

 1

Addendum to the SRM v2.2 WLCG
Usage Agreement

To: CCRC’08 Storage Solutions Working Group

From: Flavia Donno

Date: 5/13/2008

Version: 0.8

Comments: O. Barring, G. Behrmann, A. Frohner, P. Fuhrmann, I. Kozlova, D. Litvintsev, G. Lo

Presti, L. Magnoni, P. Millar, T. Mkrtchyan, G. Oleynik, D. Smith, T. Perelmutov, M.

Radicke, O. Synge, R. Zappi

Purpose of this document

This note summarizes the agreed client usage and server behavior for the SRM v2.2 implementations
used by WLCG applications. The agreement encompasses the clients:

• FTS
• GFAL
• lcg-utils
• dCache srm clients
• StoRM srm clients

and storage providers:

• CASTOR
• dCache
• DPM
• StoRM

The agreement shall be focused on meeting the LHC experiments’ requirements for Grid storage
interfaces. The note specifies how the various existing methods and data objects, as they are specified
in the agreed v2.2 specification [1], should be interpreted and/or extended in order to meet the LHC

 May 13, 2008

 2 D R A F T

requirements. The outlined WLCG interpretation of the interfaces may suggest sometimes a more
restrictive or extended use of the specification than other implementations of SRM client and servers
although care is taken to preserve interoperability with the latter.

The document also specifies what is required in the medium-term (May 2008) and what is required in
the long-term.

NOTE: This document has been agreed from a technical point of view by the developers of the
storage services. Such an agreement does not imply a commitment to implement the following
specification. The implementation of the needed feature depends on availability of funds and human
resources for development and support. It is up to the WLCG Management Board to address the
issues connected to man power.

This document is open for discussions/corrections/comments/addition.

1. WLCG requirements

In this section we describe the experiment requirements that took to the definition of this Addendum
to the SRM v2.2 WLCG Usage Agreement [5]. The requirements are listed in order of the priority
given by the LHC experiments, from the most important and more urgent to implement to the less
urgent.

A. Protecting spaces from (mis-)usage by generic users
Some implementations do not allow at the moment to efficiently protect the spaces from
mis-usage by generic users. As an example, it is possible that a generic VO user releases the
space allocated to a VO. A request to read a file can trigger either a stage operation from
tape in pools dedicated to production activities or internal copies between pools with no
possibility to control such actions. Some attempt has been made to protect the storage
resources but a consistent approach to space protection would be beneficial.

B. Full VOMS-awareness of the SRM implementations
Some SRM implementations are still not VOMS-FQAN aware at the authorization level.
Even though authentication takes place at the SRM server level using GSI and recognizing
VOMS groups and roles, VOMS-FQANs are not used for authorization. This creates
problems in managing the resources allocated to a VO and forces the use of specific proxies
to execute certain tasks.

Definition: Fully VOMS-awareness is an implemented access control based on VOMS
FQANs, including groups and roles.

C. Selecting spaces for read operations in srmPrepareToGet, srmBringOnline, and srmCopy
requests.
The SRM v2.2 WLCG Usage Agreement specifies that clients must not specify a token for
read operations. However, the document assumes silently that the file will be retrieved
somehow in the “right” place. The SRM servers at the moment implements different
behaviors: dCache serves the file from the place it was put, interfering with production
operations; CASTOR honors the token if passed to select the pool where the file should be

D R A F T

 May 13, 2008

 3 D R A F T

read from. This complicates the task to manage the space and to control the access. The
possibility to specify a token for read operations and have the server properly keeping it into
account must be given.

D. Correct implementation of srmGetSpaceMetaData
srmGetSpaceMetaData should return information about the space used and available (as
defined in [4]) for a given space token. The concept of a default area is not defined in the
SRM spec [1]. Some implementations might provide an implementation specific definition
of a default that can serve different purposes.

E. Providing the necessary information so that data could be efficiently stored on tapes.
It is absolutely important to efficiently store data on tape sets so that data can be retrieved
efficiently, minimizing the number of tape mounts to be executed. The SRM interface and
WLCG clients should allow applications to pass all necessary information to perform the
operations efficiently. Tokens should be passed to the tape backend as well as directory paths
and any other useful info.

