

ATLAS DAQ/HLT Architecture for Phase II

W.Vandelli – CERN Physics Department/ATD

- ATLAS DAQ/HLT Architecture Evolution from Run 1 to Run 4
- New Detector Readout Architecture
- FELIX Project
- Projected HLT Farm Size

• Driving Parameters

	# of Trigger levels	Leve	el-xRate (kHz)	Event Size (MB)	Network BW (GB/s)	Stor GB/s	age kHz
Run 1	3	Lvl-1 HLT	75 ~0.4	~1	10	0.5	~0.4
Run 2	2	Lvl-1 HLT	100 1	~2	50	1	1
Run 3	2	Lvl-1 HLT	100 1	~2	50	1	1
Run 4	3	Lvl-1 HLT	400 10	~5	2000	25	10

- Notes
 - Storage bandwidth includes compression factors
 - Run 3: No major upgrades in the DAQ systems currently foreseen
 - Run 4: Two stage hardware trigger (Level-0 and Level-1)

Architecture in Run 4

- Higher level of commonality between detectors
 - FELIX is a common object providing functionality today implemented in detector-specific back-end custom elx (ROD)
- Performance-scalability built-in
 - programmable FE-DAQ connectivity
 - e.g. able to de-populate DAQ buffers whether needed to accommodate higher requirements, like increasing L1 rate
- Increased use of COTS components
 - all ROD-like functionality (including data processing) could most likely be implemented in standard computers by Phase-II
- Capability to disentangle ROD-like functions from H/W implementation
 - different granularity for monitoring, control, data handling ...
 - DCS and DAQ traffic separation

FELIX Functionalities

- **Configurable** data routing device
 - route data by E-link and/or streams
 - advanced routing based on L1 ID or Trigger type
 - <u>allow for intermediate data-</u> <u>aggregation step</u>
 - data duplication and sampling for monitoring
- Handling of high-level switched protocol
 - Infiniband/Ethernet/...
 - QoS for different traffic types

FELIX Functionalities

- TTC handling
 - busy handling (no back pressure on GBT)
 - isolates FE electronics from TTC evolution
 - may provide L1 and ECR counting
 - same implementation across ATLAS
- Dedicated low latency path for critical data
 - e.g. Level 1 trigger input data for L0/L1 trigger architecture
- Command synchronisation for calibration
 - programmable sequences
 - synchronisation through TTC

FELIX Demonstrator

- Hitech Global HTG-710
 - 2 CXP cages: can connect 24 bidirectional links
 - With Virtex-7 X690T FPGA (for PCIe Gen3 8 lanes)
- Intel server board S1600JP
 - 3 PCIe Gen3 slots
- Scheduled for Q1'15
 - final design review in Q2'15

- Show feasibility, investigate technology
- Support Phase-I detector developments
 - forward compatibility with Phase II

Not final solution/technology

Architecture in Run 4

HLT farm size: compute power

- Processing time extrapolations to PU = 200
 - Run 4 rejection requirements similar/better than in Run 1-2 → 1k/100k vs 10k/400k
- A factor **O(50)** in HLT compute power needed wrt to Run 1
- Moore's law on a ~10 years period predicts a **factor 100 increase**

BUT

Software will have evolve to be at least as efficient as today on future technologies (GPGPU, Many-cores, ARM64, ...)

Assume a similar packaging → ~50 racks

HLT farm size: network connectivity

- (Temporary) Disregard RoI approach
 - worst case scenario network requirements
- 5MB@400kHz → ~20 Tbps
- Reasonable to assume
 - 100 Gbps per CPU socket (computing unit)
 - established (>)400 Gbps technology
 - − Infiniband EDR x12 \rightarrow 300 Gbps

Run 2(*)	# of 10 Gbps links			
ROS	400			
HLT	100			
	and the second se			

Run 4	# of 400 Gbps links
FELIX	200
HLT	50

- Total number of ports ~unchanged
- Network topology and link speeds mix & match depend on compute power packaging

(*) Including redundancy

- ATLAS Trigger & DAQ Technical Design Report planned in Q4 2017
 - cover Level-0/1, DAQ, HLT and Trigger
- Intermediate milestone with the **Initial Design Review** in **Q1 2016**
- IDR preparation include
 - RoI-based vs full event building
 - use of distributed file systems
 - or other data-management abstraction layers
 - processing time estimates
 - technology tracking
 - especially for FELIX
 - studies on event building traffic and flow control

ATLAS Level-0 – Level-1

