LHCb soft-QCD measurements in the Forward Region

Florin MACIUC, on behalf of the LHCb collaboration

Horia Hulubei National Institute of Physics and Nuclear Engineering

LHCb workshop on quantum interference effects, QCD measurements and generator tuning

21st October 2014

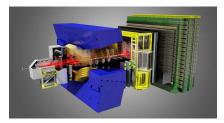
Outline	LHCb Detector	Energy Flow Study	Summary and Conclusions	
Outline				

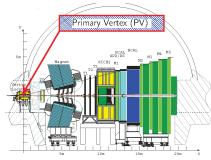
1 LHCb Detector

Soft-QCD measurement - the Energy Flow

- Energy Flow Study: Data and Definitions
- Energy Flow Study: Diffractive Events, Rapidity Gaps
- Event Classes, MC Generators, Data Analysis
- Results of Energy Flow Measurements Eur. Phys. J. C 73 (2013) 2421
- Charged Particle Multiplicities Eur. Phys. J. C 72 (2012) 1947 and EPJ (

Ou	tline	


LHCb Detector


Energy Flow Study

Summary and Conclusio

Backup slides

LHCb Detector

) Single arm spectrometer, $\eta \in [2, 5]$.

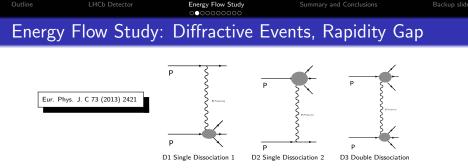
Stations:

- VErtex LOcator (VELO);
- 4 tracker stations;
- 4 Tm integrated field;
- Calorimeters;
- RICH detectors;
- Muon system.
- Precise measurements:
 - Impact parameter resolution \approx 20 $\mu \rm m$ for high- $p_T.$
- Excellent Particle IDentification (PID) and tracking in a unique pseudorapidity range.

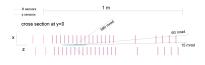
JINST 3 (2008) S08005

	LHCb Detector	Energy Flow Study	Summary and Conclusions	
Energ	v Flow: Data	and Definitions		

Data sample used is Minimum Bias: 0.1 $\rm nb^{-1}$ 2010 run at 7 TeV - very low pile up ≈ 5 % .

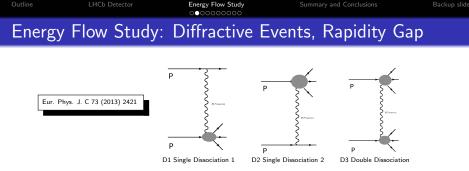

- Charged component is directly measured and unfolded from reconstruction to generator level.
 - Measured long lived charged particles.
 - Results from multiple generators and tunes used to extrapolate towards primary collision.
- Oifferential energy flow measured in LHCb:

$$\frac{1}{N_{int}}\frac{dE_{charged}}{d\eta} \Leftrightarrow \frac{1}{\Delta\eta} \left(\sum_{i=1}^{N_{part,\eta}} E_{i,\eta}\right), \quad \Delta\eta = 0.3 \text{ and } \eta \in [1.9, 4.9]$$


- Adding the energy flow from the measured neutral long lived particles, does not change qualitatively the final results.
- Underlying event essential in the forward energy flow studies.

3

6.



- Single Dissociation (SD) and Double Dissociation (DD) diffractive events considered in energy flow analysis, CEP as higher order effect is not.
- Diffraction and energy flow are studied in the context of softQCD at LHCb.
- Given the colorless nature of the Pomeron exchange, the final state topology of a typical diffractive event displays: a Large Rapidity Gap as signature.

* VELO track sample split in backward - $\eta \in [-3.5, -1.5]$ - and forward tracks - $\eta \in [1.9, 4.9]$.

3 x 3

- Single Dissociation (SD) and Double Dissociation (DD) diffractive events considered in energy flow analysis, CEP as higher order effect is not.
- Diffraction and energy flow are studied in the context of softQCD at LHCb.
- Given the colorless nature of the Pomeron exchange, the final state topology of a typical diffractive event displays: a Large Rapidity Gap as signature.

Backward VELO acceptance usefulness in context Large Rapidity Gap: Events without particle in pseudorapidity range of [-3.5, -1.5] are predominantly diffractive $\approx 95\%$;

 	 ~			_	
	0000	000000			
LHCb De	Energy I	Flow Study	Summary and Conclus		

Energy Flow: Event Classes, MC Generators, Data Analysis

Reconstructed Event Classes

- Minimum Bias inclusive (MB) 1 or more tracks in [1.9, 4.9] and p > 2 GeV/c.
- Hard scattering 1 or more tracks with $\eta \in [1.9, 4.9]$ and $p_T > 3$ GeV/c.
- Diffractive enriched same as MB but no track with $\eta \in [-3.5, -1.5]$.
- non-Diffractive enriched same as MB but with one or more backward tracks $\eta \in [-3.5, -1.5]$.
- Typically, diffractive enriched and non-diffractive MC samples have a purity of: \approx 70 % and \approx 90 %, respectively.