2. WLCG SRM data model interpretation agreement

In what follows, we detail the interpretation of the SRM v2.2 concepts that were found to be
controversial during the experience acquired operating an SRM v2.2 based Grid infrastructure.

2.1 The SRM space
Definition: An SRM space is a logical view of an online physical space allocation that is reserved for
read/write operations on files.

An SRM space is characterized by several properties:

• Retention Policy Information (Retention Policy and Access Latency)
• Owner
• Connection Type (WAN , LAN)
• Supported File Access/Transfer Protocols
• Space Token
• Space Token Description (optional)
• Status
• Total Size
• Guaranteed Size
• Unused Size
• Assigned Lifetime
• Left Lifetime
• Client Networks

In WLCG the concept of the “Owner” of a space is not used.

In WLCG spaces are statically reserved, although support for truly dynamic space reservation can be
provided by some implementations.

 May 13, 2008

 4 D R A F T

When a file is removed or purged from a space the space occupied by the file is not accounted against
the space reservation and the space occupied by the file can be re-used. There must not be an
expectation that the space occupied by that file is immediately released.

NOTE: For this reason, it has been noted that the behavior of the srmRm operation should be re-
discussed later on to understand if it is an option to allow for the method to be asynchronous.

Spaces can have other implementation specific properties, such as the “supported operations” in
dCache. In order to benefit of possible system optimizations, the client can specify further properties
using the TExtraInfo SRM structure in srmReserveSpace, or the service administrator can manually
configure the space in the “optimal way”.

NOTE: The SRM v2.2 spec does not define a “DEFAULT” space nor implies that concept. An
implementation of a DEFAULT space/area could be provided by some storage services. However, it
must be clear that this is implementation specific and the resulting functionality might not be the
same across implementations. It is up to the service administrator to appropriately configure such a
feature in agreement with the experiments.

2.2 SRM files, copies and TURLs
Definition: A file is a set of data with the properties defined on pages 17-18 of [1], paragraph 2.25:

• SURL
• Path
• Size
• Creation Time
• Modification Time
• Storage Type
• Retention Policy Info (Retention Policy, Access Latency)
• File Locality
• Array of Space Tokens
• File Type
• Assigned Lifetime
• Left Lifetime
• Permissions
• Checksum Type
• Checksum Value
• Array of Sub Paths (if the file is a directory)

The Retention Policy Info attribute for files is not used in WLCG.

The concept of a file primary copy implied in the SRM v2.2 spec is not used in WLCG.

A file can have several copies in several spaces.

Definition: A copy of a file is a logical instance of the file in a given space. It is characterized by the
following properties:

 May 13, 2008

 5 D R A F T

• Request ID (of the request generating the copy: srmPrepareToPut, srmPrepareToGet,
srmBringOnline)

• Space Token (of the space where the copy resides)
• Lifetime in online space (the lifetime of the copy in the online space where the copy resides

– it is defined in the srmBringOnline, srmPrepareToPut, and srmCopy requests)

A copy has an associated lifetime in the online space where the copy resides. The lifetime of a copy
suggests to the system that the copy is needed by the application and therefore such a copy should not
be garbage-collected while its lifetime is still valid.

Definition: A TURL is the transport URL associated to a copy of a file in an online space. It is
characterized by the following properties:

• Request ID (of the request generating the copy: srmPrepareToPut, srmPrepareToGet,
srmBringOnline)

• Pin time (the time for which the TURL must remain valid)

A TURL is generated by the system after a srmPrepareToGet or srmPrepareToPut request and is
associated to the request that has generated it. Multiple TURLs may refer to the same copy of the
same file or to different physical copies of the same file.

A TURL has an associated pin-lifetime. A TURL is valid while the associated pin is valid. If one of
the TURLs associated to a copy of a file is released, the other TURLs whose pin time has not yet
expired will continue to stay valid.

