ATLAS Phase-II Trigger Architecture and Menu

Brian Petersen, CERN

HL-LHC pre-workshop September 5, 2014

Overview of ATLAS Trigger Upgrades²

ATLAS has an extensive program of trigger upgrades and consolidations for the LHC shutdowns

• LS1 (2013-2014):

- New L1 topological trigger module and upgraded central trigger
- Muon-HCAL coincidence to reduce fake L1 endcap muons
- New digitization module for the L1 calorimeter trigger
- Fast TracKer (FTK) for HLT (partial completed by 2018)
- LS2 (Phase-I, 2018-2019):
 - High granularity L1 calorimeter trigger with modern FPGAs
 - New "small-wheel" coincidence for endcap L1 muon triggers
 - Described in Phase-I TDAQ TDR (LHCC-2013-018)
- LS3 (Phase-II, 2023-2025):
 - New split L0/L1 trigger scheme with higher latency and rates
 - New MDT-based muon trigger for L0
 - Seeded track trigger at L1
 - New, full granularity L1 calorimeter trigger at L1
 - Described in Phase-II Upgrade LoI (LHCC-2012-022), but with some update as described in this talk
 - TDAQ Phase-II TDR currently planned for 2017

LS2 (Phase-I) Trigger Upgrades

LS2 L1Calo Trigger Upgrade

- Higher granularity, digital readout from ECAL to L1Calo
 - Higher precision energy as well
- Electron, photon and tau trigger:
 - Split 0.1x0.1 towers in 4 separate layers to give depth segmentation
 - For 2 middle layers split 0.1x0.1 towers into 0.025x0.1 for shower shape cuts
- Jet and Etmiss triggers
 - 0.1x0.1 towers instead of 0.2x0.2
 - Full calorimeter (0.2x0.2 towers) in single board for large jets etc.

Offline electron pT for which this set of cluster cuts is 95% efficient [GeV]

- Use of shape variables gives an estimated factor 2-3 extra rejections for electrons
 - R_m: fraction of energy in central cell
 - f₃: fraction of energy in last LAr layer
- Improved resolution and pileup suppression for jets and Etmiss
 - More later

LS2 L1Muon Endcap Trigger Upgrade

- High-pT L1Muon triggers dominated by fakes
- New small wheel provides additional coincidence hits
 - Kills most fakes in 1.3<|η|<2.4
 - 1.0< $|\eta|$ <1.3 covered by EIL4-TGC, outer Tile layer and new RPC chamber
- Rate of 20 GeV muon triggers reduced by factor 3(2) wrt Run 1(2)
 - Sufficient to run unprescaled through Run 3

LS3 (Phase-II) Trigger Upgrades

Baseline Trigger Architecture from Lol

Hardware trigger split in two levels to accommodate legacy electronics – Phase-II L0 trigger is essentially the Phase-I L1 trigger

Updated Baseline Trigger Scheme

Revised rates and latency targets for greater flexibility MDT trigger now at L0 instead of L1 in baseline

Phase-II Baseline Components

- L0 Calorimeter trigger is same as L1Calo in phase-I
 - Now with digital input from hadronic calorimeter as well
- New L0 Muon electronics
 - To deal with higher latency/rate
 - Will replace coincidence ASIC
 with more flexible FPGA

- Augment L0 Muon trigger with precision MDT tracking
 - Estimated to give factor 2 rejection across $\boldsymbol{\eta}$
- L0 Central trigger and topology trigger to be replaced
 - Need to provide Regions-of-Interest to L1
- L1 Track trigger in Rols from L0 triggers
 - Details in talk by Nikos
- New full(?) granularity L1 calorimeter trigger
 - Architecture and possible algorithms under study

Rate and Latency Limitations

- L0 limitations mostly set by new inner detector readout
 - Power/cooling limitation
- L1 latency and rate limits set by legacy electronics
 - Most of the innermost MDT layer electronics likely not replaceable in LS3 without a further major delay (under study)
 - Not yet clear it can handle >200 kHz L1 rate (occupancy dependent)
 - Also a primary motivation for split architecture (can ignore L0)
- If MDT electronics can be changed, higher rates possible
 - Hence the higher requirements for new electronics
 - 400 kHz L1 rate would allow a very open menu as shown next
- The ITK is evaluating possibility of full readout at L0 rate
 - Simplifies design at cost of higher bandwidth requirement
 - Not required for seeded L1 track trigger
 - Would allow for (later) full-acceptance tracking at L1
 - Without legacy electronics, could even consider dropping L1 and put 1 MHz into HLT (Note: this is far from current baseline!)