 \star Mostly due to unreconstructed particles in the backward acceptance.

3

7/18

Energy Flow: Event Classes, MC Generators, Data Analysis

MC Generators and Samples

- PYTHIA 6 T.Sjöstrand, S. Mrenna, P. Skands, J. High Energ. Phys. 05, 026 (2006).
- PYTHIA8 T.Sjöstrand, S. Mrenna, P. Skands, Comput. Phys. Commun. 178 850 (2008).
- LHCb MC tuning of PYTHIA 6.4, I. Belyaev et al. IEEE Nucl. Sci. Symp. Conf. Rec. (2010), 1155.
- Perugia 0 and Perugia NOCR of PYTHIA 6, P. Z. Skands, Phys. Rev. D 82 (Oct, 2010) 074018
- Cosmic-Ray hadronic interaction models:

- EPOS: T. Pierog and K. Werner, Nucl. Phys. Proc. Suppl. 196 (2009) 102; - QGSJET: S. Ostapchenko, Status of QGSJET, AIP Conf. Proc. 928 (2007) 118; - SYBILL: E.-J. Ahn et al., Phys. Rev. D80 (2009) 094003

Fully simulated and reconstructed MC samples:

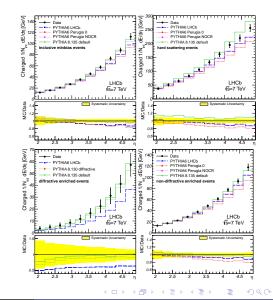
- PYTHIA6 LHCb, Perugia0, and Perugia NOCR the Perugias have diffractive events suppressed at generator level were selected to describe 3 events classes.
- PYTHIA6 LHCb and PYTHIA8.130 the latter with diffractive events only to describe the diffractive enriched class.
- Generator level only : PYTHIA8.135 and cosmic-ray generators.

LHCb Detector

Summary and Conclusion

Backup slides

Energy Flow: Results


Eur. Phys. J. C 73 (2013) 2421

Charged Component of Energy Flow (EF)

- All 4 event classes;
- LHCb data extrapolated to generator level vs PYTHIA tunes results ;
- Error estimate for data are mostly systematic;

 \star A dominating effect is the model dependence, especially for diffractive sample;

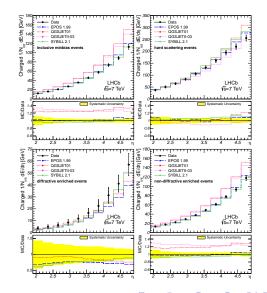
- PYTHIA8: agrees with diffractive events, overestimates the hard scattering;
- PYTHIA6 tunes underestimate the EF for high η in all samples;

Outline

LHCb Detector

Energy Flow Study

Summary and Conclusion


Backup slides

Energy Flow: Results

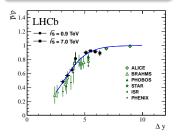
Eur. Phys. J. C 73 (2013) 2421

Charged Component of EF

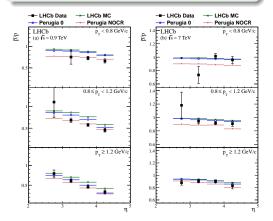
- Cosmic-Ray models results superimposed on same data;
- QGSJET models severely overestimates the soft-p_T component in MB inclusive and non-diffractive;
- All models tend to underestimate the diffractive component;
- SYBILL reproduces the best all 4 cases, though overall there is a visible disagreement with diffraction result.

Summary and Conclusior

Backup slides


SoftQCD: Prompt hadron production ratios

Eur. Phys. J. C 72 (2012) 2168


rapidity loss $\Delta y = y_{beam} - y_{particle}$ $y_{beam} = 8.9(6.9)$ at 7 (0.9) TeV.

LHCb data allow for a much better fit precision and are complementary to ALICE data.

First time measurement in this Δy range.

* BNT at 0.9 and 7 TeV for 3 *p*_T ranges; * LHCb results are more in agreement with PYTHIA6 Perugia NOCR tune than PYTHIA6 LHCb and Perugia 0 tunes.

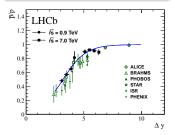
< 6 b

< ∃> < ∃>

э

Summary and Conclusion

Backup slides


SoftQCD: Prompt hadron production ratios

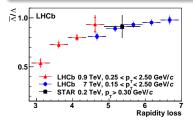
Eur. Phys. J. C 72 (2012) 2168

rapidity loss $\Delta y = y_{beam} - y_{particle}$ $y_{beam} = 8.9(6.9)$ at 7 (0.9) TeV.