Pins can be treated as advisory by the storage systems or they can be enforced. If a pin is enforced,
the storage system will refuse to remove a pinned copy (a copy/TURL with a pin still valid) and
therefore abort further requests if the space where the copy is in is full. If a pin is advisory, the
storage system might consider as a factor the pin lifetime of a copy when running the garbage
collector. However, if new requests for space arrive, the requests are honored removing files with the
lowest weight.

3. WLCG SRM v2.2 functionality interpretation agreement

 In what follows, we detail the interpretation of the SRM v2.2 functionality that were found to be
controversial during the experience acquired operating an SRM v2.2 based Grid infrastructure.

3.1 srmRm
When a file is removed, the space occupied by the file is not accounted against the space reservation
and the space occupied by the file can be re-used. There must not be an expectation that the space
occupied by that file is immediately released.

For this reason, it has been noted that the behavior of the srmRm operation should be re-discussed
later on to understand if it is an option to allow for the method to be asynchronous.

In order to perform a srmRm operation, the client must have privileges to perform the operation in the
SRM namespace, regardless of any restrictions on the spaces in which copies of the file reside.

 May 13, 2008

 6 D R A F T

3.2 srmLs
In order to perform a srmLs operation, the client must have privileges to perform the operation in the
SRM namespace only.

In WLCG, the return attribute arrayOfSpaceTokens is mandatory (CASTOR and DPM to confirm
that this is OK).

3.3 srmPurgeFromSpace
In WLCG no tape transitions are allowed.

The srmPurgeFromSpace method only removes disk copies of a file from a specified space token.

If a file is in a Custodial-Nearline space and at a given moment the file has a copy on disk and one on
tape, a srmPurgeFromSpace operation removes the copy on disk and leaves the copy on tape.

If a file has 2 copies in 2 different Replica-Online spaces, a srmPurgeFromSpace on the first space
succeeds while a srmPurgeFromSpace on the second copy fails with the error message
SRM_LAST_COPY at the file level. An explicit srmRm is needed to remove the last copy.

3.4 srmBringOnline
The current SRM v2.2 specifications are unclear in paragraph 5.3.2, point g). The space in which the
file is brought online can have the attribute NEARLINE (as well as ONLINE). In WLCG we have
decided to disreguard the Access Latency attribute of a file (which, after a successful srmBringOnline
operation would be ONLINE).

3.5 srmPrepareToPut/srmPutDone
The current SRM v2.2 specifications do not specify as input parameters of the srmPrepareToPut
method the lifetime of the copy of the file created after the correspondent successful srmPutDone
operation. Such a lifetime is set to some system specific default.

The pinTime has to be interpreted as the pinTime of the TURL generated after a successful
srmPrepareToPut operation. The srmPutDone call for that TURL has to come within the TURL
pintime. This is explicitly defined in point 2.2.5k of the SRM v2.2 spec [1].

3.6 srmCopy
The current SRM v2.2 specifications do not specify as input parameters of the srmCopy methods the
source space token and the destination lifetime in space of the copy.

In order not to change the SRM v2.2 WSDL (this will create major problems with the client
tools/applications), in WLCG we decided to use the TExtraInfo structure. In order to pass such
parameters, the key names to be used are:

• SourceSpaceToken
• DestinationCopyLifetime

It is not possible to release copies created by srmCopy based on request ID.
It is also not possible to release copies created by srmPrepareToPut/srmPutDone cycle based on
request ID.

 May 13, 2008

 7 D R A F T

3.7 srmReleaseSpace
In WLCG all files are of StorageType PERMANENT.

From the current SRM v2.2 specs, it is not clear what action must be performed when a space is
released and there are last copies of PERMANENT files in there.

Even though, this is a minor case in WLCG, the behavior must be agreed and clarified.

3.8 srmReleaseSpace
For the reprocessing task, LHC experiments requires the possibility to specify only SURLs (and not
the associated active request IDs) when releasing copies or TURLs of files. Therefore, in WLCG this
feature must be implemented by all storage services.

