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OUTLINE

RECENTLY, THE ALICE COLL. PUBLISHED A VAST
COLLECTION OF DATA ON HBT RADII MEASURED IN
pp COLLISIONS AT LHC ENERGIES.

THE GENERAL FEATURES OF THE DATA LOOK,
QUALITATIVELY, SIMILAR TO THE ONES OBSERVED
EARLIER IN HEAVY ION REACTIONS.

THEREFORE IT IS TEMPTING TO ANALYZE THEM IN
TERMS OF THE IDEAS DEVELOPED FOR HEAVY ION
COLLISIONS.

WE CONSIDERED THE BLAST WAVE MODEL WHICH
SUMMARIZES THE RESULTS OF THE HYDRO
CALCULATIONS USING FEW PARAMETERS WITH A
VERY CLEAR PHYSICAL MEANING.



DATA FROM ALICE

THE MEASUREMENTS GIVE THE HBT RADII
OBTAINED FROM FITTING THE MEASURED HBT
CORRELATION FUNCTION TO A GAUSSIAN:

C (Q2) ∼ e−Q
2R2

(1)

WHERE Q = P1 − P2 IS THE MOMENTUM DIFFERENCE
WITHIN THE MEASURED PAIR OF PIONS AND R IS
THE QUOTED RADIUS.

THE SET CONSISTS OF 6× 8× 3 = 144 DATA POINTS:

(i) 6 INTERVALS OF TRANSVERSE MOMENTUM
from < 163 > till < 650 > MeV

(ii) 8 INTERVALS OF MULTIPLICITY from ∼ 7 till ∼ 55.

(iii) 3 DIRECTIONS: OUT, SIDE AND LONG.



THE BLAST-WAVE MODEL

WE WERE USING THE STANDARD VERSION OF THE
MODEL WITH THE SOURCE FUNCTION EXHIBITING:

(i) BOOST INVARIANCE OF THE SYSTEM;

(ii) FREEZE-OUT AT A FIXED (LONGITUDINAL)
PROPER TIME τ ≡

√
t2 − z2 = τf ;

(iii) BOLTZMAN DISTRIBUTION OF THE PRODUCED
PARTICLES:

dN ∼ e−βErest = e−βuµp
µ
;

uµ IS THE 4-VELOCITY OF THE FLUID AND β = 1/T .

(iii) AZIMUTHAL SYMMETRY;

(iv) HUBBLE-LIKE FLOW IN TRANSVERSE DIRECTION:
u⊥ ≡ sinh θ = ωr

WHERE r IS THE DISTANCE FROM THE CENTRE;

(v) COOPER-FRY FORMULA TO ACCOUNT FOR THE
EFFECTS OF THE FLOW.



THE SOURCE FUNCTION
WITH THE ASSUMPTIONS LISTED ABOVE, ONE CAN
WORK OUT THE EXPLICIT FORM OF THE SOURCE
FUNCTION (AT KINETIC FREEZE-OUT)

S(p, x)d4x ∼ dη cosh ηd2r f (r)e−βp
µuµ (2)

WHERE η IS THE DIFFERENCE BETWEEN RAPIDITY OF
THE PARTICLE AND SPATIAL RAPIDITY OF THE FLUID
ELEMENT. f (r) DENOTES A POSITIVE FUNCTION
DESCRIBING THE DISTRIBUTION OF THE FLUID IN
TRANSVERSE DIRECTION. WE TAKE f (r) IN THE FORM
OF A SHIFTED GAUSSIAN:

f (r) ∼ e−(r−R)2/δ2 (3)

DESCRIBING EMISSION FROM A SHELL OF THE
RADIUS R AND THE WIDTH ∼ 2δ. NOTE THAT FOR
R = 0 THIS DISTRIBUTION BECOMES A SIMPLE
GAUSSIAN.



COUNTING THE PARAMETERS

THE MODEL IS DESCRIBED IN TERMS OF 5
PARAMETERS:
(i) TEMPERATURE AT KINETIC FREEZE-OUT, T = 1/β;
(ii) THE FLOW PARAMETER, ω;
(iii) THE PROPER TIME, τf ;
(iv) TWO PARAMETERS DESCRIBING THE
TRANSVERSE GEOMETRY OF THE SYSTEM, R AND δ.

THE TEMPERATURE WAS FIXED AT T=100 MeV.

THE FLOW PARAMETER ω WAS DETERMINED IN
TERMS OF R and δ BY DEMANDING THAT THE
AVERAGE TRANSVERSE MOMENTUM EVALUATED
FROM THE MODEL REPRODUCES THE CMS DATA.

