Bose-Einstein Correlations in e⁺e⁻ annihilation (a review)

W.J. Metzger

Radboud University Nijmegen

LHCb Workshop on Quantum Correlations, etc. CERN 20–22 October 2014

Introduction - BEC

$$R_2 = \frac{\rho_2(p_1, p_2)}{\rho_1(p_1)\rho_1(p_2)} \Longrightarrow \frac{\rho_2(Q)}{\rho_0(Q)} \qquad \qquad \rho_0 = 2 \text{-particle density of 'reference sample'}$$

Assuming particles produced incoherently with spatial source density S(x),

$$R_2(Q) = 1 + \lambda |\widetilde{S}(Q)|^2$$

where
$$\widetilde{S}(Q) = \int dx \, e^{iQx} S(x)$$
 — Fourier transform of $S(x)$
 $\lambda = 1$ — $\lambda = 0$ if production completely coherent

Assuming S(x) is a spherically symmetric Lévy stable distribution with radius r, index of stability α ($\alpha = 2$ for a Gaussian) \Longrightarrow $R_2(Q) = 1 + \lambda e^{-(Qr)^{\alpha}}$

Problems with this approach

Assumes

- incoherent average over source λ tries to account for
 - partial coherence
 - multiple (distinguishable) sources, long-lived resonances
 - pion purity
- spherical (radius r) Lévy (or Gauss) distribution of particle emitters seems unlikely in e⁺e⁻ annihilation — jets
- static source, i.e., no t-dependence certainly wrong

Final-State Interactions

- 1. Coulomb
 - form not certain (usually use Gamow factor) overcorrects!
 - for R_2 , a few % in lowest Q bin
 - double if +, ref. sample
 - often neglected for R₂
 - but not negligible for R₃
- 2. Strong interaction $S = 0 \pi \pi$ phase shifts can be incorporated together with Coulomb into the formula for R_2

Osada, Sano, Biyajima, Z.Phys. C72(1996)285)

tends to increase λ , decrease r -Not used by LEP experiments

Reference Sample

Common choices:

- 1. +, pairs But different resonances than +, +
- Mixed events pair particles from different events But destroys all correlations, not just BEC
- correct by MC (no BEC):

$$\begin{split} \rho_{0} &\Longrightarrow \rho_{0} \frac{\rho_{2}^{\text{MC}}}{\rho_{0}^{\text{MC}}} \\ R_{2} &= \frac{\rho_{2}}{\rho_{0}} \Longrightarrow \frac{\rho_{2}}{\rho_{0}} / \frac{\rho_{2}^{\text{MC}}}{\rho_{0}^{\text{MC}}} \qquad \text{`d} \end{split}$$

'double ratio'

- But is the MC correct?

Long-range correlations inadequately treated in ref. sample: $R_2(Q) \propto (1 + \lambda e^{-Q^2 r^2}) \cdot (1 + \delta Q)$ or even $(1 + \delta Q + \epsilon Q^2)$ V.J. Metzger or even $(1 + \delta Q + \epsilon Q^2)$

p. 4

Results from R_2 , $\sqrt{s} = M_Z$

(Gaussian parametrization)

- correction for π purity increases λ - mixed ref. gives smaller λ , *r* than +- ref. - Average means little

\sqrt{s} dependence of r

No evidence for \sqrt{s} dependence

Mass dependence of r — BEC and FDC

r(mesons) > r(baryons)

Disclaimer

- > There are many BEC measurements with pions.
- There are also BEC measurements with kaons, and FDC measurements with protons, lambdas, but fewer.
- From here on I will only treat pion results.

Multiplicity/Jet dependence of λ , *r*

Multiplicity dependence appears to be largely due to number of jets.

Elongation of the source

The usual parametrization assumes a symmetric Gaussian source But, there is no reason to expect this symmetry in $e^+e^- \rightarrow q\bar{q}$. Therefore, do a 3-dim. analysis in the Longitudinal Center of Mass System aka Longitudinal Co-Moving System

the LCMS

Advantages of LCMS:

$$\begin{aligned} Q^{2} &= Q_{L}^{2} + Q_{side}^{2} + Q_{out}^{2} - (\Delta E)^{2} & \text{where } Q_{i}^{2} &= (p_{i1} - p_{i2})^{2} \\ &= Q_{L}^{2} + Q_{side}^{2} + Q_{out}^{2} (1 - \beta^{2}) & \text{where } \beta &\equiv \frac{p_{out1} + p_{out2}}{E_{1} + E_{2}} \end{aligned}$$

Thus, the energy difference,

and therefore the difference in emission time of the pions couples only to the out-component, $Q_{\rm out}$. Thus.

 $Q_{\rm L}$ and $Q_{\rm side}$ reflect only spatial dimensions of the source $Q_{\rm out}$ reflects a mixture of spatial and temporal dimensions.