NOTE: Experiments are asked to comment if such functionality is required providing valid use cases
for it. Experiment name and contact person requesting such a feature will be noted. If such a
functionality is required, how long can the experiments live without it?

 4. Some background on security

In this section we give some background information on VOMS groups and roles, VOMS FQANs
and VOMS FQAN based Access Control Lists. We would also like to point out to the document in
[3] where recommendations for changes in gLite authorization are given and suggestions on how to
implement security in Storage and Data Management.

4.1 VOMS Groups, Roles, and Access Control Lists
Every user is assigned a VOMS proxy when using the WLCG Grid. In the context of this document a
simple grid proxy is equivalent to a VOMS proxy with the (single) VO being the only extra attribute
(determined from a grid-mapfile). A proxy is first characterized by the Subject Distinguished Name
(DN), and can have extensions that define the privileges of the user holding that proxy at a given
moment. Please check [2] for details. Example DN:

(1) /DC=ch/DC=cern/OU=Organic Units/OU=Users/CN=flavia/CN=388195/CN=Flavia Donno

To define the privileges of a user at a given moment, groups, subgroups, and roles can be defined. In
particular, a user can belong to multiple groups and sub-groups and have a number of roles at a given
time. Example of groups and roles:

(2) /dteam/Role=lcgadmin
(3) /dteam
(4) /dteam/cern

An Access Control List (ACL) is a list of entries defining the authorization on a given resource.
ACLs can be positive, i.e. defining who is authorized to perform a given set of operations or access a
given resource, or negative, negating permission to the service. An example of a DPM positive ACL
on a file follows:

 May 13, 2008

 8 D R A F T

(5) # file: /grid/dteam
owner: /DC=ch/DC=cern/OU=Organic Units/OU=Users/CN=flavia/CN=388195/CN=Flavia
Donno
group: dteam

 user::rwx
 group:: rwx
 group:dteam/Role=lcgadmin:rwx
 group:dteam/Role=production:rwx
 mask::rwx
 other::r-x
 default:user::rwx
 default:group:rwx
 default:group:dteam/Role=lcgadmin:rwx
 default:group:dteam/Role=production:rwx
 default:mask::rwx
 default:other::r-x

5. WLCG proposed extensions

We specify here the properties of the SRM data objects that are being considered for addition to the
SRM protocol.

5.1 Extensions of space properties
An SRM space is further characterized by the following properties:

• Owner/Group Permission (Release-Space, Update-Space, Read-from-Space, Write-to-Space,
Stage-to-Space, Purge-from-Space, Modify-Space-ACL, Query-Space)

A service administrator is the person who can change the system configuration for a storage service.
The service administrator has all rights on all created spaces.

The initial requestor of a space has automatically all rights on the space.

Permissions on the spaces are expressed in terms of DNs and/or VOMS FQANs [2].

ACLs define the set of operations that a user whose FQAN matches the space ACLs can perform on
the space. If no match is found for a user proxy in the space ACLs, then the default action is to deny
access.

ACLs apply to space tokens and not to space token descriptions.

The set of possible operations are:

• Release-Space : specifies which users/groups can release the space. The Purge-Space right
is not needed to release spaces.

• Update-Space : specifies which users/groups can update the space, such as modifying its
size, lifetime, etc.

 May 13, 2008

 9 D R A F T

• Read-from-Space : specifies which users/groups can perform srmPrepareToGet, srmCopy,
and srmBringOnline operations on this space. The operation succeeds if it does not
imply/trigger a staging request from tape.

• Write-to-Space : specifies which users/groups can perform srmPrepareToPut and srmCopy
operations or srmPrepareToGet and srmBringOnline with a token operations to this space.

• Stage-to-Space : specifies which users/groups can perform srmPrepareToGet or
srmBringOnline operations that imply a tape recall to this space.

• Purge-from-Space : specifies which users/groups can perform srmPurgeFromSpace
operations from this space.

• Modify-Space-ACL : specifies which users/groups can modify the ACLs on the space. The
syntax and semantic of the modify operations must be specified.

• Query-Space : specifies which users/groups can perform srmGetSpaceMetadata operations
on the space.

