MACHINE LEARNING IN HIGH-ENERGY PHYSICS

BALÁZS KÉGL

Linear Accelerator Laboratory and Computer Science Laboratory CNRS/IN2P3 & University Paris-S{ud,aclay}

CERN, September 5, 2014

OUTLINE

- What is machine learning/data science?
- Two projects to illustrate ML in HEP
 - budgeted learning for triggers (LHCb)
 - classification for discovery and the HiggsML challenge (ATLAS)

 "The science of getting computers to act without being explicitly programmed" - Andrew Ng (Stanford/Coursera)

- "The science of getting computers to act without being explicitly programmed" - Andrew Ng (Stanford/Coursera)
 - part of standard computer science curriculum since the 90s

- "The science of getting computers to act without being explicitly programmed" - Andrew Ng (Stanford/Coursera)
 - part of standard computer science curriculum since the 90s
 - inferring knowledge from data

- "The science of getting computers to act without being explicitly programmed" - Andrew Ng (Stanford/Coursera)
 - part of standard computer science curriculum since the 90s
 - inferring knowledge from data
 - generalizing to unseen data

- "The science of getting computers to act without being explicitly programmed" - Andrew Ng (Stanford/Coursera)
 - part of standard computer science curriculum since the 90s
 - inferring knowledge from data
 - generalizing to unseen data
 - usually no parametric model assumptions

- "The science of getting computers to act without being explicitly programmed" - Andrew Ng (Stanford/Coursera)
 - part of standard computer science curriculum since the 90s
 - inferring knowledge from data
 - generalizing to unseen data
 - usually no parametric model assumptions
 - emphasizing the computational challenges

MACHINE LEARNING TAXONOMY

MACHINE LEARNING TAXONOMY

- Supervised learning: non-parametric (model-free) input output functions
 - classification (Trees, BDT, SVM, NN) what you call MVA
 - regression (Trees, NN, Gaussian Processes)
- Unsupervised learning: non-parametric data representation
 - clustering (k-means, spectral clustering, Dirichlet processes)
 - dimensionality reduction (PCA, ISOMAP, LLE, auto-associative NN)
 - density estimation (kernel density, Gaussian mixtures, the Boltzmann machine)
- Reinforcement learning:
 - learning + dynamic control: learn to behave in an environment to maximize cumulative reward

MACHINE LEARNING TAXONOMY

- Supervised learning: non-parametric (model-free) input output functions
 - classification (Trees, BDT, SVM, NN) what you call MVA
 - regression (Trees, NN, Gaussian Processes)
- Unsupervised learning: non-parametric data representation
 - clustering (k-means, spectral clustering, Dirichlet processes)
 - dimensionality reduction (PCA, ISOMAP, LLE, auto-associative NN)
 - density estimation (kernel density, Gaussian mixtures, the Boltzmann machine)
- Reinforcement learning:
 - learning + dynamic control: learn to behave in an environment to maximize cumulative reward

MACHINE LEARNING RESEARCH

We make our living by inventing techniques

MACHINE LEARNING RESEARCH

We are interested in problems at the edges of our current methodological capacities

```
000000000000000
/ 1 1 1 / 1 / / 1 / / / / /
22222222222
444444444444
5555555555555
666666666666
ファチ17ァファファファファ
888888888888888
999999999999
```

Character recognition

Emotion recognition

Speech recognition

- Input: a usually high dimensional vector x
- Output: a category (aka label, class) y
- Usually no parametric model
 - the classification function y = g(x) is learned using a training set $D = \{(x_1,y_1), \ldots, (x_n,y_n)\}$
- Well-tested algorithms:
 - neural networks, support vector machines, boosting (BDTs)

The only goal is a low probability of error

$$P(g(x) \neq y)$$

on previously unseen examples (x, y)

Real time face detection

About 413,000,000 results (0.43 seconds)

How to know the Page Rank of your articles in real time ...

stream-seo.com/real-time-page-rank/ *

May 22, 2013 - Yes, I'm talking about **real time** statistics on how your **page rank** is increasing and the trust you're gaining. You see, the problem with **Page** ...

Google PageRank Checker and calculator - check Page Rank

www.pagerank-direct.com/ *

So, your **real time page rank** will be displayed on each of your pages, and so your visitors will know it and will be able to test the service to display by themselves ...