Assuming axial symmetry, source is elliptically shaped with

- r_L the logitudinal radius
- *r*_{side} the transverse radius

Elongation Results

			Gauss / Edgeworth	2-D r _t /r _L	3-D r _{side} /r _L
DELPHI	mixed	2-jet	Gauss	$0.62{\pm}0.02{\pm}0.05$	_
ALEPH	mixed +- mixed +-	2-jet 2-jet 2-jet 2-jet	Gauss Gauss Edgeworth Edgeworth	$\begin{array}{c} 0.61 {\pm} 0.01 {\pm} 0.? \\ 0.91 {\pm} 0.02 {\pm} 0.? \\ 0.68 {\pm} 0.01 {\pm} 0.? \\ 0.84 {\pm} 0.02 {\pm} 0.? \end{array}$	
OPAL	+-	2-jet	Gauss	_	$0.82{\pm}0.02{\pm}^{0.01}_{0.05}$
L3	mixed mixed	all all	Gauss Edgeworth		$\begin{array}{c} 0.80{\pm}0.02{\pm}^{0.03}_{0.18} \\ 0.81{\pm}0.02{\pm}^{0.03}_{0.19} \end{array}$

 ${\sim}20\%$ elongation along thrust axis (ZEUS finds similar results in ep)

3π BEC

Assuming static source density f(x) in space-time, $G(Q) = \int dx e^{iQx} f(x) = Ge^{i\phi}$ $R_2(Q) = \frac{\rho_2(Q)}{\rho_0(Q)} = 1 + \lambda |G(Q)|^2$ Analog of Q for 3 particles: $(Q_3^2 = M_{123}^2 - 9m_{\pi}^2 = Q_{12}^2 + Q_{23}^2 + Q_{13}^2)$

$$R_{3}(Q_{3}) = \frac{\rho_{3}(Q_{3})}{\rho_{0}(Q_{3})} = 1 + \frac{\lambda \left(|G(Q_{12})|^{2} + |G(Q_{23})|^{2} + |G(Q_{13})|^{2} \right)}{\lambda \left(|G(Q_{12})|^{2} + |G(Q_{23})|^{2} + |G(Q_{13})|^{2} \right)}$$

from 2-particle BEC

+
$$2\lambda^{1.5} \Re\{G(Q_{12})G(Q_{23})G(Q_{13})\}$$

from genuine 3-particle BEC

$$R_3^{\text{genuine}} = 1 + 2\lambda^{1.5} \Re\{G(Q_{12})G(Q_{23})G(Q_{13})\}$$
$$\omega = \frac{R_3^{\text{genuine}}(Q_3) - 1}{2\sqrt{(R_2(Q_{12}) - 1)(R_2(Q_{23}) - 1)(R_2(Q_{13}) - 1))}}$$

$$= \cos(\phi_{12} + \phi_{23} + \phi_{13})$$

$$\omega = \frac{R_3^{\text{genuine}}(Q_3) - 1}{2\sqrt{R_2(Q_3) - 1}} \quad \text{if } f(x) \text{ is Gaussian}$$

If fully incoherent, $\phi_{ij} \neq 0$ only if f(x) asymmetric and $Q_{ij} > 0$ Completely incoherent particle production implies $\lambda = 1$ $\omega = 1$

3π BEC

	from		Gaussian	Edgeworth	
L3:	R_2 R_3^{genuine}	λ	$\begin{array}{c} 0.45 \pm 0.06 \pm 0.03 \\ 0.47 \pm 0.07 \pm 0.03 \end{array}$	$\begin{array}{c} 0.72 \pm 0.08 \pm 0.03 \\ 0.75 \pm 0.10 \pm 0.03 \end{array}$	
	R_2 R_3^{genuine}	r (fm)	$\begin{array}{c} 0.65 \pm 0.03 \pm 0.03 \\ 0.65 \pm 0.06 \pm 0.03 \end{array}$	$\begin{array}{c} 0.74 \pm 0.06 \pm 0.02 \\ 0.72 \pm 0.08 \pm 0.03 \end{array}$	

Data consistent with $\omega = 1$, *i.e.*, fully incoherent.

Values of λ , *r* from R_2 and R_3^{genuine} are consistent.

		° ·	
expt.		λ	r
MARK-II (29 GeV)	R ₂ R ₃	$\begin{array}{c} 0.45 \pm 0.03 \pm 0.04 \\ 0.54 \pm 0.06 \pm 0.05 \end{array}$	$\begin{array}{c} 1.01 \pm 0.09 \pm 0.06 \\ 0.90 \pm 0.06 \pm 0.06 \end{array}$
DELPHI	R_2 R_3^{genuine}	$\begin{array}{c} 0.24 \pm 0.02 \pm 0.?? \\ 0.43 \pm 0.05 \pm 0.07 \end{array}$	$\begin{array}{c} 0.47 \pm 0.03 \pm 0.?? \\ 0.93 \pm 0.06 \pm 0.04 \end{array}$
OPAL	R_2 R_3^{genuine}	$\begin{array}{c} 0.58 \pm 0.01 \pm 0.?? \\ 0.63 \pm 0.01 \pm 0.03 \end{array}$	$\begin{array}{c} 0.79 \pm 0.02 \pm 0.?? \\ 0.82 \pm 0.01 \pm 0.04 \end{array}$

Values of λ , *r* from R_2 and R_3 are fairly consistent.

BEC in String Models

Longitudinal BEC

- Different string configurations give same final state
- Matrix element to get a final state depends on area, A: $\mathcal{M} = \exp[(\imath \kappa - b/2)A]$ where κ is the string tension and b is the decay constant $\kappa \approx 1 \text{ GeV/fm}$ and $b \approx 0.3 \text{ GeV/fm}$
- So, must sum all the amplitudes But 3-π BEC incoherent ??

