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Performance Development 



Why GPUs 
 CPUs are designed for fast execution of serial programs. 
 Clocks have reached a physical limit. 
Vendors use parallelization to increase performance. 

 GPUs are designed for parallel execution in the first place. 
 The „only“ limit for GPU performance is heat dissipation. 
 GPU clocks are usually lower than they could be. 
 This saves power 
 Hence more hardware can be powered in parallel 
 Better overall performance 



Why GPUs 
 GPUs use their silicon for Aus 
 CPUs use their silican mainly for caches, 

branch prediction, etc. 

Intel Nehalem NVIDIA Kepler 



Why GPUs 
 Some number os the hardware: 

Hardware Cores Clock Rates ALUs (Single Precision) 
Nehalem 4-6 2-3.6 GHz 48 

Sandy Bridge 4-8 2-3.6 GHz 128 

Ivy-Bridge 4-12 2-3.6 GHz 196 

Magny-Cours 6-12 1.8-2.4 GHz 96 

Interlagos 8-16 2-2.6 GHz 128 

NVIDIA GTX285 32 1476 240 

NVIDIA GTX580 16 1544 512 

NVIDIA Kepler 16 1006 2688 

AMD Cypress 20 850 1600 

AMD Cayman 24 880 1536 

AMD Graphics Core Next 32 950 2048 



Why GPUs 
 Some performance numbers: 

Hardware Peak Perf. (Single) Peak Perf. (Double) Mem. Bandwidth 
Nehalem, 4 Cores, 3 GHz 96 Gflop/s 48 Gflop/s 38 GB/s 

Sandy Bridge, 8 Cores, 3 GHz 384 Gflop/s 192 Gflop/s 51 GB/s 

Haswell, 4Cores, 3 GHz 384 Gflop/s 192 Gflop/s 58 GB/s 

Magny-Cours, 12 Cores, 2 GHz 192 Gflop/s 96 Gflop/s 42 GB/s 

Interlagos, 16 Cores, 2.4 GHz 307 Gflop/s 154 Gflop/s 51 GB/s 

NVIDIA GTX285 714 Gflop/s 89 Gflop/s 159 GB/s 

NVIDIA GTX580 1581 Gflop/s 198 Gflop/s 192 GB/s 

NVIDIA Kepler 3950 Gflop/s 1310 Gflop/s 250 GB/s 

AMD Cypress 2720 Gflop/s 544 Gflop/s 154 GB/s 

AMD Cayman 2703 Gflop/s 675 Gflop/s 176 GB/s 

AMD Graphics Core Next 3789 Gflop/s 947 Gflop/s 264 GB/s 



Introduction 

NVIDIA GTX280 GPU 



Challenges 
 Keeping GPU utlization high 

 Hide DMA transfer times, make use of vector units. 

 Many frameworks work on a per-event basis 
 One event might contain too less data to exploit GPU parallelism 

 Offline compute centers use heterogeneous hardware 
 Need to be vendor-independent 

 Event reconstruction / analysis consists of many tasks 
 GPU must be shared among these tasks 

 Large effort to maintain multiple variants of the source code 
 One should use a common source code where possible 

 Huge effort to port all code to GPU 
 One should find computational hotspots, and port only those 

 





Integration 
 AliRoot bases on C++. 
 GPU kernel language must support C++. 

 In 2010 (Start of the project), CUDA was the only such 
language. 

 Today, there are C++ kernel language extensions for 
OpenCL by AMD. 
 AMD is pushing to get this into the next OpenCL standard. 
 Unfortunately, it did not make it in the 2.0 Specs. 

