ALICE HLT TPC Tracking on GPUs

l: GPUs
tegration of GPUs in ALICE Framew

: d track reconstruction i
IV: ALICE Tracker C arison

V: ATLAS
VI: CMS
VII: LHCb

Performance Development

‘ I] ! I | I I I I I
- —+— Manufacturing Size

10000 - —+— Frequency R E
L ; CPU Performance FE e 4
L GPU Performance . i
1000 —

100

l\II

10

RN I R T A T B

1

0.1

Frequency [GHz] / Performance [GFlop/s]

LII]

1

0.01 ¢

1

1980 1985 1990 1995 2000 2005 2010

Year

Why GPUs

= (CPUs are designed for fast execution of serial programs.
= Clocks have reached a physical limit.
—~Vendors use parallelization to increase performance.
= GPUs are designed for parallel execution in the first place.
= The ,only" limit for GPU performance is heat dissipation.
= GPU clocks are usually lower than they could be.
* This saves power
* Hence more hardware can be powered in parallel

—> Better overall performance

Why GPUs

s GPUs use their silicon for Aus

» CPUs use their silican mainly for caches,
branch prediction, etc.

i =3

Why GPUs

= Some number os the hardware:

Nehalem 2-3.6 GHz
Sandy Bridge 4-8 2-3.6 GHz

lvy-Bridge - 2-3.6 GHz

Magny-Cours - 1.8-2.4 GHz

Interlagos 2-2.6 GHz
NVIDIA GTX28g 1476
NVIDIA GTX580 1544
NVIDIA Kepler 1006
AMD Cypress 850
AMD Cayman

AMD Graphics Core Next

Why GPUs

= Some performance numbers:

Nehalem, 4 Cores, 3 GHz 96 Gflop/s 48 Gflop/s 38 GB/s
Sandy Bridge, 8 Cores, 3 GHz 384 Gflop/s 192 Gflop/s 51 GB/s
Haswell, 4Cores, 3 GHz 384 Gflop/s 192 Gflop/s 58 GB/s
Magny-Cours, 12 Cores, 2 GHz 192 Gflop/s 96 Gflop/s 42 GB/s
Interlagos, 16 Cores, 2.4 GHz 307 Gflop/s 154 Gflop/s 51 GBY/s
NVIDIA GTX285 714 Gflop/s 89 Gflop/s 159 GB/s
NVIDIA GTX580 1581 Gflop/s 198 Gflop/s 192 GB/s
NVIDIA Kepler 3950 Gflop/s 1310 Gflop/s 250 GB/s

AMD Cypress 2720 Gflop/s 544 Gflop/s 154 GB/s

AMD Cayman 2703 Gflop/s 675 Gflop/s 176 GB/s

AMD Graphics Core Next 3789 Gflop/s 947 Gflop/s 264 GB/s

Introduction

NVIDIA GTX280 GPU

NVIDIA Graphics Card

Multiprocessor 2

Multiprocessor 30

Constant Tetxture
Cache Cache

Challenges

Keeping GPU utlization high

© Hide DMA transfer times, make use of vector units.

= Many frameworks work on a per-event basis
= One event might contain too less data to exploit GPU parallelism

= Offline compute centers use heterogeneous hardware
= Need to be vendor-independent

= Event reconstruction [analysis consists of many tasks
= GPU must be shared among these tasks

= Large effort to maintain multiple variants of the source code
© One should use a common source code where possible

= Huge effort to port all code to GPU
- One should find computational hotspots, and port only those

INTEGRATION OF GPUS INALICE

| FRAMEWORK

Integration

» AliRoot bases on C++.
—> GPU kernel language must support C++.

= In 2010 (Start of the project), CUDA was the only such
language.

» Today, there are C++ kernel language extensions for
OpenCL by AMD.

= AMD is pushing to get this into the next OpenCL standard.

= Unfortunately, it did not make it in the 2.0 Specs.

= CanrunonCPU /Xeon Phi (C++, OpenMP), NVIDIA GPU
(CUDA), AMD GPU (OpenCL)

= TPCtrack finding responsible for 50% of compute

Integration

» GPU and CPU tracker (CUDA and OpenCL)
share a common source files.

= Specialist wrappers for CPU and GPU exist,
that include these common files.

common.cpp: Cpu_wrapper.cpp: gpu_wrapper.cpp:
__DECL FitTrack(int n) { #define _ DECL void #define _ DECL __ device void
#include "common.cpp ™ #include "common.cpp

0 void FitTracks() { __global void FitTracksGPU() {
[for (inti = 0;i < nTr;i++) { FitTrack(threadldx.x);
FitTrack(n); }

}

Integration

» The GPU Tracker is accessed via a virtual
interface. The actual implementation is
contained in a dedicated library (cagpu), which
links against the CUDA runtime.