Transverse BEC

 Transverse momentum via tunneling, also related to b

Using **b** from tuning of JETSET, predict

 BEC, including genuine 3-particle BEC

 $r_{\rm t} < r_{\rm L}$

• $r(\pi^0\pi^0) < r(\pi^+\pi^+)$

2-particle BEC $\pi^0\pi^0$ and $\pi^\pm\pi^\pm$

- ▶ Naively expect same BEC for $\pi^0\pi^0$ and $\pi^{\pm}\pi^{\pm}$
- Hadronization with local charge conservation,
 e.g., string, ⇒ r₀₀ < r_{±±}
 But most π's from resonances dilutes this effect.
- Many measurements of BEC with charged π's
- but few with π^0 's

```
in e<sup>+</sup>e<sup>-</sup>: L3, P.L. B524 (2002) 55
OPAL, P.L. B559 (2003) 131
```

Selection:

OPAL	L3		
$p_{\pi^0} > 1.0~{ m GeV}$ 2-jet, $T > 0.9$	$E(\pi^0) < 6.0 \text{ GeV}$ all events		

2-particle BEC $\pi^0\pi^0$ and $\pi^\pm\pi^\pm$

		Expt.	$ ho_0$	<i>r</i> (fm)	λ
	±±	OPAL	+	$1.00\substack{+0.03 \\ -0.10}$	$\textbf{0.76} \pm \textbf{0.06}$
BEC from Z decays		L3	mix	$\textbf{0.65} \pm \textbf{0.04}$	$\textbf{0.45} \pm \textbf{0.07}$
Gaussian		L3 3- π	mix	$\textbf{0.65} \pm \textbf{0.07}$	$\textbf{0.47} \pm \textbf{0.08}$
parametrization		L3 E_{π} < 6 GeV	MC	$\textbf{0.46} \pm \textbf{0.01}$	$\textbf{0.29}\pm\textbf{0.03}$
	00	L3 E_{π} < 6 GeV	MC	0.31 ± 0.10	$\textbf{0.16} \pm \textbf{0.09}$
		OPAL $E_{\pi} > 1$, 2-jet	mix	$\textbf{0.59} \pm \textbf{0.09}$	0.55 ± 0.14

▶ L3: $r_{00} < r_{\pm\pm}$ and $\lambda_{00} < \lambda_{\pm\pm}$, both 1.5 σ

- ► ALEPH, DELPHI find r_{±±}(mix)/r_{±±}(+-) ≈ 0.68, 0.51 Applying this to OPAL r_{±±}, OPAL r₀₀ ≈ r_{±±} and λ₀₀ ≈ λ_{±±}
- ▶ L3 and OPAL $\pi^0\pi^0$ results disagree by 2σ
- ▶ Is the L3-OPAL $\pi^0 \pi^0$ difference due to E_{π} and/or 2-jet selection ???
- OPAL: MC shows that few of selected π^0 's are direct from string

Another source of $q\overline{q}$: W

 $e^+e^-{\rightarrow} W^+W^-{\rightarrow} q\overline{q}q\overline{q}$

If independent decay of W⁺W⁻, *i.e.*, no BEC between pions from different W's

 $\begin{array}{rcl} \rho_{4q}(p_1,p_2) = & \rho^+(p_1,p_2) & 1,2 \text{ from } W^+ \\ & + & \rho^-(p_1,p_2) & 1,2 \text{ from } W^- \\ & + & \rho^+(p_1)\rho^-(p_2) & 1 \text{ from } W^+, 2 \text{ from } W^- \\ & + & \rho^+(p_2)\rho^-(p_1) & 1 \text{ from } W^-, 2 \text{ from } W^+ \end{array}$

Assuming $\rho^+ = \rho^- = \rho_{2q}$, W separation ~ 0.1 fm

 $\rho_{4q}(p_1, p_2) = 2\rho_{2q}(p_1, p_2) + 2\rho_{2q}(p_1)\rho_{2q}(p_2)$

Inter-W BEC \implies W decays *not* independent \implies this relation does *not* hold.

Measure

- $\rho_{4q}(p_1, p_2)$ from $e^+e^- \rightarrow W^+W^- \rightarrow q\overline{q}q\overline{q}$
- $\rho_{2q}(p_1, p_2)$ from $e^+e^- \rightarrow W^+W^- \rightarrow q\overline{q}\ell\nu$
- $\rho_{2q}(p_1)\rho_{2q}(p_2)$ from $\rho_{mix}(p_1, p_2)$ obtained by mixing $\ell^+ \nu q \overline{q}$ and $q \overline{q} \ell^- \nu$ events

$W^+W^-{\rightarrow} q\overline{q}q\overline{q}$

Measure violation of $\rho_{4q}(Q) = 2\rho_{2q}(Q) + 2\rho_{mix}(Q)$

by

$$\begin{aligned} \Delta \rho(Q) &= \rho_{4q}(Q) - [2\rho_{2q}(p_1, p_2) + 2\rho_{mix}(p_1, p_2)] \\ D(Q) &= \frac{\rho_{4q}(Q)}{2\rho_{2q}(Q) + 2\rho_{mix}(Q)} \\ \delta_1(Q) &= \frac{\Delta \rho(Q)}{2\rho_{mix}(Q)} \end{aligned}$$