Rankinity: Website rank tracking in real time

rankinity.com/ ▼

Website rank tracking in real time. Check your website positions and analyze your competitors in popular search engines. Rankinity screenshot ...

Real time web page ranking

Real time ad placement

Real time signal/background separation

The second goal is the fast execution of

Trade-off between quality and speed

- Time constraints
- Memory constraints
- Consumption constraints
- Communication constraints

The common design:

cascade classification = trigger with levels

THE LHCB TRIGGER

- Collaboration with
 - Vava Gligorov (CERN)
 - Mike Williams (MIT)
 - Djalel Benbouzid (LAL)

THE LHCB TRIGGER

- A beautifully complex problem
 - varying feature costs
 - cost may depend on the value
 - events are bags of overlapping candidates

THE LHCB TRIGGER

Easy background

Easy background

Easy background

Easy background

BUDGETED CLASSIFICATION

- Classification with test-time constraints
- An active research area due to IT applications
- To be exploited for trigger design

BUDGETED CLASSIFICATION

Take-home message:

Once you go software trigger, the set of possible solutions opens up

HEP-INSPIRED OBJECTIVES

- Low error probability ~ high accuracy ~ high efficiency
- Fast classification
- More exotic goals (or constraints):
 - easy control of detection efficiency in different signal or background classes
 - efficiency unbiased in certain variables
 - feeding the classifier into a statistical (counting) test: maximize test sensitivity
 - in the big data regime systematics are becoming more important than statistical efficiency

CLASSIFICATION FOR DISCOVERY

The HiggsML challenge

In a nutshell

- In a nutshell
 - A vector x of variables is extracted from each event

- In a nutshell
 - A vector x of variables is extracted from each event
 - A classifier g(x) is trained to separate signal from background

- In a nutshell
 - A vector x of variables is extracted from each event
 - A classifier g(x) is trained to separate signal from background
 - The background b is estimated in the selection region $G = \{x : g(x) = s\}$

- · In a nutshell
 - A vector x of variables is extracted from each event
 - A classifier g(x) is trained to separate signal from background
 - The background b is estimated in the selection region $G = \{x : g(x) = s\}$
 - Discovery is made when the number of real events *n* is significantly higher than *b*

Exciting physics

- Exciting physics
 - The Higgs to tau-tau excess is not yet at five sigma Tech. Rep. ATLAS-CONF-2013-108

- Exciting physics
 - The Higgs to tau-tau excess is not yet at five sigma Tech. Rep. ATLAS-CONF-2013-108
- Exciting data science (statistics and machine learning)

- Exciting physics
 - The Higgs to tau-tau excess is not yet at five sigma Tech. Rep. ATLAS-CONF-2013-108
- Exciting data science (statistics and machine learning)
 - What is the theoretical relationship between classification and test sensitivity?

- Exciting physics
 - The Higgs to tau-tau excess is not yet at five sigma Tech. Rep. ATLAS-CONF-2013-108
- Exciting data science (statistics and machine learning)
 - What is the theoretical relationship between classification and test sensitivity?
 - What is the quantitative criteria to optimize?

- Exciting physics
 - The Higgs to tau-tau excess is not yet at five sigma Tech. Rep. ATLAS-CONF-2013-108
- Exciting data science (statistics and machine learning)
 - What is the theoretical relationship between classification and test sensitivity?
 - What is the quantitative criteria to optimize?
 - How to formally include systematic uncertainties?

Exciting physics

- The Higgs to tau-tau excess is not yet at five sigma Tech. Rep. ATLAS-CONF-2013-108
- Exciting data science (statistics and machine learning)
 - What is the theoretical relationship between classification and test sensitivity?
 - What is the quantitative criteria to optimize?
 - How to formally include systematic uncertainties?
 - Can we redesign classical algorithms (boosting, SVM, neural nets) for optimizing this criteria?

