

ALICE Upgrade for Run3: Computing

HL-LHC Trigger, Online and Offline Computing Working Group Topical Workshop Sep 5th 2014

Timeline and resources consideration

- ALICE upgrade in Run3
 - CPU needs proportional to track multiplicity + pileup
 - Storage needs proportional to accumulated luminosity
- ALICE upgrade basic estimates
 - Event rate 50KHz (Pb-Pb), 200KHz (p-p, p-Pb)
 - Event size 1.1TB/sec from detector; 13GB/sec average processed and compressed to storage

Data processing and systems consolidation

- RAW data rates and volume necessitate the creation of an online-offline facility (02) for data compression, incorporating
 - DAQ functionality detector readout, data transport and event building
 - HLT functionality data compression, clustering algorithms, tracking algorithms
 - Offline functionality calibration, full event processing and reconstruction, up to analysis objects data

Data flow and compression in O2

Hardware architecture of O2

Software and process improvements for O2

- 'Offline quality' calibration
 - Critical for the data compression
 - Compressed data in format allowing reprocessing,
 i.e. finer-grain calibration is still possible
- Use of FPGAs, GPUs and CPUs in combination
 - Software uses specific advantages of each
 - A well-tested approach in production (current HLT)
- New framework to incorporate all tasks
 - ALFA (ALICE-FAIR) developed in collaboration with the FAIR collaboration at GSI Darmstadt

ALFA – online system for data processing

 Technical/Algorithmic challenges are addressed in already formed Computing Working Groups

Simplified data processing scheme

Data transport prototype

aidrefma01

Existing and tested to expected throughput

Preparations for Run3 – tests of processing chain

- Cluster finding in HLT for all detectors
 - New, more powerful, HLT cluster
 - System validated for TPC over 2 years of data taking in Run1
 - Largest data compression factor (x4)
- Detector calibration online
 - Many detectors (currently offline) calibration algorithms in HLT
 - Critical step for good quality tracking and data compression
- Preparation of O2 test cluster @10% of expected size
 - Testbed for ALFA development

The Grid

- General assumption and roles
 - Will continue to do what it does now
 - MC simulation, end-user and organized data analysis, raw data reconstruction (reduced)
 - Custodial storage for RAW data output of O2 compressed data stream
- Expected that the Grid will grow with the same rate
- Search for additional resources
 - New sites
 - Contributed resources from existing sites

Growth expectations

• Based on 'flat budget' and modified Moore's law

Grid upgrades – data processing

- Assume sites will continue offering standard CPUs
 - 'GPU ready' algorithms have to cope
- Growth beyond 'flat budget' scenario necessitates finding new resources
 - This is an ongoing process
- Contributed cycles from existing, non-standard sources
 - Supercomputer back-fill this can potentially bring equivalent of tens of thousand CPU cores for MC
 - Ongoing collaborative work with ATLAS (PanDa)
- Support for various cluster configurations will continue and expand, as needed
 - Standard batch/whole node/AI-cloud-on demand
 - Increases flexibility, efficiency

Grid upgrades – data storage

- Grid storage is expected to hold the analysis object data and compressed RAW (custodial)
- The data volume to the Grid will be reduced to reasonable size by the O2 facility
- General expectation for cheaper storage driven by the needs of the 'big players' (insert Facebook here)
 - May modify upward the current 20% yearly growth
 - Perhaps slower media need for more sophisticated data access models
 - Biggest impact is on the cost of storage for the O2 facility

Summary

- ALICE upgrade for LHC Run3 (2020 and beyond) — Event rate x 100, data volume x 10 (of current rates)
- Data reduction to manageable levels dedicated O2 computing facility, incorporating DAQ/HLT and Offline functions
 - Heterogeneous hardware (CPU/GPU/FPGA)
 - Data volume reduction by x10 to 13GB/sec, up to analysis-ready data containers
 - Framework development, software demonstrators, test cluster in preparation
- Grid resources are expected to grow with the usual rate
 - Intensive programme to incorporate new sites and contributed computing power on existing facilities