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Abstract:

This lecture series will first review the elementary processes and techniques
on which particle detectors are based. These must always be kept in mind
when discussing the limits of existing technologies and motivations for
novel developments. Using the examples of LHC detectors, the limits of
state of the art detectors will be outlined and the current detector R&D
trends for the LHC upgrade and other future experiments will be discussed.
This discussion will include micro-pattern gas detectors, novel solid state
detector technologies and trends in microelectronics.
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Outline

1) History of Instrumentation
Cloud Chambers/Bubble Chambers/Geiger Counters/Scintillators/Electronics/Wire
Chambers

2) Electro-Magnetic Interaction of Charged Particles with Matter
Excitation/ lonization/ Bethe Bloch Formula/ Range of Particles/ PAIl model/ lonization
Fluctuation/ Bremsstrahlung/ Pair Production/ Showers/ Multiple Scattering

3) Signals/Gas Detectors

Detector Signals/ Signal Theorems/

Gaseous Detectors/ Wire Chambers/ Drift Chamber/ TPCs/ RPCs/ Limits of Gaseous
Detectors/ Current Trends in Gaseous Detector Development

4) Solid State Detectors
Principles of Solid State Detectors/ Diamond Detectors/ Silicon Detectors/ Limits of Solid
State Detectors/ Current Trends in Solid State Detectors

5) Calorimetry & Selected Topics
EM showers/ Hadronic Showers/ Crystal Calorimeters/ Noble Liquid Calirimeters/ Current
Trends in Calorimetry
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Calorimetry in Particle Physics

This lecture draws heavily from the Review Article

‘Calorimetry for Particle Physics’,
C.W. Fabjan and F. Gianotti, Rev. Mod. Phys., Vol. 75, NO. 4, October 2003

Much information was also taken from the massive Monograph

‘Calorimetry, Energy Measurement in Particle Physics’,
R. Wigmans, Oxford University Press, 2000
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Bremsstrahlung

A charged particle of mass M and charge q=Z,e is deflected by a nucleus of charge Ze
which is partially ‘shielded’ by the electrons. During this deflection the charge is
‘accelerated’ and it therefore radiated - Bremsstrahlung.

From Bethe’s theory we have seen that the elastic scattering off the Nucleus is given by

do (1 Zy(Zy—F)e3\* 1
ao

Za

enleg) = Z- T2 (PP e, = 7 F — :
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Where F(q) describes the partial shielding of the nucleus by the electrons. Effective
values for F are used in the following expressions.

Z, electrons, q=-¢,

g
a2

M, q=2, e,
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Bremsstrahlung, Classical
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A charged particle of mass M and
charge q=Z,e is deflected by a
nucleus of Charge Ze.

Because of the acceleration the
particle radiated EM waves 2>
energy loss.

Coulomb-Scattering (Rutherford
Scattering) describes the deflection
of the particle.

Maxwell’s Equations describe the
radiated energy for a given
momentum transfer.

- dE/dx



Bremsstrahlung, QM
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Proportional to Z%/A of the Material.

Proportional to Z,* of the incoming
particle.

Proportional to p of the material.

Proportional 1/M? of the incoming
particle.

Proportional to the Energy of the
Incoming particle 2>

E(x)=Exp(-x/X,) — ‘Radiation Length’

Xqoc M2A/ (p Z, Z2)

Xo- Distance where the Energy E, of
the incoming particle decreases



Critical Energy

such as copper to about 1% accuracy for energies between/oout 6 MeV and 6 GeV
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Pair Production, QM
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Bremsstrahlung + Pair Production = EM Shower
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Electro-Magnetic Shower of High Energy
Electrons and Photons

Nmy=2" ... Nonbe o‘S porhil, (€*,7) afbr n X,

Eo

E(n)- n - Average Eirgy of pavhichs aflev n X,

Shower ,SL;F_S if E(n)= Ecy‘.“.‘(_
1 0
® Npox = Znz In —i; = Showsy /equ vises will Jn Eo

IV(/hélv OJ el ha:/» Se3m6 [0(5 %\JK Yo) afLV nX e
N;, (n) = 2,"
Tolt e* Jrack &AJK ( afbs My X.)

Mo x
L: gzhxo " (’7’%'4.‘X0~ 2%:)(0 = cq°Eo

Tolet (chay}a) vack &AJJ‘L IS pvopnko»oc
o WU Eav3~7 %’ e Povhicle,

—-a__Cgov (e by Prise ’P("

W. Riegler/CERN 10




Calorimetry: Energy Measurement by total
Absorption of Particles
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Calorimetry: Energy Measurement by total
Absorption of Particles
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Liquid Nobel Gases
(Nobel Liquids)

Scintillating Crystals,
Plastic Scintillators
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Calorimetry

Calorimeters are blocks of instrumented material in which particles to be
measured are fully absorbed and their energy transformed into a
measurable quantity.