Phase-II L0/L1 Menu Studies

Menu Development Approach

- Menu design should be driven by physics requirements
 - However, detailed physics studies for complex physics cases for phase-II are very limited at the moment
 - Design an as inclusive trigger menu as possible
- In practice aim to preserve/improve on Run 1 performance
 - This is more ambitious than what is being done for phase-I
- Trigger upgrades should provide:
 - Increased rejection to compensate luminosity increase
 - Improved pileup suppression
 - Increased acceptance
- With possible menus for different rate limitations, we can better define future physics studies for supporting choices
 - Assume two-stage L0/L1 system with up to 1 MHz L0 and 400 kHz of L1 maximum rates (must adapt to a lower value if required by legacy MDTs)

Physics Motivation

- So far menu choices mostly based on Run 1 experience and Phase-II Lol
- Large emphasis on keeping low-pt single lepton triggers
 - Already fairly well-motivated simply by their overall gain in EW physics processes
- Some benchmark physics channels to be studied for other trigger justifications in Phase-II TDAQ TDR:
 - $H \rightarrow \tau \tau$ and $H H \rightarrow b b \tau \tau$ for tau triggers
 - $HH \rightarrow b\overline{b}b\overline{b}$ for multi-jet, HT and fat jet triggers
 - $t\bar{t}H \rightarrow t\bar{t}b\bar{b}$ for multi-jet and HT triggers
 - VBF H \rightarrow bb/ $\tau\tau$ /invisible, VBF SUSY (no trigger specified yet)
 - $H^{+} \rightarrow \tau \nu$ for τ +MET trigger
 - Inclusive SUSY searches for missing ET and multi-jet
 - Mono-(b)jet for jet+MET

Luminosity Target and Rates Scaling¹⁴

- Expected HL-LHC luminosity 5x10³⁴ cm⁻²s⁻¹ (after luminosity leveling), but we use L=7x10³⁴ cm⁻²s⁻¹
 - Corresponds to 200 interactions/BX (for 25ns running)
 - Adds some contingency to the menu
 - Opens up possibility of running at higher luminosity point
- Assume center-of-mass energy of 14 TeV
 - Increases rates by a further factor 2-3 over 8 TeV rates
 - Use MC ratio to go from 8 TeV to 14 TeV where possible
- Trigger rates from 2012 data scaled to high luminosity with \sqrt{s} correction and reduction factors for new triggers
- Multi-object triggers can have significant contribution from random coincidences
 - The rate for these goes as μ^n for n-object triggers, so quickly can become dominant
 - This is largely taken into account in rate predictions

Assumed Improvements

- Do not yet have full simulation of the Phase-II triggers
- Instead mostly apply additional reduction factor on top of the scaled 2012 L1 rates
 - For L0 use conservative reduction factors based on phase-I TDR – ignores p₁ dependence for the reduction:

Electrons:	Factor 2 rate reduction (factor 3 for 2EMx)
Taus:	Conservatively no improvement
Jets/MET:	Rely on high lumi MC simulation
	with phase-I trigger emulation
Muons:	NSW rates + factor 2 at high-pt with L0-MDT

- For L1 use LoI numbers and guesses
 - L1 tracking: Factor 5 rate reduction (also for multi-objects) Remove combinatorics in multi-object triggers
 - L1Calo: Factor 2 rejection for $e/\gamma/\tau$ (guess/target)

Note: use Run-1 L1 trigger notation and energy scale in the following trigger tables – *look at offline target*

Single Lepton Triggers

- These are expected to provide majority of the physics
 - Aim for thresholds of 20-25 GeV as in Run 1
- Need high efficiency, so minimize use of L1 trigger except when necessary
- Added new speculative muon barrel trigger for recovering barrel efficiency
 - The assigned rates for this trigger are essentially only place holders

Offline Target	L0 Trigger	L0 Rate	L1 Trigger	L1 Rate	Run 1
lso. e>22 GeV	EM16VHI	200 kHz	Track+Calo	40 kHz	EM18VH
e(γ)> 35 GeV	EM30VH	60 kHz	Calo	30 kHz	EM30
μ>20 GeV	MU15	40 kHz	Uses L0MDT	40 kHz	MU15
μ>20 GeV	MDT15Barrel	50 kHz	Track	10 kHz	-
	Total	300 kHz		110 kHz	

Muon Trigger Upgrade Motivation

- Muon barrel trigger upgrade motivated by 72% efficiency for high-p₁ in 2012 run
 - Mostly by geometrical acceptance for 3-station coincidence
 - A few percent increase expected in 2015 from extra chambers
- Design of new barrel trigger, if any, still to be decided
 - Could be additional RPC chambers
 - Could be coincidence between outer RPC and MDTs

Multi Lepton Triggers

- Di-lepton triggers allow lower thresholds in dilepton physics channels
 - Use symmetric cuts here for simplicity, though many analysis tend to prefer asymmetric ones
 - Aim for $p_1 \sim 10-15$ GeV on second lepton
- Very large uncertainty due to large combinatorial L0 rate
 - Leave 3-lepton triggers out for now and assume thresholds will be set to keep unique rate low for these as in Run 1/2

