
LCIO
for FCC

Frank Gaede, DESY
FCC Software Meeting

July 10, 2014

Fr
an

k
G
ae

de
,
FC

C
So

ft
w
ar

e
M

ee
ti
ng

,
Ju

ly
 1
0,

 2
01

4

2

Outline

LCIO Overview

Software Design

Event Data Model

Generic User Data

LCIO and ROOT

LCIO Applications

Summary & Outlook

Fr
an

k
G
ae

de
,
FC

C
So

ft
w
ar

e
M

ee
ti
ng

,
Ju

ly
 1
0,

 2
01

4

3

LCIO overview

LCIO is a software package that provides an event data
model and a persistency format for Linear Collider physics
studies

development started in 2002 as a DESY/SLAC project

main goals then - and still today:

provide a common language (EDM) for the LC community
enable sharing and common development of software tools and
frameworks
foster collaboration and avoid duplication of effort

has become the standard for all LC physics studies since

used for Monte Carlo simulation and test beams by CLIC,
ILD, SiD, Calice, LCTPC, EUTelescope (also Atlas)...

Fr
an

k
G
ae

de
,
FC

C
So

ft
w
ar

e
M

ee
ti
ng

,
Ju

ly
 1
0,

 2
01

4

4

LCIO Software design I

LCIO provides C++, Java and
Fortran (C, cfortran.h) API
Python bindings (ROOT dictionary)

two independent
implementations: C++ and Java
C++ (or Java) only builds possible
Java currently not used

common file format SIO:
simple binary I/O based on records
using zlib for compression
pointers inside one record
implemented through integerIDs and
lookup tables
ships with LCIO

Fr
an

k
G
ae

de
,
FC

C
So

ft
w
ar

e
M

ee
ti
ng

,
Ju

ly
 1
0,

 2
01

4

5

LCIO software design II

event data model is strictly decoupled from persistency package
– currently SIO, but can be changed

user code only sees pure abstract interface (Reading) or LCIO
implementation classes (Writing)

abstract
event &

I/O

concrete
classes

persistency
implementatio

n

Reading

Writing

Fr
an

k
G
ae

de
,
FC

C
So

ft
w
ar

e
M

ee
ti
ng

,
Ju

ly
 1
0,

 2
01

4

6

The Event Data Model

LCIO defines a hierarchical event
data model, with higher level
objects pointing back to their
constituents
only indirect (LCRelations) link to MC-
Truth information
additional relations possible:
direct RecoParticle-MCParticle
direct Track-MCParticle

event data classes originally
targeted at the Linear Collider but
should be generic enough for any
collider experiment

Fr
an

k
G
ae

de
,
FC

C
So

ft
w
ar

e
M

ee
ti
ng

,
Ju

ly
 1
0,

 2
01

4

7

LCIO event store

LCIO data is organized in events

one record per event
the data are stored in named
collections in the LCEvent

multiple collections of same type
possible

subset collections: pointers only

underlying events (pile-up) possible
by merging several events into one
also used for LC studies (gg->hadron
background)

Fr
an

k
G
ae

de
,
FC

C
So

ft
w
ar

e
M

ee
ti
ng

,
Ju

ly
 1
0,

 2
01

4

8

LCIO EDM example: MCParticle

More at: http://lcio.desy.de/v02-04-03/doc/doxygen_api/html/index.html

Fr
an

k
G
ae

de
,
FC

C
So

ft
w
ar

e
M

ee
ti
ng

,
Ju

ly
 1
0,

 2
01

4

9

LCIO – Generic User Information
LCIO data model defines everything
needed for LC physics studies, but
users want additional information in files
for specific studies
can't create new classes within LCIO for
all requests and purposes
need generic user class:
LCGenericObject
almost arbitrary data objects
typically access provided through user
subclass - but not needed:
has description string for reading the
data without need to have access to
data dictionary (library)

used extensively for conditions data
in LCCD (Calice, LCTPC,...)

Fr
an

k
G
ae

de
,
FC

C
So

ft
w
ar

e
M

ee
ti
ng

,
Ju

ly
 1
0,

 2
01

4

LCIO runtime extensions (C++)
LCIO provides runtime extensions to objects allowing to
attach arbitrry user objects to LCObjects

fast and easy creation of links (relations) between various
LCObject subtypes, eg. TrackerHits and Track

features

extension of the object with arbitrary (even non-LCObject)
classes
extension of single objects or vectors, lists of objects
optionally ownership is taken for extension objects (memory
management)

bidirectional relations between LCObjects
one to one
one to many
many to many

to be used in reconstruction
and analysis algorithms

- no persistency

Fr
an

k
G
ae

de
,
FC

C
So

ft
w
ar

e
M

ee
ti
ng

,
Ju

ly
 1
0,

 2
01

4

11

Building LCIO
LCIO has no external dependencies
optionally depend on ROOT to create a dictionary
uses CMake as build tool