Compare to expectation of BE₃₂ model in PYTHIA

fraction of model seen

$$\begin{split} & \delta_{\rm I}(Q) \text{ measures genuine inter-W BEC} \\ & \text{DELPHI: } 0.51 \pm 0.24 \\ & \text{average: } 0.17 \pm 0.13 \\ & \sim 1\sigma \end{split} \\ & \text{Conclusion: BEC (mostly) between } \pi \text{'s from same string} \\ & \text{But event selection (4 separated jets)} \\ & \text{suppresses small } Q \text{ for } \pi \text{ pairs from different strings} \end{split}$$

Results - 'Classic' Parametrizations

 $R_2 = \gamma \cdot [1 + \lambda G] \cdot (1 + \epsilon Q)$

- Gaussian $G = \exp(-(rQ)^2)$
- Edgeworth expansion $G = \exp\left(-(rQ)^2\right) \cdot \left[1 + \frac{\kappa}{3!}H_3(rQ)\right]$ Gaussian if $\kappa = 0$ Fit: $\kappa = 0.71 \pm 0.06$
- symmetric Lévy $G = \exp(-|rQ|^{\alpha})$ $0 < \alpha \le 2$ Gaussian if $\alpha = 2$ Fit: $\alpha = 1.34 \pm 0.04$

Poor χ^2 . Edgeworth and Lévy better than Gaussian, but poor. Problem is the dip of R_2 in the region 0.6 < Q < 1.5 GeV

W.J. Metzger

The au-model

T.Csörgő, W.Kittel, W.J.Metzger, T.Novák, Phys.Lett. B663(2008)214 T.Csörgő, J.Zimányi, Nucl.Phys.A517(1990)588

Assume avg. production point is related to momentum:

 $\overline{x}^{\mu}(p^{\mu}) = a \tau p^{\mu}$ where for 2-jet events, $a = 1/m_t$ $\tau = \sqrt{\overline{t}^2 - \overline{r}_z^2}$ is the "longitudinal" proper time and $m_t = \sqrt{E^2 - p_z^2}$ is the "transverse" mass

- ► Let $\delta_{\Delta}(x^{\mu} \overline{x}^{\mu})$ be dist. of prod. points about their mean, and $H(\tau)$ the dist. of τ . Then the emission function is $S(x, p) = \int_{0}^{\infty} d\tau H(\tau) \delta_{\Delta}(x - a\tau p) \rho_{1}(p)$
- ► In the plane-wave approx. $\rho_2(p_1, p_2) = \int d^4 x_1 d^4 x_2 S(x_1, p_1) S(x_2, p_2) \left(1 + \cos\left(\left[p_1 - p_2\right] [x_1 - x_2]\right)\right)\right)$ ► Assume $\delta_{\Delta}(x^{\mu} - \overline{x}^{\mu})$ is very narrow — a δ -function. Then

$$R_2(p_1, p_2) = \mathbf{1} + \lambda \operatorname{Re}\widetilde{H}\left(\frac{a_1 Q^2}{2}\right) \widetilde{H}\left(\frac{a_2 Q^2}{2}\right), \quad \widetilde{H}(\omega) = \int \mathrm{d}\tau H(\tau) \exp(i\omega\tau)$$

BEC in the au-model

• Assume a Lévy distribution for $H(\tau)$ Since no particle production before the interaction, $H(\tau)$ is one-sided. Characteristic function is

 $\widetilde{H}(\omega) = \exp\left[-\frac{1}{2}\left(\Delta\tau|\omega|\right)^{\alpha} \left(1 - i\operatorname{sign}(\omega)\tan\left(\frac{\alpha\pi}{2}\right)\right) + i\,\omega\tau_0\right], \quad \alpha \neq 1$

where

- α is the index of stability;
- τ_0 is the proper time of the onset of particle production;
- $\Delta \tau$ is a measure of the width of the distribution.
- Then, R_2 depends on Q, a_1, a_2

$$B_{2}(Q, a_{1}, a_{2}) = \gamma \left\{ 1 + \lambda \cos\left[\frac{\tau_{0}Q^{2}(a_{1} + a_{2})}{2} + \tan\left(\frac{\alpha\pi}{2}\right)\left(\frac{\Delta\tau Q^{2}}{2}\right)^{\alpha}\frac{a_{1}^{\alpha} + a_{2}^{\alpha}}{2}\right] \\ \cdot \exp\left[-\left(\frac{\Delta\tau Q^{2}}{2}\right)^{\alpha}\frac{a_{1}^{\alpha} + a_{2}^{\alpha}}{2}\right]\right\} \cdot (1 + \epsilon Q)$$

BEC in the au-model

$$R_{2}(Q, \boldsymbol{a}_{1}, \boldsymbol{a}_{2}) = \gamma \left\{ 1 + \lambda \cos \left[\frac{\tau_{0} Q^{2} (\boldsymbol{a}_{1} + \boldsymbol{a}_{2})}{2} + \tan \left(\frac{\alpha \pi}{2} \right) \left(\frac{\Delta \tau Q^{2}}{2} \right)^{\alpha} \frac{\boldsymbol{a}_{1}^{\alpha} + \boldsymbol{a}_{2}^{\alpha}}{2} \right] \\ \cdot \exp \left[- \left(\frac{\Delta \tau Q^{2}}{2} \right)^{\alpha} \frac{\boldsymbol{a}_{1}^{\alpha} + \boldsymbol{a}_{2}^{\alpha}}{2} \right] \right\} \cdot (1 + \epsilon Q)$$

Simplification:

- effective radius, *R*, defined by $R^{2\alpha} = \left(\frac{\Delta \tau}{2}\right)^{\alpha} \frac{a_1^{\alpha} + a_2^{\alpha}}{2}$
- Particle production begins immediately, $\tau_0 = 0$
- ► Then $R_{2}(Q) = \gamma \left[1 + \lambda \cos \left(\left(R_{a} Q \right)^{2\alpha} \right) \exp \left(- \left(R Q \right)^{2\alpha} \right) \right] \cdot (1 + \epsilon Q)$ where $R_{a}^{2\alpha} = \tan \left(\frac{\alpha \pi}{2} \right) R^{2\alpha}$ Compare to sym. Lévy parametrization: $R_{2}(Q) = \gamma \left[1 + \lambda \qquad \exp \left[- |rQ|^{-\alpha} \right] \right] (1 + \epsilon Q)$
- R describes the BEC peak
- R_a describes the anticorrelation dip
- τ -model: both anticorrelation and BEC are related to 'width' $\Delta \tau$ of $H(\tau)$

Elongation?

- ► Previous results using fits of Gaussian or Edgeworth found (in LCMS) $r_{side}/r_L \approx 0.8$ for all events
- But we find that Gaussian and Edgeworth fit $R_2(Q)$ poorly
- τ -model predicts no elongation and fits the data well
- Could the elongation results be an artifact of an incorrect fit function? or is the τ-model in need of modification?
- So, we modify ad hoc the τ -model description to allow elongation

Elongation in the Simplified τ -model?

Elongation is real

consistent

_

- LLA parton shower leads to a fractal in momentum space fractal dimension, α, is related to α_s
- Lévy dist. arises naturally from a fractal, or random walk, or anomalous diffusion
- ► strong momentum-space/configuration space correlation of τ -model \implies fractal in configuration space with same α
- generalized LPHD suggests particle dist. has same properties as gluon dist.
- Putting this all together leads to

$$\alpha_{\rm s}=\frac{2\pi}{3}\alpha^2$$

- Using our value of $\alpha = 0.47 \pm 0.04$ yields $\alpha_s = 0.46 \pm 0.04$
- ► This value is reasonable for a scale of 1–2 GeV, where production of hadrons takes place *cf.*, from τ decays $\alpha_s(m_\tau \approx 1.8 \text{ GeV}) = 0.34 \pm 0.03$

Gustafson et al.

Metzler and Klafter, Phys.Rep.339(2000)1.

Csörgő et al.

PDG

Multiplicity/Jet/rapidity dependence in τ -model

Use simplified τ -model, $\tau_0 = 0$ to investigate multiplicity and jet dependence

To stabilize fits against large correlation of parameters α and R, fix $\alpha = 0.44$

Jets

Jets — JADE and Durham algorithms

- force event to have 3 jets:
 - normally stop combining when all 'distances' between jets are > y_{cut}
 - instead, stop combining when there are only 3 jets left
 - y₂₃ is the smallest 'distance' between any 2 of the 3 jets
- y₂₃ is value of y_{cut} where number of jets changes from 2 to 3

define regions of $y_{23}^{\rm D}$ (Durham):

 $y_{23}^{\rm D} < 0.006$ two-jet $0.006 < y_{23}^{\rm D}$ three-jet

W.J. Metzger

Multiplicity/Jet dependence in au-model

 R increases with N_{ch} and with number of jets whereas OPAL found r_{n-jet} approx. indep. of N_{ch}

- Increase of R with N_{ch} similar for 2- and 3-jet events
- However, $R_{3-jet} \approx R_{all}$

Multiplicity/Jet dependence in au-model

- $\lambda_{3-jet} > \lambda_{2-jet}$ opposite of OPAL
- λ initially decreases with N_{ch}
- then λ_{all} and λ_{3-jet} approx. constant while λ_{2-jet} continues to decrease, but more slowly
- ▶ whereas OPAL found λ_{all} decreasing approx. linearly with N_{ch}

$m_{\rm t}$ dependence in au-model

Using simplified τ -model, $\alpha = 0.44$, $\tau_0 = 0$

and cutting on $p_t = 0.5 \,\text{GeV} (m_t = 0.52 \,\text{GeV})$

 R decreases with m_t for all N_{ch} smallest when both particles at high p_t

On what do r, R, λ depend?

- r, R increase with N_{ch}
- r, R increase with N_{jets}
- for fixed number of jets, *R* increases with N_{ch} but *r* is constant (OPAL)
- r, R decrease with m_t
- Although m_t, N_{ch}, N_{jets} are correlated, each contributes to the increase/decrease of R but only m_t, N_{jets} contribute to the increase/decrease of r
- λ decreases with N_{ch}, N_{jets} though somewhat differently for τ-model, Gaussian (OPAL)
- λ decreases with m_t

Jets and Rapidity order jets by energy: $E_1 > E_2 > E_3$ Note: thrust only defines axis $|\vec{n}_T|$, not its direction.