THUS WE ARE LEFT WITH 3 PARAMETERS τf , R and δ
AT EACH MULTIPLICITY. THESE THREE PARAMETERS
MUST ACCOUNT FOR 3× 6 DATA POINTS.



TRANSVERSE MOMENTUM

THE DISTRIBUTION OF TRANSVERSE MOMENTUM IS
OBTAINED BY INTEGRATING THE SOURCE FUNCTION
OVER THE SPATIAL VARIABLES. THE RESULT IS

dN

dp2⊥
≡W (p⊥) =

∫
d4xS(p, x) ∼

∼ m⊥

∫
rdrf (r)K1(βm⊥ cosh θ)I0(βp⊥ sinh θ) (4)

DEMANDING THAT THE AVERAGE TRANSVERSE
MOMENTUM FROM THIS FORMULA REPRODUCES
THE CMS DATA, GIVES ONE CONSTRAINT ON THE
PARAMETERS



HBT CORRELATION FUNCTION

THE HBT CORRELATION FUNCTION IS EXPRESSED IN
TERMS OF THE FOURIER TRANSFORM OF THE
SOURCE FUNCTION:

C (p1, p2) =
H(P,Q)H(P,−Q)

W (p1)W (p2)
=
|H(P,Q)|2

W (p1)W (p2)
(5)

WHERE P = (p1 + p2)/2 AND Q = p1 − p2 WITH

H(P,Q) ∼
∫

d4xS(P, x)e iQµxµ (6)

THE RESULT DEPENDS ON THE DIRECTION OF Q.
TRADITIONALLY ONE SELECTS THREE
PERPENDICULAR DIRECTIONS: LONG, OUT AND SIDE.
THE CORRESPONDING FORMULAE ARE KNOWN; see
e.g. AB, W.Florkowski and K.Zalewski, Acta Phys. Pol. B45
(2014) 1883.



THE HBT RADII

THE HBT RADII ARE DETERMINED IN THE ALICE
EXPERIMENT BY FITTING THE HBT CORRELATION
FUNCTION TO THE FORMULA

C (p1, p2) ∼ e−Q
2R2

(7)

THIS MEANS THAT, THEORETICALLY, ONE CAN
EVALUATE R FROM THE FORMULA

R2 = − d

dQ2
log[C (p1, p2)] = −dC (p1, p2)/dQ2

C (p1.p2)
(8)

WE DERIVED THE CORRESPONDING FORMULAE AND
USED THEM TO EVALUATE Rlong , Rside AND Rout AT
EACH p⊥ AND MULTIPLICITY MEASURED BY ALICE
COLL.



DETERMINATION OF THE PARAMETERS

AT EACH MULTIPLICITY THERE ARE 3× 6 DATA
POINTS TO BE DESCRIBED BY THE THREE
PARAMETERS: τf , R AND δ. WE SEARCHED FOR THE
MINIMUM OF χ2. IT TURNED OUT THAT, ACTUALLY,
THE DATA ARE NOT PRECISE ENOUGH TO
DETERMINE ALL THREE PARAMETERS.
THEREFORE WE DECIDED TO FIX δ AT THE VALUE OF
0.75 fm FOR ALL MULTIPLICITIES. THIS IS A
TENTATIVE ASSUMPTION WHICH MAY TURN OUT
INCORRECT WHEN DATA OF BETTER QUALITY ARE
AVAILABLE.
IT IS, HOWEVER, RATHER UNLIKELY THAT THE
ACTUAL VALUE OF δ IS SMALLER THAN THIS
NUMBER, BECAUSE THEN THE CORRELATION
FUNCTIONS THEMSELVES REVEAL SOME STRANGE
FEATURES AT LARGE VALUES OF Q2: EITHER LONG
TAILS OR LARGE OSCILLATIONS .



THE RESULT (1)
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Figure: The model results (solid curves) compared to the experiment
results (central points of the bands). The width of the bands represents
the experimental error.



THE RESULT (2)
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Figure: The model results (solid curves) compared to the experiment
results (central points of the bands). The width of the bands represents
the experimental error.



RADIUS AND PROPER TIME
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Figure: The fitted values of R (solid line) and τf (dashed line) as
functions of the mean multiplicity.



FLOW PARAMETERS

u⊥ ≡ sinh θ = ωr (9)
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Figure: The calculated flow parameters ω (left) and ωR (right) plotted
vs. Nc .



EFFECTIVE VOLUME
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Figure: Effective volume of the system as function of the multiplicity Nc .



