Improving Performance in Concurrency:
Software Tools & Techniques

preparation for the
ECFA HL-LHC workshop

CERN, September 5t " 14

Vincenzo Innocente
CERN
CMS Experiment




Paying for Lunch

— Total cost of ownership
» Hardware investment
» Software development

» Operation & maintenance

— Value of Physics outcome

— Recurrent issues
» Memory size (and latency)
» Cost of Energy
» Burden of workflow & dataflow management (number of jobs&files)
» Complexity of parallel implementations
» Missing person-power to migrate code
» Slowness in validation of results

» Readiness of physics results (Conference Driven)



| will not cover

— Workflow and dataflow management
» Ciritical for an efficient use of parallel resources

» 70% efficiency of batch system often reported...
— Quality Assurance

» 10% of resources allocated to release validation?
» Rerun because of a bug == 50% efficiency

» Will become even more critical in presence of heterogeneous resources
and concurrent applications

— Will limit to “single host” not covering cluster and cloud
computing



Hardware landscape

— Computers’ manufactures are moving on two distinct roads
» Energy efficient generic computing (multi-core)

» High performance computational-intensive engine (many-core, SIMD)

— Packaging-wise the two will most probably coexist
» ARM cores + NVIDIA (or AMD) GPUs

» Some CPU (such as Intel-Xeon) can be operated in both modes

— The memory wall is higher than ever
» The cost of data access will continue to be a dominant factor

» Discrete accelerators and wide-SIMD will only exacerbate the issue



ISA Landscape

— i386/X86 64 dominance is over

— In the next years we will be confronted with at least 3, if not
more, mayor ISAs
» X86_64 (with many variants in particular in the width of the SIMD)
» ARM64 (aarché64)
NVIDIA gpu (CUDA)
AMD gpu, IBM PowerPC,...?

— Non “algorithmic” code may be restricted to the first two

)

v

)

v

— Computational-intensive code will most probably be required to
be fully portable among all of them



OpenCL Platform Model

Processing

Element \

Host

Compuhe Unit Compute Device

* One Host + one or more Compute Devices

- Each Compute Device is composed of one or more Compute Units
- Each Compute Unit is further divided into one or more Processing
Elements

Source: SC09 OpenCL tutorial



OpenCL Memory Model

* Private Memory
. i i Privat Private
- Per work-item memory Bl Hemory Memory  Memory

* Local Memory
- Shared within a workgroup

* Local Global/Constant Memory

- Visible to all workgroups

Work-ltem Work-ltem Work-ltem Work-ltem

Workgroup Workgroup
* Host Memory R
- Onthe CPU Global/Constant Memory

Computer Device

Host Memory

* Memory management is explicit
You must move data from host -> global -> local and back

Source: SC09 OpenCL tutorial



HEP Applications

non-const

const

-

-

Logging

Configuration

Scheduling

v

Random

Algorithm

Geometry

Material

o — —

A

—¥

Data Store

B-Field

v

Services

Persistency

Direct Acyclic Graph

Algorithms read and
write from/to the

event-data store and
the “services”

Only interfaces are
defined (with no
“cost” associated)

Algorithms are in
turn based on a large
set of utilities and
foundation libraries



Concurrency in Parallel software:

Find Concurrency

Original Problem &5 Tasks, shared and local data

M M - } Res-accum‘ﬂa‘e( nnp),
- ] }
— 3

Units of execution + new shared data .
for extracted dependencies Corresponding source code

Program SPMD_Emb_Par () |
{| Program SPMD Emb_Par () |
{| Program SPMD_Emb_Par () |
{| Program SPMD_Emb_Par ()
{
TYPE *tmp. *func():
global_array Data(TYPE);

Supp Ortlng global_array Res(TYPE):
p attems int Num = get_num_procs():

int id = get_proc_1d();
if (1d==0) setup_problem(N, Data):

for (int I= ID; I=N:I=I+Num){

g

© 2009 Mathew J. Sottile, Timothy G. Mattsal, and Craig E Rasmussen




Software Architecture

— Computational problems in HEP (simulation, reconstruction, analysis)
are complex and dynamic

» Many different detector elements whose occupancy may vary widely with
events

» Hundreds of algorithms and filters
— Static decomposition is improbable to be cost-effective beyond LI -
Trigger
» (from a computational point-of-view LI-Trigger is very inefficient!)

