
High Performance Computing ���
for High Energy Physics 	

Improving Performance in Concurrency: ���
 Software Tools & Techniques���

���
 ���

preparation for the ���
ECFA HL-LHC workshop���
CERN, September 5th, `14 ���

���
���

	
Vincenzo Innocente	

CERN	

CMS Experiment	

Paying for Lunch	

–  Total cost of ownership	

»  Hardware investment	

»  Software development	

»  Operation & maintenance	

–  Value of Physics outcome	

–  Recurrent issues	

»  Memory size (and latency)	

»  Cost of Energy	

»  Burden of workflow & dataflow management (number of jobs&files)	

»  Complexity of parallel implementations	

»  Missing person-power to migrate code	

»  Slowness in validation of results	

»  Readiness of physics results (Conference Driven)	

2	

I will not cover	

–  Workflow and dataflow management	

»  Critical for an efficient use of parallel resources	

»  70% efficiency of batch system often reported…	

–  Quality Assurance	

»  10% of resources allocated to release validation?	

»  Rerun because of a bug == 50% efficiency	

»  Will become even more critical in presence of heterogeneous resources
and concurrent applications	

–  Will limit to “single host” not covering cluster and cloud
computing	

3	

Hardware landscape	

–  Computers’ manufactures are moving on two distinct roads	

»  Energy efficient generic computing (multi-core)	

»  High performance computational-intensive engine (many-core, SIMD)	

–  Packaging-wise the two will most probably coexist	

»  ARM cores + NVIDIA (or AMD) GPUs 	

»  Some CPU (such as Intel-Xeon) can be operated in both modes	

–  The memory wall is higher than ever	

»  The cost of data access will continue to be a dominant factor	

»  Discrete accelerators and wide-SIMD will only exacerbate the issue	

4	

ISA Landscape	

–  i386/X86_64 dominance is over	

–  In the next years we will be confronted with at least 3, if not

more, mayor ISAs	

»  X86_64 (with many variants in particular in the width of the SIMD)	

»  ARM64 (aarch64)	

»  NVIDIA gpu (CUDA)	

»  AMD gpu, IBM PowerPC,…?	

–  Non “algorithmic” code may be restricted to the first two	

–  Computational-intensive code will most probably be required to

be fully portable among all of them	

5	

6	

7	

HEP Applications	

8	

Algorithms read and
write from/to the
event-data store and
the “services”	

	

Only interfaces are
defined (with no
“cost” associated) 	

	

Algorithms are in
turn based on a large
set of utilities and
foundation libraries	

9	

Software Architecture	

–  Computational problems in HEP (simulation, reconstruction, analysis)

are complex and dynamic	

»  Many different detector elements whose occupancy may vary widely with

events	

»  Hundreds of algorithms and filters	

–  Static decomposition is improbable to be cost-effective beyond L1-
Trigger	

»  (from a computational point-of-view L1-Trigger is very inefficient!)	

–  The application framework will be called to manage heterogeneous
resources, a-priori unspecified, in a dynamic fashion 	

–  Algorithms, utilities and foundation libraries should be able to run on
any hardware and in any concurrency environment	

»  To be efficient variants/specialization may be needed	

»  Results may differ: we need to cope with that	

–  Efficient management of the memory hierarchy will be a key for the
success	

10	

Concurrent Design Patterns	

–  Naïve OO Design used in the current generation of HEP

applications does not fit anymore available hardware	

»  Memory unfriendly	

•  Large network of objects “scattered around”	

»  Large cost from encapsulation and abstraction	

•  Many tiny virtual functions (run-time resolution of what actually run!)	

»  Often intrinsically sequential, thread-unsafe, not vectorizable	

•  Implicit dependencies, lazy evaluation, nested recursive branches, global states…	

–  Need to move to a Data Oriented Design (DoD) centered on
data-collections and algorithms acting on collections	

»  Emphasis on data locality and on cache-friendliness	

»  Move abstractions few levels higher	

»  Decompose algorithms in simpler kernels acting on a clearly specified set of
data	

11	

Application Frameworks	

–  Several HEP application frameworks have been successfully

adapted to handle a concurrent scheduling even beyond the even
level	

»  Able to manage resources (threads!) even for concurrent algorithms	

»  Not difficult to extend to manage heterogeneous resources	

–  Data Model still based on a central whiteboard as collection of
collections of “directly addressable” objects (same for “services”)	

»  Top level abstraction may survive	

»  Interface and implementation need to be revised to match a cache-friendly
Data-Driven approach	

–  More R&D is required to identify the best way to support DoD
at central framework/utility level	

12	

Concurrent Framework Landscape	

–  Native (pthreads, atomics, simd-intrinsics, language extensions)	

»  Useful to build next layer, not for end-users	

–  Pragma based (openMP, openACC)	

»  Easy to use	

»  Language independent	

»  Supported by compilers (comes with the system)	

»  Not obvious to use in a large, component based, application	

»  (pragmas useful to provide hints to compilers beyond language syntax)	

–  Library based (OpenCl, TBB, Cuda, std (c++17), …)	

»  Steeper learning and deployment curve	

»  Require a minimal “user” software infrastructure	

»  Flexible, rich in features (scheduling, memory management) 	

»  Match the architecture of component based HEP applications	

Do not even think to mix frameworks in the same application 	

13	

Heterogeneous Concurrent Algorithms	

–  The only promising framework supporting heterogeneous concurrent

algorithms is OpenCl	

»  C++17 may provide in a (distant?) future an alternative	

»  Deployment based either on JIT or on fat-library technologies	

–  Very limited experience on actual coded algorithms able to run on
heterogeneous hardware	

»  Minimum common denominator approach will not improve efficiency much 	

»  Achieving the maximal efficiency requires specialization w/r/t memory

hierarchy, SIMD width, scheduling	

–  More specific R&D is required to understand the ability of OpenCl to
serve HEP use-cases	

–  Short/Medium term solutions will be based on a mixture of C++
(tbb,std) and CUDA 	
	

»  multiple implementations of the same algorithm	

»  deployment based on target-specific releases with a limited use of fat-libraries	

14	

Tools to support development	

–  Developing correct, efficient concurrent algorithm is not easy	

–  We need a new set of libraries to support basic parallel algorithms and

data structure to be used in a heterogeneous environment	

»  Standard will eventually come (C++17 and beyond)	

»  Need to fill the gap with shopping + in house development	

–  Essential to provide to developers tools to verify	

»  Correctness (Data races)	

»  Effective parallelism	

»  Memory, cpu and energy efficiency	

–  Use of safe and efficient design and implementation patterns is an
essential starting point	

»  C++ provides already syntactic and library elements to ensure const-

correctness, atomicity and proper memory management	

»  A static code analyzer can easily verify their correct usage	

»  Library implementations are welcome	

–  Integration with the build system is vital	

15	

Conclusions	

–  Free lunch is over	

»  To improve the efficiency of software we need to increase the granularity of
parallelism, optimize data access patterns and make use of heterogeneous
resources	

–  Waiting for the definitive standard to emerge we need to develop our
own infrastructure to support the implementation of concurrent
algorithms able to exploit parallelism on heterogeneous hardware	

–  Recent work shows that	

»  An efficient concurrent schedule of algorithms is feasible	

»  With huge effort it is possible to make current algorithm implementations

free from data-race (thread safe)	

»  Making use of parallelism in algorithms requires a total re-implementation	

–  More R&D is required to tackle the challenges of	

»  Exploiting heterogeneity	

»  Efficient parallelize algorithms	

»  Efficient utilization of memory hierarchy	

»  Efficient utilization of the few developers left	

16	