Choose positive thrust direction such that jet 1 is in positive thrust hemisphere

Jets and Rapidity – simplified au-model – L3 preliminary

au-model elongation – L3 preliminary

- Durham, JADE agree
- ► Elongation decreases with y₂₃, R_{side} ≈ 0.5–0.9 R_{long}
- agrees with Gaussian/Edgeworth
Conclusions/Comments/Lessons

- Ref. sample is important
 - Comparison of results using different ρ_0 is very problematic
 - Agreement among LHC expts. would facilitate comparisons. e.g., central rapidity vs. forward rapidity
- 2. Ratios, e.g., $r_{\rm side}/r_{\rm L}$ are robust to differences in ρ_0 , parametrization (Gauss, Lévy, τ -model)
- 3. Look beyond Q = 2 GeV at least to 3, preferably 4 GeV
- 4. τ -model
 - τ-model is closely related to a string picture
 - strong x-p correlation
 - fractal Lévy distribution
 - CMS finds BEC in pp at 0.9 and 7 TeV are described by simplified τ -model formula
 - suggests that BEC in pp is (mostly) from string fragmentation
- Anticorrelation region is important
 - On what does it depend, N_{ch} , rapidity, m_t , ...?
 - Is the τ -model the correct explanation?
- 6. R, r depends on N_{iets} , N_{ch} , m_{t} .

Also on (mini)jets, color reconnection, N_{strings}, color ropes?

JHEP 05 (2011) 029

BACKUP

_

_

_

Introduction — Correlations

$$\rho_q(\mathbf{p}_1,...,\mathbf{p}_q) = \frac{1}{\sigma_{\text{tot}}} \frac{\mathrm{d}^q \sigma_q(\mathbf{p}_1,...,\mathbf{p}_q)}{\mathrm{d}\mathbf{p}_1...\mathrm{d}\mathbf{p}_q}$$

$$\int \rho_1(p) dp = \langle n \rangle \int \rho_2(p_1, p_2) dp_1 dp_2 = \langle n(n-1) \rangle$$

$$\rho_1(p_1) = C_1(p_1)$$

$$\rho_2(p_1, p_2) = C_1(p_1)C_1(p_2) + C_2(p_1, p_2)$$

$$\rho_3(p_1, p_2, p_3)) = C_1(p_1)C_1(p_2)C_1(p_3)$$

$$+ \sum_{3 \text{ perms}} C_1(p_1)C_2(p_2, p_3)$$

$$+ C_3(p_1, p_2, p_3)$$

$$C_2 = \rho_2(p_1, p_2) - C_1(p_1)C_1(p_2)$$

$$\mathbf{P} \quad \mathbf{R}_{\mathbf{q}} = \frac{\rho_q}{\prod_{i=1}^q \rho_1(p_i)} \qquad \mathbf{K}_{\mathbf{q}} = \frac{C_q}{\prod_{i=1}^q \rho_1(p_i)}$$

g.,
$$R_2 = 1 + \frac{C_2}{\rho_1(\rho_1)\rho_1(\rho_2)} = 1 + K_2$$

q-particle density where σ_q is inclusive cross section Normalization:

In terms of 'factorial cumulants', C

"trivial" 3-particle correlations "genuine" 3-particle correlations

2-particle correlations

е.

Introduction — BEC

To study BEC, not other correlations, replace $\prod_{i=1}^{q} \rho_1(p_i)$ by $\rho_0(p_1, ..., p_q)$, the *q*-particle density if no BEC (reference sample)

e.g., 2-particle BEC are studied in terms of $a(p_1, p_2)$

$$R_2(p_1, p_2) = rac{
ho(p_1, p_2)}{
ho_0(p_1, p_2)}$$

Since 2- π BEC only at small $Q = \sqrt{-(p_1 - p_2)^2} = \sqrt{M_{12}^2 - 4m_{\pi}^2}$, integrate over other variables

$$R_2(Q) = rac{
ho(Q)}{
ho_0(Q)}$$

Assuming incoherent particle production and spatial source density S(x),

$$R_2(Q) = 1 + |G(Q)|^2$$

where $G(Q) = \int dx e^{iQx} S(x)$ is the Fourier transform of S(x)Assuming S(x) is a Gaussian with radius *r*

$$R_2(Q) = 1 + e^{-Q^2 r^2}$$

$R_2(Q) \propto 1 + \lambda e^{-Q^2 r^2}$

Assumes

- incoherent average over source
 λ tries to account for
 - partial coherence
 - multiple (distinguishable) sources, long-lived resonances
 - pion purity
- spherical (radius r) Gaussian density of particle emitters seems unlikely in e⁺e⁻ annihilation — jets
- static source, *i.e.*, no *t*-dependence certainly wrong
- Nevertheless, this Gaussian formula is the most often used parametrization And it works fairly well
- But what do the values of λ and r actually mean?

When Gaussian parametrization does not fit well,

► can expand about the Gaussian (Edgeworth expansion). Keeping only the lowest-order non-Gaussian term, $\exp(-Q^2r^2)$ becomes $\exp(-Q^2r^2) \cdot \left[1 + \frac{\kappa}{3!}H_3(Qr)\right]$

(*H*₃ is third-order Hermite polynomial)

Assume source radius is a symmetric Lévy distribution rather than Gaussian.
 Then exp (-Q²r²) becomes exp (-Q²r^α) , 0 < α ≤ 2

α is the Lévy index of stability

W.J. Metzger

Experimental Problems I

- I. Pion purity
 - 1. mis-identified pions K, p
 - correct by MC. But is the MC correct?
 - 2. resonances
 - long-lived affect λ BEC peak narrower than resolution
 - short-lived, e.g., ρ , affect r
 - correct by MC.
 - But is the MC correct?
 - 3. weak decays
 - \sim 20% of Z decays are $b\bar{b}$

like long-lived resonances, decrease λ

 per Z: 17.0 π[±], 2.3 K[±], 1.0 p (15% non-π)