The interaction of the incident particle with the detector (through electro-
magnetic or strong processes) produces a shower of secondary particles
with progressively degraded energy.

The energy deposited by the charged particles of the shower in the active
part of the calorimeter, which can be detected in the form of charge or light,
serves as a measurement of the energy of the incident particle.

C.W. Fabjan and F. Gianotti, Rev. Mod. Phys., Vol. 75, NO. 4, October 2003

ron
Charged Hadron (e.g. Pion)
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Calorimetry

Calorimeters can be classified into:

Electromagnetic Calorimeters,
to measure electrons and photons through their EM interactions.

Hadron Calorimeters,
Used to measure hadrons through their strong and EM interactions.

The construction can be classified into:

Homogeneous Calorimeters,
that are built of only one type of material that performs both tasks, energy
degradation and signal generation.

Sampling Calorimeters,

that consist of alternating layers of an absorber, a dense material used to
degrade the energy of the incident particle, and an active medium that
provides the detectable signal.

C.W. Fabjan and F. Gianotti, Rev. Mod. Phys., Vol. 75, NO. 4, October 2003
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Calorimetry

Calorimeters are attractive in our field for various reasons:

In contrast with magnet spectrometers, in which the momentum resolution
deteriorates linearly with the particle momentum, on most cases the calorimeter
energy resolution improves as 1/Sqgrt(E), where E is the energy of the incident
particle. Therefore calorimeters are very well suited for high-energy physics
experiments.

In contrast to magnet spectrometers, calorimeters are sensitive to all types of
particles, charged and neutral. They can even provide indirect detection of neutrinos
and their energy through a measurement of the event missing energy.

Calorimeters are commonly used for trigger purposes since they can provide since
they can provide fast signals that are easy to process and interpret.

They are space and therefore cost effective. Because the shower length increases
only logarithmically with energy, the detector thickness needs to increase only
logarithmically with the energy of the particles. In contrast for a fixed momentum
resolution, the bending power BL2of a magnetic spectrometer must increase linearly
with the particle momentum.

C.W. Fabjan and F. Gianotti, Rev. Mod. Phys., Vol. 75, NO. 4, October 2003

W. Riegler/CERN 15



Interaction of Particles with Matter

Any device that is to detect a particle must interact with it in
some way -> almost ...

Neutrinos can be measured by missing transverse energy.

E.g. p p collider E+=0,
If the Z E; of all collision products is #0 - neutrino escaped.

“Did you see it?”
“No nothing.™
&3 “Then it was a neutrino!”

Claus Grupen, Particle Detectors, Cambridge University Press, 1996

W. Riegler/CERN 16



EM Calorimetry

Approximate longitudinal shower development Approximate transverse shower development
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Simulated EM Shower Profiles in PoWO,

Simulation of longitudinal shower profile Simulation of transverse shower profile
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FIG. 2. (a) Simulated shower longitudinal profiles in PbWO,, as a function of the material thickness (expressed in radiation
lengths), for incident electrons of energy (from left to right) 1 GeV, 10 GeV, 100 GeV, 1 TeV. (b) Simulated radial shower profiles
in PbWO,, as a function of the radial distance from the shower axis (expressed in radiation lengths), for 1 GeV (closed circles)
and 1 TeV (open circles) incident electrons. From Maire (2001).

In calorimeters with thickness ~ 25 X, the shower leakage beyond the end of the
active detector is much less than 1% up to incident electron energies of ~ 300 GeV
(LHC energies).

W. Riegler/CERN
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Crystals for Homogeneous EM Calorimetry

In crystals the light emission is related to the crystal structure of
the material. Incident charged particles create electron-hole pairs
and photons are emitted when electrons return to the valence

band.

The incident electron or photon is completely absorbed and the
produced amount of light, which is reflected through the
transparent crystal, is measured by photomultipliers or solid state
photon detectors.