 Can run on CPU / Xeon Phi (C++, OpenMP), NVIDIA GPU 
(CUDA), AMD GPU (OpenCL) 

 TPC track finding responsible for 50% of compute 
resources 
 We run only TPC track finding on GPU 
 Optionally, we could also run track fit (10% of compute resources) 



Integration 
 GPU and CPU tracker (CUDA and OpenCL) 

share a common source files. 
 Specialist wrappers for CPU and GPU exist, 

that include these common files. 
common.cpp: 
__DECL FitTrack(int n) { 
…. 
} 

cpu_wrapper.cpp: 
#define __DECL void 
#include ``common.cpp`` 
 
void FitTracks() { 
  for (int i = 0;i < nTr;i++) { 
    FitTrack(n); 
  } 
} 

gpu_wrapper.cpp: 
#define __DECL __device void 
#include ``common.cpp`` 
 
__global void FitTracksGPU() { 
  FitTrack(threadIdx.x); 
} 
 
void FitTracks() { 
  FitTracksGPU<<<nTr>>>(); 
} 



Integration 
 The GPU Tracker is accessed via a virtual 

interface. The actual implementation is 
contained in a dedicated library (cagpu), which 
links against the CUDA runtime. 

 AliRoot opens cagpu with dlopen, this creates a 
clear separation between AliRoot and CUDA. 

 The same AliRoot binaries can be used on 
compute nodes with GPU and without GPU. 

 This scheme is easily adoptable to other 
programming APIs, such as OpenCL. 





Introduction 
Screenshot of ALICE Online-Event-Display 

during first physics-fill with active GPU Tracker 



GPU Tracker Performance 
 For good performance the GPU tracker 

pipelines the slices such that initialization on 
CPU, GPU tracking, and DMA transfer can 
overlap. 

 Multiple CPU cores are required to feed the 
GPU with sufficient inut data. 



GPU Tracker Performance 
 Tracking time depends linearly on input data 

size. 
 GPU tracking time independent from CPU 

performance (if initialization is fast enough). 



GPU Tracker Performance 
 Speedup of HLT GPU tracker v.s.offline and 

CPU Tracker (four CPU cores used each) 





CPU / GPU  Tracker Comparison 

 Comparison of GPU and CPU Tracker during 
2010 run 
 No significant variations in physically observables. 
 Only the number of clusters per track statistics 

shows a variation. 



CPU / GPU  Tracker Consistency 
 Inconsistencies during November 2010 run 
 Cluster to track assignment differs. 

(Differences caused by concurrent track-finding) 
 SOLVED 
 Non-associative floating point arithmetics 
 NEGLIGIBLE 



Usage of the GPU Tracker 
 The GPU tracker was deployed and commisioned in the 

ALICE HLT farm in fall 2010. 
 64 GPU enabled compute nodes eqiped with NVIDIA Fermi GPUs 

have been installed. 
 Some bottlenecks in the framework had to be solved, before the 

GPU tracker could run at full rate. 
 GPU tracker ran throughout the entire year 2012 without 

incident. 

 The upgraded ALICE HLT farm after LS1 bases on the 
GPU tracker, with more recent GPUs. 
 We employ 180 AMD S9000 GPUs 

 



Results on current hardware 
 GPU tracking time on exemplary PbPb event. 
 NVIDIA Fermi (current version) 174 ms 
 NVIDIA GTX780 (Kepler)  155 ms 
 NVIDIA Titan (Kepler)  146 ms 
 AMD FirePro   160 ms 

 

 Current Generation GPUs (Kepler / GCN) offer new 
features. 
 We assume approx. 20% performance gain by adapting the 

tracker 
 

 In the future, we might run into CPU limitations. 
 Current design with CPU-based initialization and outpat phase 

should be reevaluated. 

 



Summary 
 Threefold performance increase of GPU tracker 

compared to all CPUs of a node, tenfold increase in a 
reasonable HLT scenario. 

 GPU tracker performance is independent from CPU and 
depends linearly on data size. 

 Results of GPU and CPU tracker match almost 
completely. Only 0.00024% of the clusters differ due to 
non-associative floating-point arithmetic. 

 Common source code ensures great maintainability, 
separation from libAliHLTTPC makes a common binary 
work on all nodes – with and without GPU. 