Only the primary FQAN should be considered when matching ACLs. (Experiments must comment
on this assumption).

ACLs can be positive or negative. Positive ACLs are meant to grant access while negative ACLs
specify who should be negated the authorization to the resources the ACLs apply to.

The proposed syntax and semantic to follow is based on NFSv4 [6].

Management tools must be available to the resource administrator to manipulate ACLs directly and
change the internal resolution of proxies. The set of allowed management operations must be agreed
on.

5.2 SRM ACLs on spaces
The syntax and semantic proposed for SRM ACLs for spaces are based on NFSv4 minor version 1
draft 21.

An Access Control Entry (ACE) is a record associated with space reservation. Each ACE is defined
as following:

aceType,
subject,
subjectType,
accessMask

where

aceType can be ALLOWED_ACE or DENIED_ACE;

subject can be DN or FQAN. Empty DN/FQAN is interpreted as ANY (a reserved name can be used,
e.g. EVERYONE);

subjectType specifies if the subject is a DN or FQAN;

accessMask is a list set of actions associated with this ACE. The valid actions

 May 13, 2008

 10 D R A F T

are:

RELEASE_SPACE
UPDATE_SPACE
READ_FROM_SPACE
WRITE_TO_SPACE
STAGE_TO_SPACE
PURGE_FROM_SPACE
QUERY_SPACE
MODIFY_SPACE_ACL

TODO:

Each SpaceManager operation have to be associated with corresponding access mask.
Some 'read' operation can be in reality 'write' (like srmPrepareToGet).

Access control list (ACL) is an ordered array of ACEs. Only ACEs which have a subject that matches
the requester are considered. Each ACE is processed until all of the bits of the requester's access have
been ALLOWED. Once a bit has been ALLOWED by an ALLOWED_ACE, it is no longer
considered in the processing of later ACEs. If a DENIED_ACE is encountered where the requester's
access still has ALLOWED bits in common with the accessMask of the ACE, the request is denied
(in other words: to ALLOW all bits have to be checked, while for DENY one matching is sufficient).
When the ACL is fully processed, if there are bits in the requester's mask that have not been
ALLOWED or DENIED, access is denied.

The following syntax can be used to set/display ACLs:

subjectType:subject:accessMask:aceType

Example:

production write, admin all, regular user read, others – deny

fqan:dteam/Role=production:RSWQP:ALLOW
fqan:dteam/Role=lcgamin:DURWSPQM:ALLOW
fqan:dteam/Role=NULL:RSQ:ALLOW
fqan:EVERYONE:DURWSPQM:DENY

read, no stage:

fqan:EVERYONE:R:ALLOW
fqan:EVERYONE:S:DENY

power user:

dn:/O=GermanGrid/OU=DESY/CN=Tigran Mkrtchyan:S:ALLOW
fqan:EVERYONE:RQ:ALLOW
fqan:EVERYONE:S:DENY

 May 13, 2008

 11 D R A F T

where accessMask is:
'D' for RELEASE_SPACE
'U' for UPDATE_SPACE
'R' for READ_FROM_SPACE
'W' for WRITE_TO_SPACE
'P' for PURGE_FROM_SPACE
'Q' for QUERY_SPACE
'M' for MODIFY_SPACE_ACL

While we do not have ONWER and DEFAULT ACL, all newly created reservation will have de
facto default :

fqan:EVERYONE:DURWSPQM:DENY
dn:EVERYONE:DURWSPQM:DENY

To overcome this situation the following strategy can be used: if there is an ACL associated with
Space Reservation, than the ACL is respected, otherwise access is allowed.

5.3 SRM spaces management methods

In what follows we list the new SRM space management functions that would offer an interface to
the requested new functionality.

5.3.1 srmReserveSpace

This function is used to reserve a space in advance for the upcoming requests to get some guarantee
on the file management. Asynchronous space reservation may be necessary for some SRMs to serve
many concurrent requests.