Origin of π^+ in Z decay	(%) (JETSET 7.4)
direct (string fragmentation)	16
$\begin{array}{l} \mbox{decay (short-lived resonances)} \\ \Gamma > 6.7\mbox{MeV}, \tau < 30\mbox{fm} \\ (\rho,\omega,\mbox{K}^*,\Delta,) \end{array}$	62
decay (long-lived resonances) $\Gamma < 6.7{ m MeV}, au > 30{ m fm}$	22

Experimental Problems II

- II. Reference Sample, ρ_0 — it does NOT exist Common choices:
 - +, pairs But different resonances than +, + - correct by MC. - But is it correct?
 - 2. Monte Carlo But is it correct?
 - Mixed events pair particles from different events But destroys all correlations, not just BEC

– correct by MC. – But is it correct?

Experimental Problems III, IV III. Final-State Interactions

- 1. Coulomb
 - form not certain (usually use Gamow factor) overcorrects!
 - for R_2 , a few % in lowest Q bin
 - double if +, ref. sample
 - often neglected for R₂
 - but not negligible for R₃
- 2. Strong interaction $S = 0 \pi \pi$ phase shifts can be incorporated together with Coulomb into the formula for R_2

Osada, Sano, Biyajima, Z.Phys. C72(1996)285) tends to increase λ , decrease re.g., OPAL data: $\lambda_{noFSI} = 0.71$, $\lambda_{FSI} = 1.04$ $r_{noFSI} = 1.34$, $r_{FSI} = 1.09$ fm

- Not used by experimental

W.J. Metzgeroups

IV. Long-range correlations inadequately treated in ref. sample: $R_2(Q) \propto (1 + \lambda e^{-Q^2 r^2})(1 + \delta Q)$

Results from R_2 , $\sqrt{s} = M_Z$

- correction for π purity increases λ - mixed ref. gives smaller λ , *r* than +- ref. - Average means little

\sqrt{s} dependence of r

No evidence for \sqrt{s} dependence

Mass dependence of r — BEC and FDC

r(mesons) > r(baryons)

Disclaimer

- There are many BEC measurements with pions.
- There are also BEC measurements with kaons, and FDC measurements with protons, lambdas, but fewer.
- From here on I will only treat pion results.

Multiplicity/Jet dependence of λ , *r*

Multiplicity dependence appears to be largely due to number of jets.

Elongation of the source

The usual parametrization assumes a symmetric Gaussian source But, there is no reason to expect this symmetry in $e^+e^- \rightarrow q\bar{q}$. Therefore, do a 3-dim. analysis in the Longitudinal Center of Mass System aka Longitudinal Co-Moving System

the LCMS

Advantages of LCMS:

$$\begin{aligned} Q^{2} &= Q_{L}^{2} + Q_{side}^{2} + Q_{out}^{2} - (\Delta E)^{2} & \text{where } Q_{i}^{2} &= (p_{i1} - p_{i2})^{2} \\ &= Q_{L}^{2} + Q_{side}^{2} + Q_{out}^{2} (1 - \beta^{2}) & \text{where } \beta &\equiv \frac{p_{out 1} + p_{out 2}}{E_{1} + E_{2}} \end{aligned}$$

Thus, the energy difference,

and therefore the difference in emission time of the pions couples only to the out-component, $Q_{\rm out}$. Thus.

 $Q_{\rm L}$ and $Q_{\rm side}$ reflect only spatial dimensions of the source $Q_{\rm out}$ reflects a mixture of spatial and temporal dimensions.

Assuming axial symmetry, source is elliptically shaped with

- r_L the logitudinal radius
- *r*_{side} the transverse radius

Parametrization of R_2 Writing R_2 in terms of $\vec{Q} = (Q_L, Q_{side}, Q_{out})$: $R_2(\vec{Q}) = \frac{\rho(\vec{Q})}{\rho_0(\vec{Q})}$

We parametrize $R_2(\vec{Q})$ by a 3-dimensional Gaussian

 $R_2(Q_L, Q_{out}, Q_{side}) = \gamma \cdot (1 + \lambda G) \cdot B$

where

- $\gamma = \text{normalization} (\approx 1)$
- λ = "incoherence", or strength of BE effect
- G = azimuthally symmetric Gaussian:

$$G = \exp\left(-r_{\rm L}^2 Q_{\rm L}^2 - r_{\rm out}^2 Q_{\rm out}^2 - r_{\rm side}^2 Q_{\rm side}^2 + 2\rho_{\rm L,out} R_{\rm L} R_{\rm out} Q_{\rm L} Q_{\rm out}\right)$$

longitudinal sym. $\implies \rho_{L,out} = 0$ (do not tag q, \overline{q} , and fragment the same)

• Or G = Edgeworth expansion about azimuthally symmetric Gaussian:

 $\exp(-r_i^2 Q_i^2) \longrightarrow \exp(-r_i^2 Q_i^2) \cdot \left[1 + \frac{\kappa_i}{3!} H_3(r_i Q_i)\right], H_3 = 3^{rd}$ order Hermite polynomial

► $B = (1 + \delta Q_L + \varepsilon Q_{out} + \xi Q_{side})$ describes large Q (long-range correlations)

