

ATLAS L1 Track Trigger for HL-LHC

Nikos Konstantinidis (University College London)

Outline

- ATLAS L0/L1 strategy and L1Track
- ATLAS Tracker upgrade (ITK) layout and readout plans
- Latency considerations for strips regional readout
- L1Track performance studies
- L1Track pattern recognition studies with the ITK layout
- Conclusions

ATLAS L0/L1 strategy and L1Track

- Phase-I L1Calo/L1Muon (possibly augmented by MDT trigger) adequate as L0 Trigger at Phase-II for reducing 40MHz to ~1MHz without loss of interesting physics
- Tracking used only on L0 accepted events and optionally only in Regions of Interest (RoI)
- L0A not necessary to be used by all detectors

Nikos Konstantinidis

ATLAS Tracker upgrade (ITK) layout

Nikos Konstantinidis

ATLAS L1 Track Trigger for HL-LHC

Pixels and Strips readout plans

- The Pixel detector plans to do full readout at 1MHz (i.e. at LOA rate)
 - Provided the readout latency is low, additional flexibility for L1Track
 - So far, Pixel data have not been used in L1Track pattern recognition
- The Strip detector has already implemented the Regional Readout concept in the recently produced version of the front-end chip (ABC130)
 - We <u>conservatively</u> assume that we would read out 10% of strip modules at L0A

- Potential saving in services, power, material

 $\Delta \eta x \Delta \phi = 0.2 \times 0.2, \ \Delta z = \pm 225 \text{mm}$

- Opening of RoI near the beam line to account for the spread in beam spot
- Central modules, closer to the beamline, more frequently inside RoIs

Nikos Konstantinidis

ATLAS L1 Track Trigger for HL-LHC

- Plot shows the fraction of RoIs containing a given module
 - Assuming uniform distribution of RoIs

Nikos Konstantinidis

probability [%

ATLAS L1 Track Trigger for HL-LHC

- Plot shows the fraction of RoIs containing a given module
 - Assuming uniform distribution of RoIs

Nikos Konstantinidis

probability [%

ATLAS L1 Track Trigger for HL-LHC

Strips: barrel and endcap structures

- R3(/L1) Data packets (~60bits, with 4(/3) clusters) are formed in each ABC130 and propagated through the daisy chain of chips to the HCC
- Dedicated lines from each HCC to EOS/GBT (default 160Mbps, considering 320Mbps)

Nikos Konstantinidis

ATLAS L1 Track Trigger for HL-LHC

- ~24 μ s from L0A to L1A:
 - $\sim 6\mu s$ for regional (R3) data readout
 - ~12-15µs for L1Track pattern recognition
 - ~3-6µs for cable times and Global L1 processing and decision
- Discrete Event Simulation framework to study R3 data latency
 - Full modelling of on-detector readout: from arrival of R3 or L1A signal at front-ends to data packets leaving the HCC
 - No queuing after that point

- After R3 data are prioritised over L1 data at the HCC, latency target achieved in barrel
- More challenging in endcaps, due to longer daisy chains and higher occupancy
 - Requires 4 lines from FEs to HCC and 320Mbps lines on stave

L1Track performance requirements

- Emphasis on high signal efficiency
 - Target signal efficiency = $\sim 95\%$ or above
- No need for very high rate reduction to go from 1MHz to a few hundred kHz
 - Target background rejection = ~5
- Next few slides show performance results using MC true charged particles or offline reconstructed tracks, with some smearing to emulate the expected resolution of L1Track

Muon performance

- Majority of L1_MU20 triggers are from real, low-pT muons
- L1Track tracks sharpen the L1Muon thresholds
- Factor ~4 reduction for L1_MU20 RoIs from real muons, more rejection for fake RoIs

ATLAS L1 Track Trigger for HL-LHC

Electron performance

- Using offline reconstructed tracks in events with 3e34 pile-up
- For 96% signal (W \rightarrow ev) efficiency, rejection factor ~5 when matching a p_T >10GeV track to the Run-1 L2Calo cluster
 - Run 1 L2Calo emulating L1Calo at HL-LHC
- Minimal impact from track smearing (emulate expected L1Track resolution)

Nikos Konstantinidis

ATLAS L1 Track Trigger for HL-LHC

Tau performance

Signal: single-prong hadronic taus with pT>20GeV from $H \rightarrow \tau \tau$ (m_H=120GeV)

Used offline tracks, smeared to emulate L1Track performance

Nikos Konstantinidis

ATLAS L1 Track Trigger for HL-LHC

• Pattern banks generated using O(100M) muons in a small region of the detector:

 $\ \ \square \ \ \eta : \ [0.1,0.3]; \ \varphi : \ [0.3,0.5]; \ p_T : \ [4,400] GeV; \ |z_0| < 250 mm; \ |d_0| < 2mm$

- Using only Strip layers
 - maximum 10 hits (layers) per track
- Efficiency studied with independent sample of muons
- Fake pattern rate investigated in min-bias events with pile-up
 □ µ=160 (of inelastic min-bias collisions)

Results and preliminary conclusions

	5 layers	8 layers		10 layers	
SS width	4/5 (ε _μ >99%)	6/8 (ε _μ >99%)	7/8 (ε _μ ~96%)	8/10 (ε _μ >99%)	9/10 (ε _μ ~94%)
32	54 (2.3M)				
64	187 (0.7M)	198 (2.7M)	16 (2.7M)		
128	537 (0.2M)	669 (0.8M)	151 (0.8M)	255 (1.3M)	36 (1.3M)

- Signal inefficiencies due to gaps between wafers
 - Ongoing work in the ATLAS tracker community to halve the size of these gaps and correspondingly the above inefficiencies will be halved
- Pattern bank sizes (in red) look achievable in an <u>upgraded</u> version of the FTK AM chips
 - Size can be optimized further with the "variable SS width" approach
- Number of patterns to be propagated to the track fitting stage (in blue) also achievable
 - Most are fakes; to be dropped at track fitting stage

Work/ideas in progress

- Rate of multi-jet triggers dominated by coincidences
 - Use L1Track to ensure jets are coming from the same z-position
- Use jets from the same z-position to define some kind of jetbased missing E_T , to mitigate pile-up effects
- Use Pixel layers for electron triggers (before electrons brem and before photons convert) and/or for b-jets
- A lot more to do in terms of the pattern recognition and performance studies, the latency of the pattern recognition hardware and the overall system design

- ATLAS constraints of L1A<~400kHz and L1 Latency<~30µs make the L0/L1 optimal/necessary and the use of RoI-based L1Track possible
 - L0/L1 approach with Regional Strip detector readout gives flexibility
 - Full Pixel readout at 1MHz may add flexibility, but not used yet
- Full discrete event simulation shows that R3 data latency of 6µs is achievable
- Studies with (smeared) MC charged particles or offline tracks indicate that rate reduction factors of ~5 are achievable for signal efficiencies ~95%
- First pattern recognition results, using Strips only, indicate that the FTK concept may work well also for L1Track at HL-LHC