We are running a data challenge to answer some of these questions

Joerg Stelzer - Atlas-CERN

The formal setup

- We simulate data: $\mathcal{D} = \{(\mathbf{x}_1, y_1, w_1), \dots, (\mathbf{x}_n, y_n, w_n)\}$
 - ullet $\mathbf{x}_i \in \mathbb{R}^d$ is the feature vector
 - ullet $\mathbf{y}_i \in \{\mathsf{background}, \mathsf{s}_{\mathsf{ignal}}\}$ is the label
 - $w_i \in \mathbb{R}^+$ is a non-negative weight (importance sampling)
 - let $S = \{i : y_i = s\}$ and $B = \{i : y_i = b\}$ be the index sets of signal and background events, respectively
- Maximize the Approximate Median Significance

G. Cowan, K. Cranmer, E. Gross, and O. Vitells. EPJ C, 71:1554, 2011.

$$\mathsf{AMS} = \sqrt{2\left((s+b)\ln\left(1+\frac{s}{b}\right) - s\right)} \approx \frac{s}{\sqrt{b}}$$

- $\widehat{\mathcal{G}} = \{i : g(\mathbf{x}_i) = \mathbf{s}\}$
- $s = \sum_{i \in \mathcal{S} \cap \widehat{\mathcal{G}}} w_i$
- $b = \sum_{i \in \mathcal{B} \cap \widehat{\mathcal{G}}} w_i$

A tool for getting the ML community excited about your problem

- Official ATLAS GEANT4 simulations
 - 30 features (variables)
 - 250K training: input, label, weight
 - IOOK public test (AMS displayed real-time), only input
 - 450K private test (to determine the winner after the closing of the challenge), only input
 - public and private tests set are shuffled, participants submit a vector of 550K labels

- I6K\$ prize pool
 - 7-4-2K\$ for the three top participants
 - HEP meets ML award for the most useful model, decided by the ATLAS members of the organizing committee

kaggle

Customer Solutions

Competitions

Community -

Sign up

Login

Enter/Merge by

\$13,000 • 1,627 teams

Mon 12 May 2014

Higgs Boson Machine Learning Challenge

Mon 15 Sep 2014 (11 days to go)

Dashboard

Leaderboard - Higgs Boson Machine Learning Challenge

This leaderboard is calculated on approximately 18% of the test data.

The final results will be based on the other 82%, so the final standings may be different.

See someone using multiple accounts? Let us know.

#	Δ1w	Team Name ‡ model uploaded * in the money	Score ②	Entries	Last Submission UTC (Best - Last Submission)
1	_	Gábor Melis *	3.85059	97	Thu, 04 Sep 2014 08:07:20 (-34d)
2	↑1	Luboš Motl's team 🍱 *	3.84522	535	Thu, 04 Sep 2014 09:22:47 (-1.9h)
3	‡1	Tim Salimans *	3.84428	46	Tue, 12 Aug 2014 17:42:01 (-12.2d)

kaggle

Customer Solutions

Competitions

Community -

Sign up

Login

Enter/Merge by

Mon 15 Sep 2014 (11 days to go)

Mon 12 May 2014

Leaderboard - Higgs Boson Machine Learning Challenge

Dashboard

This leaderboard is calculated on approximately 18% of the test data. The final results will be based on the other 82%, so the final standings may be different.

See someone using multiple accounts? Let us know.

#	Δ1w	Team Name ‡ model uploaded * in the money	Score ②	Entries	Last Submission UTC (Best – Last Submission)
1	-	Gábor Melis *	3.85059	97	Thu, 04 Sep 2014 08:07:20 (-34d)
2	↑1	Luboš Motl's team 🍱 *	3.84522	535	Thu, 04 Sep 2014 09:22:47 (-1.9h)
3	‡1	Tim Salimans *	3.84428	46	Tue, 12 Aug 2014 17:42:01 (-12.2d)

#	Δ1w	Team Name ‡ model uploaded * in the MONEY	Score ②	Entries	Last Submission UTC (Best - Last Submission)
1	_	Gábor Melis *	3.85059	97	Thu, 04 Sep 2014 08:07:20 (-34d)
2	↑1	Luboš Motl's team 🃣 *	3.84522	535	Thu, 04 Sep 2014 09:22:47 (-1.9h)
3	‡1	Tim Salimans *	3.84428	46	Tue, 12 Aug 2014 17:42:01 (-12.2d)
4	_	nhlx5haze	3.80655	234	Thu, 28 Aug 2014 13:13:45 (-58.2d)
5	-	Opera Solutions 🎩	3.78818	187	Thu, 04 Sep 2014 11:46:44 (-3.7h)
6	-	Davut & Josef 🎩	3.76856	137	Thu, 04 Sep 2014 18:15:27 (-8.2d)
7	_	Roberto-UCIIIM	3.76560	246	Thu, 04 Sep 2014 14:15:52 (-32.6d)
834	↑197	Nemerle	3.25868	51	Thu, 04 Sep 2014 15:06:09 (-16.1h)
835	180	CIMFAVuv	3.25090	9	Wed, 23 Jul 2014 16:43:38 (-4.8d)
836	180	JeJe	3.25012	4	Sat, 21 Jun 2014 01:11:13
A		simple TMVA boosted trees	3.24954		
837	↓80	Xiaohu SUN	3.24954	3	Tue, 03 Jun 2014 13:14:47
838	180	Pierre Boutaud	3.24954	10	Fri, 25 Jul 2014 15:25:07 (-30d)