LHCb data allow for a much better fit precision and are complementary to ALICE data.

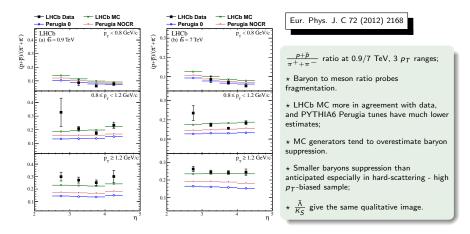
First time measurement in this Δy range.

J. High Energy Phys. 08 (2011) 034

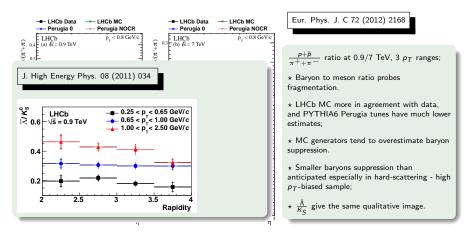

An older measurement of the baryon ratio $\frac{\Lambda}{\Lambda}$ has similar dependence on rapidity loss variable like $\frac{\bar{D}}{2}$:

* Qualitatively no difference, the two ratios close.

The two ratios are independent probes of the same baryon number transport process.


(E)

3


SoftQCD: Prompt Hadron Production Ratios

Baryon to Meson Ratio and Light Baryon Suppression at 0.9 and 7 TeV

SoftQCD: Prompt Hadron Production Ratios

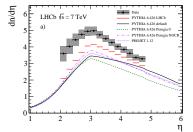
Baryon to Meson Ratio and Light Baryon Suppression at 0.9 and 7 TeV

Outline

LHCb Detector

Energy Flow Study

Summary and Conclusion

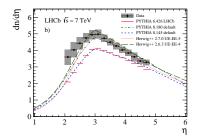

Backup slides

SoftQCD: Charged Particle Multiplicities

Eur. Phys. J. C 72 (2012) 1947, EPJ C74 (2014) 2888

- LHCb data on charge track multiplicities.
 * LHCb Minimum Bias data at 7 TeV low pile-up,
- VELO fiducial region with high track reconstruction efficiency spanned by η:

 $p_T \in [0.2, 2]$ and $\eta \in [2, 4.5]$



Inclusive MinBias sample

- Error on data dominated by systematic effects;
 track efficiency uncertainty in VELO.
- ρ represents the charged particle density over η bin.

PYTHIA6 and PYTHIA8 tunes, and Phojet;

Old models underestimate charged particle production. Herwic++ and new tunes of Pythia (LHC tunes) reproduce the data.

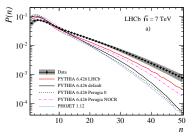
. . .

Outline

LHCb Detector

Energy Flow Study

Summary and Conclusion

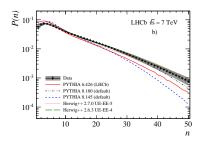

Backup slides

SoftQCD: Charged Particle Multiplicities

Eur. Phys. J. C 72 (2012) 1947, EPJ C74 (2014) 2888

- LHCb data on charge track multiplicities.
 * LHCb Minimum Bias data at 7 TeV low pile-up,
- VELO fiducial region with high track reconstruction efficiency spanned by η:

 $p_T \in [0.2,2] \quad \text{and} \quad \eta \in [2,4.5]$



Inclusive MinBias sample

- Error on data dominated by systematic effects;
 track efficiency uncertainty in VELO.
- ρ represents the charged particle density over η bin.

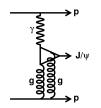
PYTHIA6 and PYTHIA8 tunes, and Phojet;

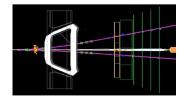
Old models underestimate charged particle production. Herwic++ and new tunes of Pythia (LHC tunes) reproduce the data.

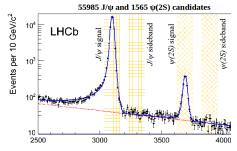
Outline LHC

HCb Detector

Energy Flow Study


Summary and Conclusion


Backup slides


э

Soft-QCD: Central Exclusive Processes (CEP)

- J/ψ (ψ(2s)) → μμ JPG 41 (2014) 055002
- pomeron and photon echange.

Outline	LHCb Detector	Energy Flow Study	Summary and Conclusions	Backup slides
Summa	arv and Cond	clusions		

- We were able to capitalize on the very high precision measurements and on the unique pseudorapidity range of LHCb to study in detail the softQCD processes.
 - Diffractive, hard scattering, and non-diffractive events were separated and the energy flow observable was measured.
- Besides Energy Flow, light hadron ratios, charged multiplicities, and central exclusive processes, we have also measured V0 ratios at 7 and 0.9 TeV and KS cross-section at 0.9 TeV.
- All analyses except CEP have RIVET plugin and are to be used in LHCb MC tuning of PYTHIA8.