Please note: The proposed change implies modification of the current SRM v2.2 WSDL. We do not
propose to change the WSDL at the moment. However we list the needed modification for supporting
dynamic space reservation in the future with the requested permission on spaces.

Additional Data Types

 enum TSpaceRequestType {
 RELEASE-SPACE,

 UPDATE-SPACE,
 READ-FROM-SPACE,
 WRITE-TO-SPACE,
 STAGE-TO-SPACE,
 REMOVE-FROM-SPACE,
 MODIFY-SPACE-ACL,

 QUERY-SPACE}
 enum AceType {
 ALLOWED_ACE
 DENIED_ACE}

 May 13, 2008

 12 D R A F T

 Enum SubjectType {
 DN
 FQAN}

typedef struct {
AceType Type,

 String Subject,
SubjectType SubjectType
TSpaceRequestType[] AccessMask

 } TAccessControlEntry

Parameters

 In:

string authorizationID,
string userSpaceTokenDescription,

 string Owner (VOMS DN),
 string Group (VOMS FQAN),
 TAccessControEntry[] ACLs,

TRetentionPolicyInfo retentionPolicyInfo,
unsigned long desiredSizeOfTotalSpace,
unsigned long desiredSizeOfGuaranteedSpace,
int desiredLifetimeOfReservedSpace,
unsigned long [] arrayOfExpectedFileSizes,
TExtraInfo[] storageSystemInfo,
TTransferParameters transferParameters

 Out:
TReturnStatus returnStatus,
string requestToken,

 int estimatedProcessingTime,
 TRetentionPolicyInfo retentionPolicyInfo,

unsigned long sizeOfTotalReservedSpace, // best effort
unsigned long sizeOfGuaranteedReservedSpace,
int lifetimeOfReservedSpace,
string spaceToken

5.3.2 srmGetSpaceMetadata

 May 13, 2008

 13 D R A F T

This function is used to get information of a space. Space token must be provided, and space tokens
are returned upon a completion of a space reservation through srmReserveSpace or
srmStatusOfReserveSpaceRequest.

Please note: The proposed change implies modification of the current SRM v2.2 WSDL. We do not
propose to change the WSDL at the moment. However we list the needed modification for supporting
dynamic space reservation in the future with the requested permission on spaces.

Additional Data Types

typedef struct {

string spaceToken,
 TReturnStatus status,
 TRetentionPolicyInfo retentionPolicyInfo,
 TAccessControlEntry[] ACLs,

string owner,
 unsigned long totalSize, // best effort

unsigned long guaranteedSize,
 unsigned long unusedSize,

 int lifetimeAssigned,
 int lifetimeLeft

} TMetaDataSpace

 Parameters

 In:

string authorizationID,
string[] arrayOfSpaceTokens

 Out:
TReturnStatus returnStatus,
TMetaDataSpace[] arrayOfSpaceDetails

5.3.3 srmPurgeFromSpace and srmChangeSpaceForFiles

It has been agreed that

• since space tokens can be specified on SRM Get operations

• since the concept of the file primary copy is not used in WLCG

• since no tape transitions are allowed in WLCG

the method srmChangeSpaceForFiles does not need to be provided. The same functionality can be
reached invoking srmBringOnline or srmPrepareToGet with a token (specifying the new space) and
srmPurgeFromSpace.

 May 13, 2008

 14 D R A F T

5.4 SRM get methods
The definition of the srmPrepareToGet/srmStatusOfGetRequest,
srmBringOnline/srmStatusOfBringOnline, and srmCopy/srmStatusOfCopy request remains
unchanged with respect to what has been specified in the SRM v2.2 specification [1]. The only
difference is that now clients can pass a storage token that has to be honored in the calls. A copy of
the file associated to the list of SURLs specified must be retrieved in the space specified if the user
making the request has sufficient privileges on the specified space token and namespace entry.

NOTE: When serving a srmPrepareToGet request without a token on a file that has multiple online
copies in several spaces, the copy served to the user must be one for which the user has read
permission on the correspondent space. In case many of these exist, the system can choose one of
them.