» AliRoot opens cagpu with dlopen, this creates a
clear separation between AliRoot and CUDA.

= The same AliRoot binaries can be used on
compute nodes with GPU and without GPU.

» This scheme is easily adoptable to other

GPU-BASERTRACK-FINRING IN

| ALICE

Introduction

Screenshot of ALICE Online-Event-Display
during first physics-fill with active GPU Tracker

|||;{J\/r HIl‘|HIHIIHIHIIIIHI‘IIHII‘II‘IHII‘II\|IHIH‘U\I\]JL
§300 -200 -104] 100 200 p

-
h 110 -200
ATh.. TR T

100

MFTTEETTE PR RETEE T 4N

200

> -300 -200 -100 0 100 200 300

F 200 zuué
:—mu 100—%
F -100 fluu—%
g -200 —zuu—g

=300 =Z00 =100 1} 00 200 oK}

GPU Tracker Performance

» For good performance the GPU tracker
pipelines the slices such that initialization on
CPU, GPU tracking, and DMA transfer can

overlap.

= Multiple CPU cores are required to feed the
GPU with sufficient inut data.

DMA (AR RRENIN RRRRRE N I I A B I
GPU I v e
CPU 1 IHIN N I EEEEE

CPU 2 I H
CPU 3 I |

Time
asks: W Initialization [Neighbor Finding [] Tracklet Construction [Tracklet Selection B Tracklet Output

GPU Tracker Performance

» Tracking time depends linearly on input data
size.

= GPU tracking time independent from CPU
performance (if initialization is fast enough).

‘ T = - T \ T \
—— CPU Time BTl CPU Tracker —+—
——— GPU Time | GPU Tracker —
—— CPU Time Fit
—— GPU Time Fit

—9
=
o7
£
= 6
g)5
=
@ 3
F2
Z1
0

Tracking Time [ms]

L L L L | | | 1 |
2*10% 3*10° 4*108 18 2 22 24 26 28 3 32 34 36 38 4
Clusters CPU Frequency [GHz]

GPU Tracker Performance

= Speedup of HLT GPU tracker v.s.offline and
CPU Tracker (four CPU cores used each)

HLT GPU Tracker

o
=
=
O
O
]
©
)
S
©
Q.
S
o
o
S
Q
]
©
)
o
o
w

1*106 1.5*106
Number of Clusters

i CPRISGPR TRASKER SQMPABIZRN

CPU /GPU Tracker Comparison

= Comparison of GPU and CPU Tracker during
2010 run
= No significant variations in physically observables.

= Only the number of clusters per track statistics
shows a variation.

CPU /GPU Tracker Consistency

* |nconsistencies during November 2010 run

Cluster to track assignment differs.
(Differences caused by concurrent track-finding)

Non-associative floating point arithmetics

Comparison of HLT CPU and GPU (Graphics Processing Unit) Trackers

(Raw Output without Cuts)

ALICE

PERFORMANCE
10.5.2012

(%]
X
[&]
©
b
—
Y
o
]
o
T
——
c
(]
[&]
=
)
o

Run 138979)
CPU Tracker Run 139173)

Run 139314
GPU Tracker Rﬂﬂ 139433;

20 40 60 80 100 120 140 160
Number of Clusters

Usage of the GPU Tracker

» The GPU tracker was deployed and commisioned in the
ALICE HLT farm in fall 2010.

© 64 GPU enabled compute nodes eqiped with NVIDIA Fermi GPUs
have been installed.

= Some bottlenecks in the framework had to be solved, before the
GPU tracker could run at full rate.

= GPU tracker ran throughout the entire year 2012 without
incident.

» The upgraded ALICE HLT farm after LS1 bases on the
GPU tracker, with more recent GPUs.
- We employ 180 AMD Sgo00 GPUs

Results on current hardware
» GPU tracking time on exemplary PbPb event.

= NVIDIA Fermi (current version) 174 MS
= NVIDIA GTX780 (Kepler) 155 MS
= NVIDIATitan (Kepler) 146 ms
= AMD FirePro 160 ms

= Current Generation GPUs (Kepler / GCN) offer new
features.

= We assume approx. 20% performance gain by adapting the
tracker

= |nthe future, we might run into CPU limitations.

Summary

Threefold performance increase of GPU tracker
compared to all CPUs of a node, tenfold increase in a
reasonable HLT scenario.

GPU tracker performance is independent from CPU and
depends linearly on data size.

Results of GPU and CPU tracker match almost
completely. Only 0.00024% of the clusters differ due to
non-associative floating-point arithmetic.

Common source code ensures great maintainability,
separation from libAlIHLTTPC makes a common binary
work on all nodes — with and without GPU.