#	Δ1w	Team Name # model uploaded * in the MONEY	Score @	Entries	Last Submission UTC (Best - Last Submission)
1	_	Gábor Melis *	3.85059	97	Thu, 04 Sep 2014 08:07:20 (-34d)
2	↑1	Luboš Motl's team 🃣 *	3.84522	535	Thu, 04 Sep 2014 09:22:47 (-1.9h)
3	11	Tim Salimans *	3.84428	46	Tue, 12 Aug 2014 17:42:01 (-12.2d)
4	_	nhlx5haze	3.80655	234	Thu, 28 Aug 2014 13:13:45 (-58.2d)
5	-	Opera Solutions 🎩	3.78818	187	Thu, 04 Sep 2014 11:46:44 (-3.7h)
6	_	Davut & Josef 🎩	3.76856	137	Thu, 04 Sep 2014 18:15:27 (-8.2d)
7	_	Roberto-UCIIIM	3.76560	246	Thu, 04 Sep 2014 14:15:52 (-32.6d)
834	↑197	Nemerle	3.25868	51	Thu, 04 Sep 2014 15:06:09 (-16.1h)
835	180	CIMFAVuv	3.25090	9	Wed, 23 Jul 2014 16:43:38 (-4.8d)
836	180	JeJe	3.25012	4	Sat, 21 Jun 2014 01:11:13
		simple TMVA boosted trees	3.24954		
837	↓80	Xiaohu SUN	3.24954	3	Tue, 03 Jun 2014 13:14:47
838	↑80	Pierre Boutaud	3.24954	10	Fri, 25 Jul 2014 15:25:07 (-30d)
		52			

#	Δ1w	Team Name # model uploaded * in the MONEY	Score @	Entries	Last Submission UTC (Best - Last Submission)
1	_	Gábor Melis *	3.85059	97	Thu, 04 Sep 2014 08:07:20 (-34d)
2	↑1	Luboš Motl's team 🍱 *	3.84522	535	Thu, 04 Sep 2014 09:22:47 (-1.9h)
3	‡1	Tim Salimans *	3.84428	46	Tue, 12 Aug 2014 17:42:01 (-12.2d)
4	_	nhlx5haze	3.80655	234	Thu, 28 Aug 2014 13:13:45 (-58.2d)
5	-	Opera Solutions 🎩	3.78818	187	Thu, 04 Sep 2014 11:46:44 (-3.7h)
6	-	Davut & Josef 🎩	3.76856	137	Thu, 04 Sep 2014 18:15:27 (-8.2d)
7	_	Roberto-UCIIIM	3.76560	246	Thu, 04 Sep 2014 14:15:52 (-32.6d)
834	↑197	Nemerle	3.25868	51	Thu, 04 Sep 2014 15:06:09 (-16.1h)
835	180	CIMFAVuv	3.25090	9	Wed, 23 Jul 2014 16:43:38 (-4.8d)
836	180	JeJe	3.25012	4	Sat, 21 Jun 2014 01:11:13
		simple TMVA boosted trees	3.24954		
837	↓80	Xiaohu SUN	3.24954	3	Tue, 03 Jun 2014 13:14:47
838	↑80	Pierre Boutaud	3.24954	10	Fri, 25 Jul 2014 15:25:07 (-30d)

 Take home message: running a data challenge is a great way to

- Take home message: running a data challenge is a great way to
 - let data scientists know about your problem

- Take home message: running a data challenge is a great way to
 - let data scientists know about your problem
 - get meaningful solutions to difficult technical problems

- Take home message: running a data challenge is a great way to
 - let data scientists know about your problem
 - get meaningful solutions to difficult technical problems
 - · jump-start and nurture interdisciplinary collaborations