[ ke b l”easvmﬂ e Pholons
S " -,‘: j/\« produced by Ue collitnvm
WA | of Ko €% wike Al Elohms
- ?( K. Polovial,
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Crystals for Homogeneous EM Calorimetry

Nal(Tl) CsI(T1) Csl BGO PbWO,

Density (g/cm?) 3.67 4.53 4.53 7.13 8.28

X (cm) 2.59 1.85 1.85 1.12 0.89

R (cm) 4.5 3.8 3.8 2.4 2.2

Decay time (ns) 250 1000 10 300 5

slow component 36 15

Emission peak (nm) 410 365 305 410 440

slow component 430
Light yield yMeV 4% 10% 5x10% 4% 10% Sx10° 1.5% 10°
Photoelectron yield 1 0.4 0.1 0.15 0.01
(relative to Nal)

Rad. hardness (Gy) 1 10 10° 1 10°
Barbar@PEPIl, KTeV@Tev L3@LEP, CMS@LHC,
10ms atron, 25us 25ns bunch
interaction High rate, bunch crossing,
rate, good light Good crossing, high
yield, good S/N resolution Low radiation

radiation dose
dose

W. Riegler/CERN
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Crystals for Homogeneous EM Calorimetry

W. Riegler/CERN

A LNCNE U
|

Fig. 2. Longitudinal drawing of module 2, showing the structure
and the front-end electronics layout.
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Noble Liquids for Homogeneous EM Calorimetry

Ar Kr Xe

Z 18 36 58 N— | |
A 40 34 131 o f 1t

X, (cm) 14 4.7 2.8 - {> ¥ 6; ]‘5
Ry (cm) 72 47 42 e ¢

Density (g/em?) 14 25 30 s
Ionization energy (eV/pair) 233 205 156 L:f —
Critical energy € (MeV) 41.7 215 145

Drift velocity at saturation (mm/us) 10 5 3

When a charge particle traverses these materials, about half the lost energy is
converted into ionization and half into scintillation.

The best energy resolution would obviously be obtained by collecting both the
charge and light signal. This is however rarely done because of the technical
difficulties to extract light and charge in the same instrument.

Krypton is preferred in homogeneous detectors due to small radiation length and

therefore compact detectors. Liquid Argon is frequently used due to low cost and
high purity in sampling calorimeters (see later).

W. Riegler/CERN
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Noble Liquids for Homogeneous EM Calorimetry

M
=
=<
—
000000
000 000
4—
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(0]

1,(t)

Z=D

Z=0

E.g. Liquid Argon, 5mm/ pgs at 1kV/cm, 5mm gap =2
1 us for all electrons to reach the electrode.

The ion velocity is 103 to 10° times smaller -
doesn’t contribute to the signal for electronics of
MS integration time.

T~1ps

W. Riegler/CERN
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Homogeneous EM Calorimeters, Examples

NA48 Liquid Krypton KTeV Csl :
2cmx2cm cells 5cmx5cm and
Xo = 4.7cm Xo=1.85cm Qi 0 I
125cm length (27X,) 2.5cmx2.5cmcrystals Lol gy
p =5.5cm 50cm length (27X,)

p =3.5cm

Fig. 1. Schematic of the KTeV Csl Calorimeter showing the duster energy profiles due to four photons,

NA48 Experiment at CERN and KTeV Experiment at Fermilab, both built for measurement of direct
CP violation. Homogenous calorimeters with Liquid Krypton (NA48) and Csl (KTeV). Excellent and
very similar resolution.
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Energy Resolution of Calorimeters

Stochastic term: Noise term: Constant term:

Fluctuations related to the physics From electr(_)nics noise of the Instrumen_ta! effects that

development of the shower. readout chain. cause variations of the
For constant electronics noise calorimeter response with
-> double signal = double S/N the particle impact point.

!
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term becomes dominant. 1F "-.ﬁ
L e
FIG. 3. Fractional electron energy resolution as a function of [ T
energy measured with a prototype of the NA48 liquid krypton a5 - A
electromagnetic calorimeter (NA48 Collaboration, 1995). The [
line is a fit to the experimental points with the form and the
parameters indicated in the figure. 0 I N N N PR
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Sampling Calorimeters
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Energy resolution of sampling calorimeters is in general worse than that of homogeneous
calorimeters, owing to the sampling fluctuations — the fluctuation of ratio of energy
deposited in the active and passive material.

The resolution is typically in the range 5-20%/Sqrt[E(GeV)] for EM calorimeters. On the other
hand they are relatively easy to segment longitudinally and laterally and therefore they
usually offer better space resolution and particle identification than homogeneous
calorimeters.

The active medium can be scintillators (organic), solid state detectors, gas detectors or
liquids.

Sampling Fraction = Energy deposited in Active/Energy deposited in passive material.

W. Riegler/CERN
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Scintillator Sampling Calorimeters

L

Wavelength shifters absorb photons from the scintillators
and emit light at a longer wavelength which does not go
back into the scintillator but is internally reflected along the
readout plate to the photon detector - compact design.