— The application framework will be called to manage heterogeneous
resources, a-priori unspecified, in a dynamic fashion

— Algorithms, utilities and foundation libraries should be able to run on
any hardware and in any concurrency environment
» To be efficient variants/specialization may be needed
» Results may differ: we need to cope with that

— Efficient management of the memory hierarchy will be a key for the
success



Concurrent Design Patterns

— Naive OO Design used in the current generation of HEP
applications does not fit anymore available hardware
» Memory unfriendly
* Large network of objects “scattered around”
» Large cost from encapsulation and abstraction
* Many tiny virtual functions (run-time resolution of what actually run!)

» Often intrinsically sequential, thread-unsafe, not vectorizable

* Implicit dependencies, lazy evaluation, nested recursive branches, global states...

— Need to move to a Data Oriented Design (DoD) centered on
data-collections and algorithms acting on collections
» Emphasis on data locality and on cache-friendliness
» Move abstractions few levels higher

» Decompose algorithms in simpler kernels acting on a clearly specified set of
data



Application Frameworks

— Several HEP application frameworks have been successfully
adapted to handle a concurrent scheduling even beyond the even
level

» Able to manage resources (threads!) even for concurrent algorithms

» Not difficult to extend to manage heterogeneous resources

— Data Model still based on a central whiteboard as collection of
collections of “directly addressable” objects (same for “services”)
» Top level abstraction may survive

» Interface and implementation need to be revised to match a cache-friendly
Data-Driven approach

— More R&D is required to identify the best way to support DoD
at central framework/utility level



Concurrent Framework Landscape

— Native (pthreads, atomics, simd-intrinsics, language extensions)

» Useful to build next layer, not for end-users

— Pragma based (openMP, openACC)
» Easy to use
» Language independent
» Supported by compilers (comes with the system)
» Not obvious to use in a large, component based, application

» (pragmas useful to provide hints to compilers beyond language syntax)

— Library based (OpenCl, TBB, Cuda, std (c++17), ...)
» Steeper learning and deployment curve
» Require a minimal “user” software infrastructure
» Flexible, rich in features (scheduling, memory management)

» Match the architecture of component based HEP applications

Do not even think to mix frameworks in the same application



Heterogeneous Concurrent Algorithms

— The only promising framework supporting heterogeneous concurrent
algorithms is OpenCl
» C++17 may provide in a (distant?) future an alternative

» Deployment based either on JIT or on fat-library technologies

— Very limited experience on actual coded algorithms able to run on
heterogeneous hardware
» Minimum common denominator approach will not improve efficiency much
» Achieving the maximal efficiency requires specialization w/r/t memory
hierarchy, SIMD width, scheduling

— More specific R&D is required to understand the ability of OpenCl to
serve HEP use-cases

— Short/Medium term solutions will be based on a mixture of C++
(tbb,std) and CUDA
» multiple implementations of the same algorithm
» deployment based on target-specific releases with a limited use of fat-libraries



Tools to support development

— Developing correct, efficient concurrent algorithm is not easy
— We need a new set of libraries to support basic parallel algorithms and
data structure to be used in a heterogeneous environment
» Standard will eventually come (C++17 and beyond)
» Need to fill the gap with shopping + in house development

— Essential to provide to developers tools to verify
» Correctness (Data races)
» Effective parallelism
» Memory, cpu and energy efficiency

— Use of safe and efficient design and implementation patterns is an
essential starting point

» C++ provides already syntactic and library elements to ensure const-
correctness, atomicity and proper memory management

» A static code analyzer can easily verify their correct usage
» Library implementations are welcome

— Integration with the build system is vital



Conclusions

Free lunch is over

» To improve the efficiency of software we need to increase the granularity of
parallelism, optimize data access patterns and make use of heterogeneous
resources

Waiting for the definitive standard to emerge we need to develop our

own infrastructure to support the implementation of concurrent
algorithms able to exploit parallelism on heterogeneous hardware

Recent work shows that
» An efficient concurrent schedule of algorithms is feasible

» With huge effort it is possible to make current algorithm implementations
free from data-race (thread safe)

» Making use of parallelism in algorithms requires a total re-implementation

More R&D is required to tackle the challenges of
» Exploiting heterogeneity
» Efficient parallelize algorithms
» Efficient utilization of memory hierarchy
» Efficient utilization of the few developers left