GPU tracker has been employed sucessfully in the recent

Client-Server Architecture

Client-server architecture allows GPU resources to be shared amongst multiple trigger
instances

Data transfer is done over shared memory segment

Also used as CUDA host buffer

Minimizes integration surface in trigger software - only POSIX required

Allows for GPU memory resources (e.g. hardware maps) to be shared

) Athena 1, Core 1
Athena 0, Core 0

J Kernel 2
| AthenaComputeSvc ' b

Receive Tracks
Receive Tracks

]
L | I L

Send Data : Send Data

CPU Proc. per Core

Data Preparation Results

Monte Carlo, tt @ 2x 10** cm2 s

o CPU: E5620 @ 2.4 GHz
e GPU: Tesla C2050

ROl size, ¢ x n:
= 0.6x06

1.5x15
= Full detector x26 speed-up

w
E
©
E
F
=
8
©
@
Q
L
a
©
©
O

50

O~

:-ﬁ't A

Input data volume [MB]

Bytestream decoding and clustering show a 26x speed-up
against single-threaded CPU

Tracking Results

—
N
o
o

Monte Carlo, tt @ 2 x 10** cm?2 s

e Complete chain on CPU

GPU + clone removal on CPU
e Complete chain on GPU +

ROl size, p x1n: 0.6 x 0.6

)
E
[e
e
—
b}
£
et
(@)
k=
>
Q
©
—
e
©
s
|_

0
1
TraCk flf'Idlng Number of input spacepoints, x 10°

Track formation and clone removal show a 12x speed-up
against single-threaded CPU

OpenCL Studies

» The CUDA implementation has been ported to OpenCL

= |nitial performance comparisons show encouraging results on GPU, ~15%
performance loss

-C205o (CUDA) C2o50 (OpenCL)

Pixel Processing 3.2 ms 3.9 ms

SCT Processing 3.6 ms 4.0 MS

CMS GPU Implementation

* Hough transform is a natural candidate for GPU
acceleration using general-purpose GPU
programming with CUDA.

Time vs. tracks per event, 2048x2048) i
CPU implementation before

—
(=}
=

o
L

;g - [+ Tesia K20c o (open) and after (filled)
S$.0l| o orvim e 3 optimization (performed on
E [|_ crumew . ° Intel Core i7-3770)
g [.
e : . 1| GPU implementation on

TR A Tesla C2075 and K20c

T B —10-60x faster!
1?- - . : . .
-t « Also a candidate for
N R R S N S NN SR S SN N S inVeStigating with

10"

2 5 10 50 o 200 500 700 1000 2000 3000 5000

Tracks per Event Xeon Phi
See arXiv:1309.6275 for more on these

I . implementations .

-

LHCb —GPU Manager
Gaudi tool to offload algorithms

= Socket client-server
tranmission

» Scheduler First-Come First-
Served, gathers multiple
events and ships them for
concurrent processing

= Some goodies

Algorithm exceptions
propagated to callers

Centralized profiling, logging
File input / output configurable

Outside framework execution
possible

Manycore on LHCb

= LHCb tracking

= FastVELO

 Local method (Track Forwarding), 2x over sequential version
Currently expanding into ST tracks

= VELO Pixel (LS2 upgrade)

~ Local method, 11x over sequential version
= Working on improvement over Physics RE
* Hough transform implementation ongoing
= Vertexing using graph-theory and techniques from DNA matching and
social networking

= RICH
~ Prototyping Ray Tracing machinery on GPU

= All the efforts so far

https://lbonupgrade.cern.ch/manycore
http://cds.cern.ch/record/1698101

Summary / Challenges

Keeping GPU utlization high

© Hide DMA transfer times, make use of vector units.

= Many frameworks work on a per-event basis
= One event might contain too less data to exploit GPU parallelism

= Offline compute centers use heterogeneous hardware
= Need to be vendor-independent

= Event reconstruction [analysis consists of many tasks
= GPU must be shared among these tasks

= Large effort to maintain multiple variants of the source code
© One should use a common source code where possible

= Huge effort to port all code to GPU
- One should find computational hotspots, and port only those

	ALICE HLT TPC Tracking on GPUs
	GPUs
	Performance Development
	Why GPUs
	Why GPUs
	Why GPUs
	Why GPUs
	Introduction
	Challenges
	Integration of GPUs in ALICE FRAMEWORK
	Integration
	Integration
	Integration
	GPU-based TRACK-FINDING in ALICE
	Introduction
	GPU Tracker Performance
	GPU Tracker Performance
	GPU Tracker Performance
	CPU / GPU Tracker Comparison
	CPU / GPU Tracker Comparison
	CPU / GPU Tracker Consistency
	Usage of the GPU Tracker
	Results on current hardware
	Summary
	ATLAS
	Client-Server Architecture
	Data Preparation Results
	Tracking Results
	OpenCL Studies
	CMS
	CMS GPU Implementation
	LHCb
	LHCb – GPU Manager�	Gaudi tool to offload algorithms
	Manycore on LHCb
	Summary / Challenges