NON-GAUSSIAN CORRELATION FUNCTION

Nc = 12-16
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Figure: The function log[Cout ] for 12 ≤ Nc ≤ 18, plotted vs q2, to
illustrate deviations from the Gaussian behaviour. Full line: 〈P⊥〉=163
MeV. Dashed line: 〈P⊥〉=251 MeV.



SUMMARY AND QUESTIONS
(i) THE BLAST-WAVE MODEL WORKS IN pp
COLLISIONS; DOES IT REALLY MEAN THE PRESENCE
OF FLOW? WILL IT SURVIVE WHEN SYSTEMATIC
ERRORS ARE REDUCED?

(ii) THE TRANSVERSE GEOMETRY AT FREEZE-OUT IS
NOT GAUSSIAN BUT REPRESENTS RATHER AN
EMISSION OF PARTICLES FROM A SHELL. THIS
FEATURE IS ESSENTIAL FOR THE CORRECT
DESCRIPTION OF THE RATIO Rout/Rside . WILL IT BE
PRESENT ALSO IN p − Pb COLLISIONS?

(iii) AS EXPECTED, BOTH R AND τf INCREASE WITH
INCREASING MULTIPLICITY. BUT THE PARTICLE
DENSITY AT THE FREEZE-OUT ALSO INCREASES
(reaching up to ∼ 1/4 fm3).

(iv) THE MODEL GIVES A HOST OF PREDICTIONS FOR
THE CORRELATION FUNCTIONS AT LARGER Q (to be
checked with future data).



DERIVATION OF THE HBT FORMULA (I)

Density matrix in momentum space:

ρ(p1, p2; p′1, p
′
2) =

=

∫
dx1dx2e

i(p1x1+p2x2)

∫
dx ′1dx

′
2e
−i(p′1x ′1+p′2x

′
2)ρ(x1, x2; x ′1, x

′
2) (10)

The particle distribution is

Ω(p1, p2) = ρ(p1, p2; p1, p2) (11)

The Wigner function:

W (p1, p2; x+1 , x
+
2 ) =

∫
dx−1 dx−2 e i(p1x

−
1 +p2x

−
2 )ρ(x1, x2; x ′1, x

′
2) (12)

with

x+ = (x + x ′)/2; x− = x − x ′ (13)



DERIVATION OF THE HBT FORMULA (II)

Symmetrization:

ρ(p1, p2; p′1, p
′
2)→ ρ(p1, p2; p′1, p

′
2) + ρ(p1p2; p′2, p

′
1) (14)

Ω(p1, p2) = ρ(p1, p2; p1, p2) + ρ(p1p2; p2, p1) =

=

∫
dx1dx2e

i(p1x1+p2x2)

∫
dx ′1dx

′
2e
−i(p1x ′1+p2x ′2)ρ(x1, x2; x ′1, x

′
2) +

+

∫
dx1dx2e

i(p1x1+p2x2)

∫
dx ′1dx

′
2e
−i(p2x ′1+p1x ′2)ρ(x1, x2; x ′1, x

′
2)(15)

dx1dx
′
1 = dx+1 dx−1 ; dx1dx

′
1 = dx+2 dx−2

p1x1 + p2x2 − p1x
′
1 − p2x

′
2 = p1x

−
1 − p2x

−
2

p1x1 + p2x2 − p2x
′
1 − p1x

′
2 = P12x

−
1 + P12x

−
2 + Q(x+1 − x+2 ) (16)

P12 = (p1 + p2)/2; Q = p1 − p2



DERIVATION OF THE HBT FORMULA (III)

Ω(p1, p2) =

∫
dx+1 dx+2

∫
dx−1 dx−2 e i(p1x

−
1 −p2x

−
2 )ρ(x1, x2; x ′1, x

′
2) +

+

∫
dx+1 dx+2 e iQ(x+1 −x

+
2 )

∫
dx−1 dx−2 e i(P12x

−
1 +P12x

−
2 )ρ(x1, x2; x ′1, x

′
2) =

=

∫
dx+1 dx+2 W (p1, p2; x+1 , x

+
2 ) +

+

∫
dx+1 dx+2 e iQ(x+1 −x

+
2 )W (P12,P12; x+1 , x

+
2 ) (17)

If particles are uncorrelated, i.e.
W (p1, p2; x1, x2) = W (p1, x1)W (p2, x2)

one obtains

Ω(p1, p2) = Ω(p1)Ω(p2) + W̃ (P12,Q)W̃ ∗(P12,Q) (18)


