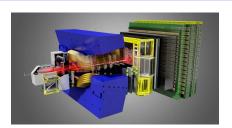
LHCb and Introduction to Tuning and QCD Measurements at LHCb

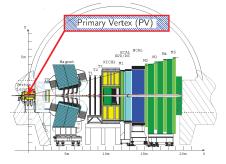
Florin MACIUC

Horia Hulubei National Institute of Physics and Nuclear Engineering

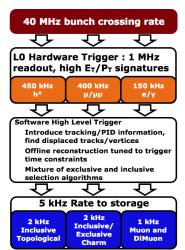
LHCb workshop on quantum interference effects, QCD measurements and generator tuning

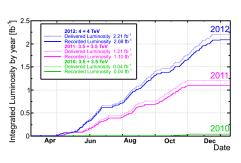
20th October 2014


Outline


- 1 LHCb Detector Forward spectrometer
- 2 LHCb Detector, LHC Run 1 data
- 3 LHCb Physics Program and Objectives
- 4 LHCb results CPV
- **5** LHCb results $B_{s,d} \rightarrow \mu^+ \mu^-$
- 6 LHCb results list
- QCD measurements, overview for Workshop
- Tuning of a dedicated generator to HEP data
- EW Measurements : Parton
- Conclusions

LHCb Detector - Forward spectrometer

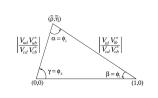

- **1** Single arm spectrometer, $\eta \in [2, 5]$.
- Stations:
 - VErtex LOcator (VELO);
 - 4 tracker stations;
 - 4 Tm integrated field;
 - Calorimeters:
 - RICH detectors;
 - Muon system.
- Precise measurements:
 - Impact parameter resolution \approx 20 μ m for high- p_T .
- Excellent Particle IDentification (PID) and tracking in a unique pseudorapidity range.

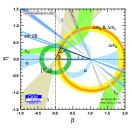

JINST 3 (2008) S08005

LHCb Detector, LHC Run 1 data

- 2010: 37 pb⁻¹; 2011: 1.0 fb⁻¹; 2012: 2 fb⁻¹.
- Excellent reconstruction allowed a higher level of pile-up.

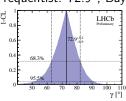
- Trigger operates with 5 KHz (physics trigger lines).
- 3 types : Topological, charm inclusive/exclusive; muon lines.

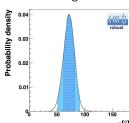

LHCb Program and Objective


- Search for new physics indirect searches complementary to ATLAS and CMS:
 - CP violation measurements;
 - Rare b and c decays;
- Tests of QCD in non-perturbative case;
 - Excited states and new particles;
 - Measurements of decay parameters and mass of known particles;
- Tests of QCD to NNLO:
 - Electroweak production (W,Z);
 - Differences in proton PDFs important at this scale.
- heavy quarks production, fragmentation and hadronization parameters:
 - polarization and production of heavy hadrons;
 - associated jets;
 - pA and Ap results, e.g. on Z and Quarkonia;

LHCb results - CPV

1 Measurement of the CKM angle γ , note LHCb-CONF-2014-004:


$$V = \begin{pmatrix} V_{\rm ud} & V_{\rm us} & V_{\rm ub} \\ V_{\rm cd} & V_{\rm cs} & V_{\rm cb} \\ V_{\rm td} & V_{\rm ts} & V_{\rm tb} \end{pmatrix} . \qquad \begin{vmatrix} V_{\rm ud} V_{\rm ob}^* \\ V_{\rm cd} V_{\rm cb}^* \end{vmatrix} / \stackrel{\alpha = \phi_2}{\sim}$$



• $\gamma = (73^{+9}_{-10})^0$ best precision measurement for a single detector.

Frequentist: 72.9⁰, Bayesian: 71.9⁰.

LHCb results - $B_{s.d} \rightarrow \mu^+ \mu^-$

- **1** $B_{s,d} \to \mu^+ \mu^-$ (PRL,111,(2013),101805).
- Rare decays in the standard model; no tree-level diagrams, helicity and GIM suppression, sensitive to NP.
- measured branching fraction $B\left(B_s \to \mu^+ \mu^-\right) = 2.9^{-1.1}_{-1.0} \times 10^{-9}$ with (4 σ significance).
 - No clear $B \to \mu^+ \mu^-$.
 - Combined measurement with CMS, to be published.

LHCb results - list

- A partial list of measurements on Run 1 data:
 - The loop and FCNC transition $B \to K^{(*)} \mu \mu$ BJHEP 06 (2014) 133. agree with SM.
 - Rare radiative decays of type $b \to s\gamma$ penguin/loop transition, very sensitive to NP. Photon polarization measured in an angular analysis... PRL 112 (2014) 161801.

The PPG

Identification

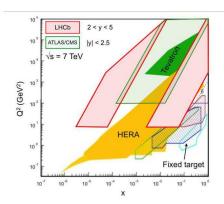
& Vertexing

Simulation

Flavour Tagging

QCD measurements, overview for Workshop

- Jet production in LHCb with correlated Jet and Z, jet b- and c- tag.
- Talk on EW Z/W production. Shall restrict myself on some general notions and p-Lead data in LHCb.
- Tuning procedure in LHCb. PYTHIA8 LHCb, standard analyses of LHCb implemented in RIVET.
- General talk on tuning.
- p-Lead results form LHCb.
- Open charm and beauty at LHCb
- Quarkonia and double charm
- Soft QCD measurements in LHCb


Tuning of the dedicated generator

- Tuning in LHCb refers generally to PHYTIA8, though COSMIC ray generators are being considered especially in description of proton-Lead interactions. Other generators are tested, too.
 - For Z and W production ResBos, FEWZ, PAWHEG are used.
 - The RIVET platform and package stands for an umbrella of many published results which are made available to
 - The last talk in the agenda describes the tools used in doing the tuning of a generator.
 - Find the set of model parameters that describe best the set of measurements chosen from RIVET.
- What LHCb measurements might be used in generator tuning?
 - Soft-QCD: p_T/y particle spectra in LHCb, N_{ch} charge multiplicity, EF energy flow, strangeness, light baryon to meson ratios. All in forward phase-space of the initial collision.
 - Open charm measurements, jets, and EW production,

EW Measurements: Parton Distribution in LHCb

- LHCb geometrical acceptance about: $\eta \in [2, 5]$.
- Compared with CMS and ATLAS, LHCb explores low and high x regions.
- For Z, W bosons $Q \approx 100$ GeV, $x \in \left[10^{-4}, 10^{-3}\right]$.
- Low mass Drell-Yan γ^* at Q=5 GeV spans down to $x=0.8\times 10^{-5}$.
- Lower Q² limit given by LHCb muon trigger efficiency.

Conclusions

- LHCb has the chance contribute to the tuning of the next generation of generators.
- In Forward region we are very competitive in measuring Baryon transport number, strangeness production, fragmentation, the effects of Color Reconnections, collective flow, MPI, UE, see http://skands.web.cern.ch/skands/slides/14/14-Aug-LHCb.pdf
- Thank you for you attention.