Offline Object	L0 Trigger	L0 Rate	L1 Trigger	L1 Rate	Run 1
2e>15 GeV	2EM10VH	90 kHz	Track+Calo	10 kHz	2EM10VH
2γ>25 GeV	2EM16VH	8 kHz	Calo	4 kHz	2EM12_EM16V
2µ>15 GeV	2MU10	20 kHz	None	20 kHz	2MU6(10)
e,μ>15 GeV	EM10VH_MU10	65 kHz	Track+Calo	10 kHz	EM10VH_MU6
	Total	175 kHz		30 kHz	

Tau Triggers

- With 20 GeV single lepton trigger, lepton+hadronic tau trigger likely not needed
- Di-hadronic tau trigger expensive, but doable if we can get sufficient L1 track trigger rejection
 - Primarily for VBF Higgs and $HH \rightarrow b\overline{b}\tau\tau$
- Generic tau+ETmiss trigger for charged Higgs and SUSY searches

Offline Object	L0 Trigger	L0 Rate	L1 Trigger	L1 Rate	Run 1
τ>150 GeV	TAU75	20 kHz	Calo	10 kHz	TAU40
2τ>40,30 GeV	2TAU15I	200 kHz	Calo+Track	30 kHz	2TAU11I_TAU15
τ>40 Gev, E _τ >125 GeV	TAU15I_XE50	50 kHz	Calo+Track	10 kHz	TAU15_XE35
	Total	250 kHz		50 kHz	

Hadronic Triggers

- Single jet and 4-jet triggers the workhorses in Run 1
 - Will add sum of jets (HT) and fat jet (Gxx) triggers in phase-1
- MET trigger is critical for SUSY/BSM searches
 - Also used for associated Higgs production measurements
- L0 rates estimated from L=7x10³⁴ cm⁻²s⁻¹ simulation
- Reduction possible at L1 not clear yet
 - Put a target reduction of a factor 2 at L1

Offline Object	L0 Trigger	L0 Rate	L1 Trigger	L1 Rate	Run 1
j>180 GeV	J100	45 kHz	Calo	25 kHz	J75
j>275 GeV	G175	30 kHz	Calo	15 kHz	J75
4j>75 GeV***	4J20	40 kHz	Track/Calo	20 kHz	4J15
ht>500 GeV	HT250	45 kHz	Track/Calo	25 kHz	J75
E _⊤ >200 GeV	XE/MHT80	35 kHz	Calo	20 kHz	XE40
j>150 GeV, E _⊤ >125 GeV	J80_XE/MHT50	45 kHz	Calo	15 kHz	J30_XE40

Total190 kHz100 kHz*** Likely conservative guess – needs better jet algorithm
and pileup subtraction for better estimate

Summary Tables

• Overall menu stays with design L0/L1 rate constraints

Trigger	L0 Rate	L1 Rate
Single Lepton	330 kHz	110 kHz
Multi-lepton	175 kHz	30 kHz
Taus	250 kHz	50 kHz
Hadronic Triggers	190 kHz	100 kHz
Others (exotics, VBF, etc.)	50 kHz	50 kHz
Total	995 kHz	340 kHz

- L1 rate possibly exceeds capability of MDT legacy electronics
 → might need to use tighter L1 selections
- Input rates for different L1 trigger types:

Trigger	L0 Rate
Track trigger	710 kHz
L1Calo	770 kHz

Summary

Summary

- Baseline Phase-II trigger architecture mostly unchanged since 2012 Letter-of-Intent
 - Two-level hardware trigger to accommodate legacy electronics
 - Baseline latency and rates have been increased (Final limit from remaining legacy electronics under study)
- Simplified menu designed
 - Provides inclusive selections with close to Run-1 performance

Trigger	L0 Rate	L1 Rate
Single Lepton	330 kHz	110 kHz
Multi-lepton	175 kHz	30 kHz
Taus	250 kHz	50 kHz
Hadronic Triggers	190 kHz	100 kHz
Others (exotics, VBF, etc.)	50 kHz	50 kHz
Total	995 kHz	340 kHz

• Further refinements expected towards TDR in 2017

Phase-II Lol Menu

Original Lol Menu (now obsolete)

Object(s)	Trigger	Estimated Rate		
		no L1Track	with L1Track	
е	EM20	200 kHz	40 kHz	
γ	EM40	20 kHz	10 kHz*	
μ	MU20	> 40 kHz	10 kHz	
τ	TAU50	50 kHz	20 kHz	
ee	2EM10	40 kHz	$< 1 \mathrm{kHz}$	
$\gamma\gamma$	2EM10	as above	$\sim 5 kHz^*$	
еμ	EM10_MU6	30 kHz	< 1 kHz	
μμ	2MU10	4 kHz	< 1 kHz	
au au	2TAU15I	40 kHz	2 kHz	
Other	JET + MET	$\sim 100kHz$	$\sim 100\mathrm{kHz}$	
Total		$\sim 500kHz$	\sim 200 kHz	