 GPU tracker has been employed sucessfully in the recent 
PbPb runs and is employed in the new HLT cluster after 
the shutdown. 

 





Client-Server Architecture 
 Client-server architecture allows GPU resources to be shared amongst multiple trigger 

instances 

 Data transfer is done over shared memory segment 

 Also used as CUDA host buffer 

 Minimizes integration surface in trigger software - only POSIX required 

 Allows for GPU memory resources (e.g. hardware maps) to be shared 



Data Preparation Results 

Bytestream decoding and clustering show a 26x speed-up 
against single-threaded CPU 



Tracking Results 

Track formation and clone removal show a 12x speed-up 
against single-threaded CPU 



OpenCL Studies 
 The CUDA implementation has been ported to OpenCL 

 Initial performance comparisons show encouraging results on GPU, ~15% 
performance loss 

Platform C2050 (CUDA) C2050 (OpenCL) 

Pixel Processing 3.2 ms 3.9 ms 

SCT Processing 3.6 ms 4.0 ms 

Total Processing 6.8 ms 7.9 ms 





CMS  GPU Implementation 





LHCb – GPU Manager 
 Gaudi tool to offload algorithms 

 Socket client-server 
tranmission 

 Scheduler First-Come First-
Served, gathers multiple 
events and ships them for 
concurrent processing 

 Some goodies 
 Algorithm exceptions 

propagated to callers 
 Centralized profiling, logging 
 File input / output configurable 
 Outside framework execution 

possible 
 



Manycore on LHCb 

 LHCb tracking 
 FastVELO 

 Local method (Track Forwarding), 2x over sequential version 
Currently expanding into ST tracks 

 VELO Pixel (LS2 upgrade) 
 Local method, 11x over sequential version 
 Working on improvement over Physics RE 

 Hough transform implementation ongoing 
 Vertexing using graph-theory and techniques from DNA matching and 

social networking 
 RICH 

 Prototyping Ray Tracing machinery on GPU 
 

 All the efforts so far 
 https://lbonupgrade.cern.ch/manycore 
 GPGPU opportunities at the LHCb trigger – LHCb-PUB-2014-034 

https://lbonupgrade.cern.ch/manycore
http://cds.cern.ch/record/1698101


Summary / Challenges 
 Keeping GPU utlization high 

 Hide DMA transfer times, make use of vector units. 

 Many frameworks work on a per-event basis 
 One event might contain too less data to exploit GPU parallelism 

 Offline compute centers use heterogeneous hardware 
 Need to be vendor-independent 

 Event reconstruction / analysis consists of many tasks 
 GPU must be shared among these tasks 

 Large effort to maintain multiple variants of the source code 
 One should use a common source code where possible 

 Huge effort to port all code to GPU 
 One should find computational hotspots, and port only those 

 Usually a speedup of around a factor 3, compared to multi-
core CPU 

 


	ALICE  HLT  TPC  Tracking  on  GPUs 
	GPUs
	Performance Development
	Why GPUs
	Why GPUs
	Why GPUs
	Why GPUs
	Introduction
	Challenges
	Integration of GPUs in ALICE FRAMEWORK
	Integration
	Integration
	Integration
	GPU-based TRACK-FINDING in ALICE
	Introduction
	GPU Tracker Performance
	GPU Tracker Performance
	GPU Tracker Performance
	CPU / GPU  Tracker Comparison
	CPU / GPU  Tracker Comparison
	CPU / GPU  Tracker Consistency
	Usage of the GPU Tracker
	Results on current hardware
	Summary
	ATLAS
	Client-Server Architecture
	Data Preparation Results
	Tracking Results
	OpenCL Studies
	CMS
	CMS  GPU Implementation
	LHCb
	LHCb – GPU Manager�	Gaudi tool to offload algorithms
	Manycore on LHCb
	Summary / Challenges

