UNIGE

July 10, 2014 14 / 23

- Philips digital SiPM in dark count mode;
- ▶ 64 pixels (16 × 4), 3000 cells/pixel, cell size: 59.4 × 64 μ m;
- Area within blue ring: 1.27×1.22 mm;
- Area with "high intensity": 1.00×1.02 mm.

Plastic scintillator cosmic tests

- Tests carried out to determine basic light yield and timing properties;
- ► Light collection: Kuraray wavelength shifting fiber, 1.0 mm diameter, ~1 m long, embedded in groove with Toshiba TSF451-50M silicon grease;
- Light readout: Hammamatsu MPPC (T2K) on both sides;
- Cosmic telescope:
 - two trigger counters;
 - upper one: 7 × 7 cm² (L.Y.) and 2 × 2 cm² (timing);
 - lower one: $10 \times 24 \ cm^2$.
 - measurement at counter center: light yield per MIP.

thr = 0.5 p.e.,22C Pulse width

Cross-talk After pulses

Sensitivity to magnetic field

<500 kHz
<100 ns
10-20%
10-20%

no July 10, 2014

16 / 23

Light yield: slabs with chemical reflector

Slab width	MPPC 1 L.Y.	MPPC 2 L.Y.	Σ _{L.Y.} [1+2]				
[mm]	[p.e.]	[p.e.]	[p.e.]				
Chemical reflector							
10	46.0	36.8	82.8				
20	39.7	35.7	75.4				
20	32.6	28.2	60.8				
30	31.2	26.6	57.8				
Chemical reflector, w/o optical grease							
20 - grease	25.7	22.1	47.8				
Chemical reflector + Tyvek paper reflector							
20 + Tyvek	49.3	44	93.3				

- ightarrow \sim imes 2.5 effect of chemical reflector;
- ho \sim 60 % effect of optical grease;
- $\blacktriangleright~\sim$ 20 % effect of additional Tyvek reflector.

Etam NOAH - UNIGE

Parameter	Unit	MPPC-T2K	ASD-40	KETEK	SensL	
Manufacturer reported specifications						
Pixel size	μ m	50	40	50	20	
# of pixels		667	600	400	848	
Sensitive area	mm ²	1.3 imes 1.3	dia 1.2	1.0~ imes~1.0	1.0×1.0	
Gain		$7.5 imes10^5$	$1.6 imes10^6$	-	-	
Dark rate	MHz	≤ 1	\sim 3	≤ 2	≤ 2	
Bias voltage	V	\sim 70	30-50	33-50	30	
Measured performance						
Overvoltage	V	~ 1.4	3.6	4.5	2.7	
Dark rate	kHz	900	3630	1250	1960	
Crosstalk	%	10	13.4	35	9.7	
Pulse shape	-	good	good	long tails	good	
Peak separation	-	good	good	bad	bad	
PDE	%	25.6	11	26.4	14.2	

Etam NOAH - UNIGE

July 10, 2014

・ロト ・回ト ・モト ・モト

18 / 23

э.

Easiroc schematic and planned charge+hit measurements

July 10, 2014 19 / 23

Electronics

Easiroc evaluation setup

Etam NOAH - UNIGE

Magnetized Iron Neutrino Detectors (MIND

20 / 23 July 10, 2014

Electronics

Easiroc tests with latest generation MPPC

Charge spectra for the MPPC S12571-050C, a 50-micron cell size, 1×1 mm² device. Analogue data from the high gain signal path from the EASIROC chip, digitised with a 12-bit ADC, demonstrates the excellent photo-electron peak-to-peak separation. The EASIROC pre-amp feedback capacitance is set to 100fF, the shaper τ is set to 50ns. Left) high over voltage leading to \sim 65 ADC/p.e. Right) low over voltage leading to \sim 30 ADC/p.e. ΔV between left and right acquisitions is 1.75 V.

Etam NOAH - UNIGE

Magnetization studies

- Measuring B-field in-situ:
 - Slit in steel, few mm...
 - fill with non-magnetic material (e.g. SS316L);
 - Insert probe to measure field at various points along slit;
 - Small distortion of field lines;
 - Measurements validate simulated field across whole detector;
 - 23000 At with slot c.f. 4000 At without slot.
- Superconducting option:
 - Superconducting Transmission Line studied for VLHC.

Summary

Summary

- Several future facilities plan MIND-type detectors:
 - Near term: how can we contribute to the B2 experiment?
- Progress in software reconstruction and analysis:
 - These are being applied e.g. to ν STORM analyses;
 - Benchmark against test beam data on hardware that is well characterized.
- Detector module R&D:
 - High light yields are being reached with combination of plastic scintillators and latest generation photosensors;
 - ▶ We are developing readout electronics based on the EASIROC chip.
- We plan beam tests of MIND-type detectors in the near term 2015-2020:
 - Baby-MIND at the H8 beamline in the North Area at CERN;
 - Potential for WA105-MIND at the new EHN1 facility in combination with LAr.