5.5 SRM directory methods
No modifications are required for srmLs with the exception that if there are multiple copies of a file
in several spaces, the fileLocality parameter must reflect the status of all copies. Therefore if there is
a copy on tape only in a CUSTODIAL-NEARLINE space and at the same time there is a copy on
disk in a REPLICA-ONLINE space, the resulting fileLocality must be NEARLINE_AND_ONLINE.

5.6 Tape usage optimization
It has been noted that all implementations provide at the moment space token [or space token
description] and directory information to the tape callback mechanisms so that appropriate tape
selection and migration policies can be defined in the system.

All relative SRM calls have the extra parameter TExtraInfo[] defined as follows:

typedef struct {

string key,
string value

} TExtraInfo

TExtraInfo is used wherever additional information is needed. Some system might honor extra
information provide through this structure by the clients. Therefore, no extra functionality needs to be
implemented.

REFERENCES
[1] The Storage Resource Manager Interface Specification, Version 2.2, OGF – Grid Storage
Resource Management Working Group, 15 February 2008,
http://www.ogf.org/documents/GFD.129.pdf
[2] A VOMS Attribute Certificate Profile for Authorization, V. Ciaschini, 15 April 2004, http://grid-
auth.infn.it/docs/AC-RFC.pdf

http://www.ogf.org/documents/GFD.129.pdf
http://grid-auth.infn.it/docs/AC-RFC.pdf
http://grid-auth.infn.it/docs/AC-RFC.pdf

 May 13, 2008

 15 D R A F T

[3] Recommendations for changes in gLite Authorization, C. Witzig, 6 February 2008,
https://edms.cern.ch/document/887174/1
[4] Storage Element Model for SRM 2.2 and GLUE schema description, F. Donno et al., v. 3.5, 27
October 2006, https://forge.gridforum.org/sf/docman/do/downloadDocument/projects.glue-
wg/docman.root.background.specifications/doc14619;jsessionid=58E33DC10A69FABED90ACD4C
8EFE6E1F
[5] SRM v2.2 WLCG usage agreement, May 2005, http://cd-
docdb.fnal.gov/0015/001583/001/SRMLCG-MoU-day2%5B1%5D.pdf
[6] NFSv4 minor version 1 draft 21, http://www.nfsv4-editor.org/
[7] POSIX Access Control Lists on Linux, http://www.suse.de/~agruen/acl/linux-acls/online/

https://edms.cern.ch/document/887174/1
https://forge.gridforum.org/sf/docman/do/downloadDocument/projects.glue-wg/docman.root.background.specifications/doc14619;jsessionid=58E33DC10A69FABED90ACD4C8EFE6E1F
https://forge.gridforum.org/sf/docman/do/downloadDocument/projects.glue-wg/docman.root.background.specifications/doc14619;jsessionid=58E33DC10A69FABED90ACD4C8EFE6E1F
https://forge.gridforum.org/sf/docman/do/downloadDocument/projects.glue-wg/docman.root.background.specifications/doc14619;jsessionid=58E33DC10A69FABED90ACD4C8EFE6E1F
http://cd-docdb.fnal.gov/0015/001583/001/SRMLCG-MoU-day2%5B1%5D.pdf
http://cd-docdb.fnal.gov/0015/001583/001/SRMLCG-MoU-day2%5B1%5D.pdf
http://www.nfsv4-editor.org/
http://www.suse.de/%7Eagruen/acl/linux-acls/online/

	2.1 The SRM space
	2.2 SRM files, copies and TURLs
	3.1 srmRm
	3.2 srmLs
	3.3 srmPurgeFromSpace
	3.4 srmBringOnline
	3.5 srmPrepareToPut/srmPutDone
	3.6 srmCopy
	3.7 srmReleaseSpace
	3.8 srmReleaseSpace
	4.1 VOMS Groups, Roles, and Access Control Lists
	5.1 Extensions of space properties
	5.2 SRM ACLs on spaces
	5.3 SRM spaces management methods
	5.4 SRM get methods
	5.5 SRM directory methods
	5.6 Tape usage optimization
	REFERENCES