A large number of sampling calorimeters use organic scintillators arranged in fibers or plates.

The drawbacks are that the optical readout suffers from radiation damage and non-uniformities at
various stages are often the source of a large constant term.

.! Seintilloting fiber KI oe EM Cal Ori meter:

5%/Sqrt[E(GeV)] !

FIG. 13. Schematic layout of the barrel part of the KLOE electromagnetic calorimeter (Antonelli ef al., 1995).

W. Riegler/CERN
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Gas and Solid State Sampling Calorimeters

b)

Gas sampling calorimeters have been widely
employed until recently (LEP) because of their low
cost and segmentation flexibility.

They are not well suited to present and future
. machines because of their modest EM energy
9 resolution ~ 20%/Sqrt[E(GeV)].

Solid state detectors as active readout medium use mostly silicon. The advantage is very high
signal to noise ratio (large signals). Often used on a small scale as luminosity monitors.

The disadvantage is the high cost, preventing large calorimeters, and poor radiation resistance.

W. Riegler/CERN
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Liquid Sampling Calorimeters

a)

(b)

>

Farticle Farticle

FIG. 15. Schematic view of a traditional sampling calorimeter
geometry (a) and of the accordion calorimeter geometry (b).

W. Riegler/CERN

These offer good application perspectives for future
experiments.

Warm liquids work at room temperature, avoiding
cryogenics but they are characterized by poor radiation
resistance and suffer from purity problems

—>Noble liquids at cryogenic temperatures.

The advantages are operation in ‘ion chamber mode’, i.e.
deposited charge is large and doesn’t need
multiplication, which ensures better uniformity compared
to gas calorimeters that need amplification.

They are relatively uniform and easy to calibrate because
the active medium is homogeneously distributed inside
the volume. They provide good energy resolution (e.g.
ATLAS 10%/Sqrt[E(GeV)])

And stable operation with time.

They are radiation hard.

With the standard liquid argon sampling calorimeters
the alternating absorber and active layers are disposed
perpendicular to the direction of the incident particle.
-> Long cables are needed to gang together the readout
electrodes, causing signal degradation, dead spaces
between the calorimeter towers and therefore reduced
hermeticity.

29



Liquid Argon Sampling Calorimeters

Latticle Larticle

FIG. 15. Schematic view of a traditional sampling calorimeter
geometry (a) and of the accordion calorimeter geometry (b).
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For the ATLAS LAr Calorimeter this was solved by
placing the absorbers in an accordeon geometry parallel
to the particle direction and the electrodes can easily be
read out from the ‘back side’.

ATLAS: Lead layers of 1.1-2.2mm, depending on the
rapidity region, are separated by 4mm liquid Argon gaps.

Test beam results show
10%/Sqrt[E(GeV)] x 0.25/E(GeV) x 0.3%

Towers in Sampling 3
ApxAn = 0.0245x 0.05

1 Jogger
- 0.008)

Square towers in
Sampling 2

37.5tn£:g =480
=003, Strip towers in Sampling 1
n

FIG. 17. Schematic view of the segmentation of the ATLAS
electromagnetic calorimeter.
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Hadronic Calorimetry
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Hadron Calorimeters are Large because A is large

W. Riegler/CERN

Fig. 1 - The ALEPH Detector
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Hadron Calorimeters are large and heavy
because the hadronic interaction length A,
the ‘strong interaction equivalent’ to the
EM radiation length X,, is large (5-10
times larger than X,)

Resistive plate chambers

MDT chambers
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Hadron Calorimeters

By analogy with EM showers, the energy degradation of hadrons proceeds through an
increasing number of (mostly) strong interactions with the calorimeter material.

However the complexity of the hadronic and nuclear processes produces a multitude of
effects that determine the functioning and the performance of practical instruments, and
make hadronic calorimeters more complicated instruments to optimize.

By analogy with EM showers, the energy degradation of hadrons proceeds through an
increasing number of (mostly) strong interactions with the calorimeter material.

The hadronic interaction produces two classes of effects:

First, energetic secondary hadrons are produced with a mean free path of A between
interactions. Their momenta are typically a fair fraction of the primary hadron momentum i.e.
at the GeV scale.

Second, in hadronic collisions with the material nuclei, a significant part of the primary
energy is consumed in nuclear processes such as excitation, nucleon evaporation,
spallation etc., resulting in particles with characteristic nuclear energies on the MeV scale.

