CMS Phase 2 Track Trigger

Anders Ryd (Cornell University)

on behalf of the CMS Collaboration

Outline:

CMS Phase 2 Tracker

- L1 Track Finding
- L1 Track Trigger Objects

Anders Ryd, Cornell University

CMS Phase 2 Track Trigger

Sept. 5, 2014

page: 1/31

Introduction

• The proposed CMS track trigger is self seeded:

- We make use of 'pT modules' that apply a momentum selection to reduce the data volume needed for the trigger.
- •Our baseline is to reconstruct tracks with pT>2 GeV in the $|\eta|$ <2.5 region
- Having this capability in the L1 trigger provides a completely new tool
 - Currently this level of tracking information is only available in the HLT.
- •CMS has carried out a detailed simulation of the proposed phase 2 detector
 - Full G4 simulation
 - Minbias with <PU>=140 for rate studies
 - Signal overlayed on <PU>=140 for efficiencies

•Results from these studies are presented in this talk

Outline

CMS Phase 2 Tracker

- ◆pT modules
- Detector layout
- Stub finding performance

L1 Track Finding

- AM and Tracklets
- Simulation performance

L1 Track Trigger Objects

- Muons
- Electrons
- Track based isolation
- Photons
- Primary vertex finding
- Jet vertexing and HT
- tkMHT and tkMET
- ◆Taus

pT Modules

- Correlating hits in closely spaced sensors give pT
 discrimination
- Correlations formed on module – data reduction for trigger readout

Strip-strip (2S) Modules 2x5 cm strips 90 um pitch Pixel-strip (PS) Modules 2x2.5 cm strips 100 um pitch 1.5 mm macro pixels

 $\odot \vec{\mathbf{B}}$

CMS Tracker for Phase 2

Six barrel layers with twosensor layers each
Five disks also with two-sensor layers each

Anders Ryd, Cornell University

CMS Phase 2 Track Trigger

Sept. 5, 2014

page: 5/31

Stub Finding

Baseline is a threshold of 2 GeV
Sharper turn-on curve in outer layers where track bending is larger. (3.8 T magnetic field useful)

Stub Finding Efficiency per Disk

Layer 1 Stub Finding Efficiency

Stub Finding Efficiency per Layer

Anders Ryd, Cornell University

CMS Phase 2 Track Trigger

Sept. 5, 2014

page: 6/31

2S Module Test Beam Performance

- Prototype 2S modules have been tested in test beams
- The pT discrimination performance is as expected from simulations

each CBC2 chip takes 127 inputs from upper sensor and 127 inputs from bottom sensor

Anders Ryd, Cornell University

Stub Rates and Data Reduction

By forming stubs we reduce the data volume, compared to clusters, by a factor of 8 to 10.
This reduction in data volume makes it possible to read out the data for use in the L1 trigger

In the innermost layer we have on average 3 to 4 stubs per module per bunch crossing at <PU>=140.
This pushes the limits of what we can read out with 5 Gbits/s links.

Anders Ryd, Cornell University

CMS Phase 2 Track Trigger

Sept. 5, 2014

page: 8/31

L1 Track Finding Requirements

- To implement the proposed track trigger the L1 track finding/fitting needs to:
 - •Highest possible efficiency for isolated tracks (e,μ,τ)
 - Good pT resolution (muon threshold)
 - Good z-resolution (for PU mitigation)
 - Good efficiency for tracks in jets (e.g. for tkMET)
 - Low fake rate (tkMET)
 - Reasonable efficiency for low pT (2 to 5 GeV) tracks (track based isolation)
 - *Low latency: track finding has to be completed in \sim 5 us

• Challenges are:

~10,000 stubs per bunch crossing, 40 MHz bunch crossing rate – find about 125 tracks with pT>2 GeV

L1 Tracking R&D

Two approaches considered for the L1Tracking

- tracklet-based approach (seeding with pairs of stubs
- pattern recognition via associative-memories (AM)
- Tracklet-based L1Tracking
 - Traditional road search with seeding in pairs of layers + linear $\chi 2$ -fit
 - Implemented using FPGAs (no custom ASICs)
 - Easy to simulate all studies presented in this talk are based on the tracklets
- AM approach :
 - Pattern recognition performed in custom ASICs (CAMs)
 - Hits in matched patters fit (Hough transform, principal, component, or linear χ 2-fit)

We are now developing demonstrators for these tracking approaches The goal is to have demonstrating the L1 track finding by 2016 for our TDR

Anders Ryd, Cornell University

CMS Phase 2 Track Trigger

L1 Tracking Performance: Efficiency

- •Good efficiency of full eta range $|\eta| < 2.5$
- High efficiency for tracks with pT down to 2 GeV
- Muon efficiency ~99%
- Pion efficiency 90 to 95% (worse for low pT)
- Electron efficiency 80 to 90% (harder due to bremsstrahlung)

L1 Tracking Performance: Resolution

• z_0 resolution around 1 mm – worse for $|\eta|>2$ and soft tracks • pT resolution around 1 to 2% out to eta of ~2

Anders Ryd, Cornell University

CMS Phase 2 Track Trigger

L1 Track Trigger Objects

 The L1 Tracks are combined with other L1 objects to form track trigger primitives:

- L1Muon+L1Track : Improve muon pT determination
- L1EG+L1Track : For election selection
- L1EG or L1CaloTau + L1Track : Hadronic tau selection
- L1Jet+L1Track : Jet vertex determination
- L1Tracks : Primary vertex finding + tkMET
- L1Tracks + other L1 object : Track based isolation

Muon Triggers

Match muons to L1 tracks
Improves pT determination
Gives vertex position
Can also apply track based isolation
Should have high efficiency since muon tracking is simple

Without tracking information the rate curve flattens out due to mismeasured muon pT

Anders Ryd, Cornell University

CMS Phase 2 Track Trigger

Sept. 5, 2014

page: 14/31

Muon Triggers

 Track matching to muon candidates has high efficiency
 Muons+L1Tracks provide much sharper threshold

PU = 140, 14 TeV

Sharp threshold allows a significant rate reduction:
At 20 GeV we have a factor of ~10.