-

Outline	LHCb Detector	Energy Flow Study	Summary and Conclusions	Backup slides
		000000000		

Backup Slides

For each $\Delta \eta$, main assumption:

$$\Delta EF_{Neutral,PV} \propto \Delta EF_{Charged,PV}$$

at collision's primary vertex (PV), hence after unfolding with detection efficiency and acceptance.

$$\Delta EF_{Neutral,PV} = \Delta EF_{Charged,PV} \times \frac{\Delta EF_{Neutral,gen}}{\Delta EF_{Charged,gen}}$$

where $\Delta EF_{Neutral,gen}$, and $\Delta EF_{Charged,gen}$ are the generator results for these quantities in corresponding $\Delta \eta$. Extra correction:

$$\Delta EF_{Neutral,PV} = \Delta EF_{Charged,PV} \times \frac{\Delta EF_{Neutral,gen}}{\Delta EF_{Charged,gen}} \times \frac{1 + R_{data,RECO}}{1 + R_{MC,RECO}}$$

where

$$R_{data,RECO} = \frac{\Delta EF_{calorimeter,data}}{\Delta EF_{Charged raw,data}}$$

and

$$R_{MC,RECO} = \frac{\Delta EF_{calorimeter\,,simulated}}{\Delta EF_{Charged\,\,raw\,,simulated}}$$

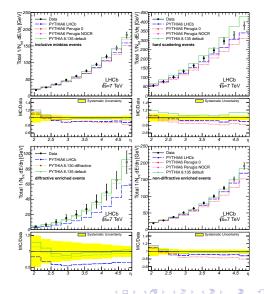
- EF_{calorimeter,data} measured energy flow through calorimeter in data;
- EF_{calorimeter, simulated} reconstructed energy flow through calorimeter in simulation;
- EF_{Charged raw,data} raw estimate of charge energy flow in data, before unfolding to PV.
- EF_{Charged raw,simulated} reconstructed energy flow for charged particles in simulation.

3

Summary and Conclusion

Backup slides

Energy Flow: Results


Eur. Phys. J. C 73 (2013) 2421

Total Energy Flow

- Total energy flow for all 4 event classes;
- LHCb data vs PYTHIA tunes results;
- Again PYTHIA8 agrees with diffractive events, but not with the hard-p_T events, where it overestimates the energy flow;
- PYTHIA6 underestimates the energy flow at high-η for all cases.

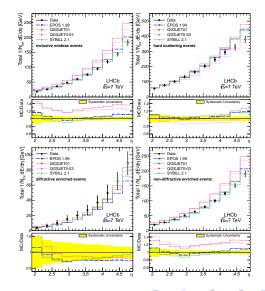
Conclusions regarding PYTHIA tunes

- Among those tried, there was no PYTHIA tune which describes all 4 components;
- PYTHIA8 give best agreement in general;
- Extra tuning needed, and higher order corrections as CEP contributions might account for the seen differences.

Summary and Conclusion

Backup slides

Energy Flow: Results


Eur. Phys. J. C 73 (2013) 2421

Total Energy Flow

- Total energy flow for all 4 event classes;
- QGSJET models overestimates the soft-p_T component in MB inclusive and non-diffractive;
- SYBILL reproduces the best all 4 cases, this time there is a more pronounced disagreement in last 2 high-η bins for the hard component.

Conclusions for Cosmic-Ray Generators

- EPOS and especially SYBILL agree in general with LHCb data;
- Yet, not all cases agree with SYBILL over all LHCb η range [1.9, 4.9].
- As for PYTHIA, the Cosmic-ray models might have to consider higher order effects to be fully in agreement with LHCb data for softQCD region - low-X_{Bi} and low-Q².

LHCb Detector	Energy Flow Study
	000000000

Summary and Conclusion

Backup slides

= 900

글 🖌 🖌 글 🕨

Energy Flow: Sources of Systematic Errors

Source of	Inclusive	Hard	Diffractive	Non-diffractive
uncertainty	minbias	scattering	enriched	enriched
Model uncertainty on correction factors	0.6-9.2	0.7-4.1	16-43	0.7-8.6
Selection cuts	1.0-4.9	2.7-8.8	0.9-2.8	1.1-5.0
Tracking efficiency	3	3	3	3
Multiple tracks	1	1	1	1
Spurious tracks	0.3-1.2	0.4-1.7	0.2-0.7	0.3-1.2
Magnet polarity	-	-	2.6-7.7	-
Residual pile-up	1.7	1.7	1.7	1.7
Total on $F_{char,\eta}$	3.9-11	4.9-10	16-43	4.0-11