C.W. Fabjan and F. Gianotti, Rev. Mod. Phys., Vol. 75, NO. 4, October 2003

Because part of the energy is therefore ‘invisible’, the resolution of hadron calorimeters is
typically worse than in EM calorimeters 20-100%/Sqrt[E(GeV)] .
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‘Deciphering this message becomes the story of

hadronic calorimetry’

C.W. Fabjan and F. Gianotti, Rev. Mod. Phys., Vol. 75, NO. 4, October 2003

FIG. 19. Particle spectra produced in the had-
ronic cascade initiated by 100-GeV protons
absorbed in lead. The energetic component is
dominated by pions, whereas the soft spec-
trum is composed of photons and neutrons.
The ordinate is in “lethargic” units and repre-
sents the particle track length, differential in
log E. The integral of each curve gives the
relative fluence of the particle. Fluka calcula-
tions (Ferrari, 2001).



Hadron Calorimeters

The signals from an electron or photon entering a hadronic calorimeter is typically
larger than the signal from a hadron cascade because the hadroic interactions
produce a fair fraction of invisible effects (excitations, neutrons ...).
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Hadron Calorimeters
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Because the EM cascade had a larger response than the Hardon cascade, the
event/event fluctuation of produced x, particles causes a strong degradation of the
resolution.
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Because a fair fraction of shower particles consists of 7ty which instantly decay into
two photons, part of the hadronic cascade becomes an EM cascade — ‘and never
comes back’.

Is it possible to build a calorimeter that has the same response (signal) for a 10GeV
electron and 10GeV hadron ? = compensating calorimeters.

FIG. 21. Characteristic compo-
nents of proton-initiated cas-
cades in lead. With increasing
primary energy the 7 compo-
nent increases (Ferrari, 2001).



Compensating Hadron Calorimeters

In a homogeneous calorimeter it is clearly not possible to have the same response
for electrons and hadrons.

For sampling calorimeters the sampling frequency and thickness of active and
possibe layers can be tunes such that the signal for electrons and hadrons is indeed

equal !

Using Uranium or Lead with scintillators, hadron calorimters with excellen energy
resolution and linearity have been built.
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Resolution and linearity of a hadron calorimeter is best if e/h=1. For all other values

Compensating Hadron Calorimeters

e/h<>1the resolution in linearity is worse.
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FI1G. 24. Monte Carlo simulation of the effects of e/7#1 on
energy resolution (a) and response linearity (b) of hadron
calorimeters with various values for e/h (intrinsic), where h
(intrinsic) denotes the response to the purely hadronic compo-

nent of the shower (Wigmans, 1958).
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Particle Identification
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Measured energy loss
dE/dX
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Time of Flight (TOF)
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Cherenkov Radiation
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Ring Imaging Cherenkov Detector
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Transition Radiation
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Instrumenting the Earth’s Atmosphere or
the Polar Ice Cap we get huge
Calorimeters for Astro Particle Physics !

Examples:
AMANDA on the South Pole

Pierre Auger Telescope in South America

W. Riegler/CERN
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lceCub

AMANDA

Antarctic Muon And Neutrino Detector Array

W. Riegler/CERN a7
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AMANDA

South Pole
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AMANDA

AMANDA-II
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AMANDA

Look for upwards going Muons from Neutrino Interactions.
Cherekov light propagating through the ice.

- Find neutrino point sources in the universe !

AMANDA
Array

L Muon

#
AMANDA

» Neutrino

W. Riegler/CERN



AMANDA

Event Display
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/ | - Ice Cube for more statistics !
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W. Riegler/CERN

Pierre Auger Observatory %
studying the universe’s highest energy particles

Pierre Auger Cosmic Ray
Observatory
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Pierre Auger Cosmic Ray Observatory

Use earth’s atmosphere as a
calorimeter. 1600 water Cherenkov
detectors with 1.5km distance.

Placed in the Pampa Amarilla in
western Argentina.

W. Riegler/CERN
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Pierre Auger Cosmic Ray Observatory

photomuitiplier  Eeeeg Plastic tank with
WU DES 12 mﬂs “mr
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Pierre Auger Cosmic Ray Observatory
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Pierre Auger Cosmic Ray Observatory

In addition: Fluorescence
detectors around the array
of water tanks.
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Generic Information
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Conclusion

The story of modern calorimetry is a textbook example of physics
research driving the development of an experimental method.

The long quest for precision electron and photon spectroscopy explains
the remarkable progress in new instrumentation techniques, for both
sampling and homogeneous calorimeters.

The study of jets of particles as the macroscopic manifestation of quarks
has driven the work on hadronic calorimeters.

C.W. Fabjan and F. Gianotti, Rev. Mod. Phys., Vol. 75, NO. 4, October 2003
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