Sept. 5, 2014

page:15/31

Electron Triggers

• Match L1EG objects with tracks to reject π^0 background. • More challenging than muons as electron tracks are harder

to reconstruct.

Hard to obtain very high efficiency

Electron Triggers

• We obtain efficiencies for matching L1 tracks to L1EG objects above 90% in the central region and falling to 70% for large eta.

 With this efficiency we have a rate reduction of ~6 for a 20 GeV threshold

> Using track based isolation we obtain a factor of 10 rate reduction with a very small loss of efficiency

Anders Ryd, Cornell University

CMS Phase 2 Track Trigger

Isolation of Leptons w.r.t. L1Tracks

- Relative isolation
 - Use track in cone around lepton track
 - Isolation track z vertex consistent with lepton vertex
 97% efficiency for
 - 50% background rejection
- Isolation performance not strongly dependent on track min pT
- Similar performance for taus and muons

Anders Ryd, Cornell University

Shows the limited degradation in the performance when p_{Tmin} is increased to 3 GeV.

CMS Phase 2 Track Trigger

Sept. 5, 2014

page: 18/31

Photons: Higgs to γγ

 Even though we don't have a z-vertex position for photons we can apply track based isolation

 Can obtain factor of 3 background rejection while keeping >90% efficiency

Anders Ryd, Cornell University

CMS Phase 2 Track Trigger

Jets, HT and MHT

 Triggers with multiple jets, HT, or MHT are very sensitive to PU

- To mitigate the PU dependence we require vertex consistency of the object we use in these triggers
- •We use a cone around the L1Jet to find matching tracks. From these tracks we determine a z-vertex position for each jet
- Typically we require vertex consistency at the level of 1 cm

Jets, HT and MHT : Jet Vertex Reconstruction

Anders Ryd, Cornell University

CMS Phase 2 Track Trigger

Primary Vertex and tkMET

- We can determine the primary vertex by looking in bins of z for the highest sum of pT
 - In tt events we find vertex position with 0.5 mm resolution
- High efficiency for selecting the correct vertex in tt events.

L1Track Based tkMET and MHT

 For these hadronic triggers the L1Track based selectors perform significantly better than the calo only algorithms
 For the relatively low MET SUSY sample at 90% efficiency we have more than a factor 10 lower rate.

Hadronic Tau Selection

We have considered two different algorithms for selecting hadronic taus:

- L1CaloTau + L1Track
 - Seed algorithm with L1CaloTaus
 - Require a matching lead track plus possible additional tracks
 - Apply track based isolation
- L1Track + L1EM
 - Seed with L1Track (pT>5 Gev)
 - Add additional L1Tracks and L1EM objects to the tau candidate such that the invariant mass of the L1Tracks and L1EM objects are below the tau mass
 - Apply track based isolation

We consider both a single tau and double tau selection for the $H{\rightarrow}\tau\tau$ final state

Anders Ryd, Cornell University

CMS Phase 2 Track Trigger

Tau Trigger Objects

Double Tau

page: 25/31

Tau Trigger Turn-on Curves

25 GeV Threshold

- Requirement to find lead track gives plateau efficiency for tracking algorithms around 85%
- Turn-on curve for L1Track+L1Em algorithm reasonably sharp.

50 GeV Threshold

Anders Ryd, Cornell University

CMS Phase 2 Track Trigger

Sept. 5, 2014

200

Use of Pixels in L1 Trigger

We are considering the use of pixel information in the L1 trigger
Could be useful for

Electrons

Impact parameter triggers (b-jets)

 Considering a 'region-of-interest' approach where we seed using L1Calo or L1Track objects

- L1Tracks could allow reading out a very small region of the pixels and reducing the data volume for the pixel trigger
- We are developing the tools to study these triggers, e.g.
 H→bb, where we match L1 tracks to L1Jets and then refit the L1 tracks with pixel information

• For now the pixels are considered an option that is under study

Summary

- We have performed detailed simulations of the proposed CMS tracker and track trigger
- The pT modules are shown to proved trigger primitives, stubs, that can be used for an efficient L1Track finding
- Combining the L1Tracks with other L1 objects from the calorimeters and muons we have shown a significant improvement on most trigger objects:
 - +Larger rate reductions for lepton triggers: e, μ , and τ
 - Use of track based isolation including for photons
 - Primary vertex determination
 - Powerful PU mitigation in hadronc triggers (tkMET, MHT)
- R&D underway to demonstrate the feasibility of the L1 tracking
- The track trigger at L1 will provide many powerful handles to control the trigger rates at the HL-LHC
 - We will likely come up with new ideas as we get more familiar with this new tool

FE Electronics

Anders Ryd, Cornell University

CMS Phase 2 Track Trigger

Sept. 5, 2014

page: 30/31

Stub Rate and Data Reduction in Disks

CMS Phase 2 Track Trigger

Sept. 5, 2014

page: 31/31