Download and build LCIO (C++)

svn co svn://svn.freehep.org/lcio/trunk lcio

cd lcio ; mkdir build ; cd build ;

cmake -D BUILD_ROOTDICT=On ..

make install

run example programs, e.g.:
export PATH=$LCIO/bin:$PATH

simjob ; anajob simjob.slcio ; dumpevent simjob.slcio 1

Fr
an

k
G
ae

de
,
FC

C
So

ft
w
ar

e
M

ee
ti
ng

,
Ju

ly
 1
0,

 2
01

4

12

LCIO and ROOT

the ROOT dictionary for LCIO provides:
direct usage of LCIO classes in ROOT macros, e.g.
open LCIO files in ROOT and fill histograms
possibility to write LCIO events or parts thereof to ROOT
see: $LCIO/examples/cpp/rootDict

Python bindings for LCIO:
create ROOT hists from LCIO
more eloborate examples:
$LCIO/example/python

possibility to provide

a ROOT I/O layer for LCIO

Fr
an

k
G
ae

de
,
FC

C
So

ft
w
ar

e
M

ee
ti
ng

,
Ju

ly
 1
0,

 2
01

4

13

LCIO Applications
Marlin application framework used by ILD, CLIC, (SiD) uses
LCIO as transient event data model

=> using LCIO provides access to full suite of reconstruction
code used in the LC community
full C++ track reconstruction with a TPC as central tracker - all silicon
tracking under development (CLICdp)
PandoraPFA particle flow algorithm
flavor tagging, vertex finding, MCTruth matching,....

DD4hep/DDG4 simulation will use LCIO as EDM
either exclusively or through direct binding to an internal EDM
new simulation application currently developed for ILD/CLIC

LC test beams also use LCIO
conditions data base LCCD w/ LCIO
raw data classes

Fr
an

k
G
ae

de
,
FC

C
So

ft
w
ar

e
M

ee
ti
ng

,
Ju

ly
 1
0,

 2
01

4

14

LCIO evolution

LCIO has been used quite successfully by the LC community
for more than a decade and the EDM has evolved during this
time to meet all requirements of the physics groups

to meet future demands (e.g. with a real ILC) we plan to
improve the I/O layer:
task in AIDA-2 proposal: create a fast I/O layer (based on ROOT) using
array of structs, keeping EDM interface essentially unmodified
work planned as collaboration between DESY and CERN-SFT
goal is to evolve LCIO w/o heavily breaking existing code base

possibility to move towards using HepMC under discussion
would offer the possibility for generators to create LCIO files directly

keep improving LCIO based on community requests

Fr
an

k
G
ae

de
,
FC

C
So

ft
w
ar

e
M

ee
ti
ng

,
Ju

ly
 1
0,

 2
01

4

15

Summary & Outlook

LCIO is the EDM and persistency solution for all LC activities
from detector design studies, analyses to test beams

a large code base for reconstruction and analysis exists
based on LCIO, a lot of which could be ported/adapted to
FCC studies

next big evolution planned for LCIO will be a high
performant I/O

using LCIO for FCC detector concept studies could work to
the mutual benefit of both communities
FCC could effectively start right away with simulation studies (DD4hep)
LC and FCC could join manpower to improve LCIO as we go ahead

Fr
an

k
G
ae

de
,
FC

C
So

ft
w
ar

e
M

ee
ti
ng

,
Ju

ly
 1
0,

 2
01

4

16

additional material

Fr
an

k
G
ae

de
,
FC

C
So

ft
w
ar

e
M

ee
ti
ng

,
Ju

ly
 1
0,

 2
01

4

17

LCIO Online documentation

http://lcio.desy.de

Fr
an

k
G
ae

de
,
FC

C
So

ft
w
ar

e
M

ee
ti
ng

,
Ju

ly
 1
0,

 2
01

4

LCIO runtime extensions
extensions and relations
identified through a
tagging class T

for extensions use
ext<T>()
for relations use
rel<T::to>() and
rel<T::from>()

Fr
an

k
G
ae

de
,
FC

C
So

ft
w
ar

e
M

ee
ti
ng

,
Ju

ly
 1
0,

 2
01

4

19

SIO persistency
missing so far:
splitting of events over files
direct access
user streamer code

could be implemented
rather easily, if needed

simple C++ persistency tool
developed at SLAC

provides some OO-features like
pointer chasing

user needs to write streamer
code (done in LCIO)