Elongation Results (L3)

parameter	Gaussian	Edgeworth		
λ	$0.41 \pm 0.01^{+0.02}_{-0.19}$	$0.54\pm0.02^{+0.04}_{-0.26}$		
R _L (fm) R _{out} (fm) R _{side} (fm)	$\begin{array}{c} 0.74 \pm 0.02 \substack{+0.04 \\ -0.03} \\ 0.53 \pm 0.02 \substack{+0.05 \\ -0.06} \\ 0.59 \pm 0.01 \substack{+0.03 \\ -0.13} \end{array}$	$\begin{array}{c} 0.69 \pm 0.02 \substack{+0.04 \\ -0.03} \\ 0.44 \pm 0.02 \substack{+0.05 \\ -0.06} \\ 0.56 \pm 0.02 \substack{+0.03 \\ -0.12} \end{array}$		
${R_{ m out}/R_{ m L}} onumber \ R_{ m side}/R_{ m L}$	$\begin{array}{c} 0.71 \pm 0.02 \substack{+0.05 \\ -0.08} \\ 0.80 \pm 0.02 \substack{+0.03 \\ -0.18} \end{array}$	$\begin{array}{c} 0.65 \pm 0.03^{+0.06}_{-0.09} \\ 0.81 \pm 0.02^{+0.03}_{-0.19} \end{array}$		
$\kappa_{ m L}$	_	$0.5\pm0.1^{+0.1}_{-0.2}$		
$\kappa_{\rm out}$	-	$0.8\pm0.1\pm0.3$		
$\kappa_{ m side}$	-	$0.1\pm0.1\pm0.3$		
δ	$0.025 \pm 0.005^{+0.014}_{-0.015}$	$0.036 \pm 0.007^{+0.012}_{-0.023}$		
ϵ	$0.005 \pm 0.005 \substack{+0.034 \\ -0.012}$	$0.011 \pm 0.005^{+0.037}_{-0.012}$		
ξ	$-0.035\pm0.005^{+0.031}_{-0.024}$	$-0.022\pm0.006^{+0.020}_{-0.025}$		
χ^2/DoF	2314/2189	2220/2186		
C.L. (%)	3.1	30		

- Edgeworth fit significantly better than Gaussian
- R_{side}/R_L < 1 more than 5 std. dev. Elongation along thrust axis
- Models which assume a spherical source are too simple.

Elongation Results

			Gauss / Edgeworth	2-D r _t /r _L	3-D r _{side} /r _L
DELPHI	mixed	2-jet	Gauss	$0.62{\pm}0.02{\pm}0.05$	_
ALEPH	mixed +- mixed +-	2-jet 2-jet 2-jet 2-jet	Gauss Gauss Edgeworth Edgeworth	$\begin{array}{c} 0.61 {\pm} 0.01 {\pm} 0.? \\ 0.91 {\pm} 0.02 {\pm} 0.? \\ 0.68 {\pm} 0.01 {\pm} 0.? \\ 0.84 {\pm} 0.02 {\pm} 0.? \end{array}$	
OPAL	+-	2-jet	Gauss	_	$0.82{\pm}0.02{\pm}^{0.01}_{0.05}$
L3	mixed mixed	all all	Gauss Edgeworth		$\begin{array}{c} 0.80{\pm}0.02{\pm}^{0.03}_{0.18} \\ 0.81{\pm}0.02{\pm}^{0.03}_{0.19} \end{array}$

 ${\sim}20\%$ elongation along thrust axis (ZEUS finds similar results in ep)

Recall

"trivial" 3-particle correlations
"genuine" 3-particle correlations or
$$\rho_3(p_1, p_2, p_3)) = C_1(p_1)C_1(p_2)C_1(p_3) + \sum_{\substack{3 \text{ perms}}} C_1(p_1)C_2(p_2, p_3) + C_3(p_1, p_2, p_3)$$

$$\rho_{3}(p_{1}, p_{2}, p_{3}) = \rho_{1}(p_{1})\rho_{1}(p_{2})\rho_{1}(p_{3}) \\ + \sum_{\substack{p \in m \\ p \in m}} [\rho_{1}(p_{1})(\rho_{2}(p_{2}, p_{3}) - \rho_{1}(p_{2})\rho_{1}(p_{3}))] \\ + C_{3}(p_{1}, p_{2}, p_{3})$$

3-particle BEC are studied in terms of

_

$${\sf R}_3({\sf p}_1,{\sf p}_2,{\sf p}_3)=rac{
ho_3({\sf p}_1,{\sf p}_2,{\sf p}_3)}{
ho_0({\sf p}_1,{\sf p}_2,{\sf p}_3)}$$

_

Since BEC at small Q_3 $(Q_3^2 = M_{123}^2 - 9m_{\pi}^2 = Q_{12}^2 + Q_{23}^2 + Q_{13}^2)$

we use $R_3(Q_3) = \frac{\rho(Q_3)}{\rho_0(Q_3)}$ and $R_2 = \frac{\rho(Q)}{\rho_0(Q)}$ $R_3^{\text{nongen}}(Q_3) = 1 + \sum_{\substack{3 \text{ perm} \\ Q_3}} \frac{\rho_1 \rho_2}{\rho_0} - 3 = 1 + \sum_{\substack{3 \text{ perm} \\ Q_3}} [R_2(Q_{12}) - 1]$ $R_3^{\text{genuine}}(Q_3) = 1 + \frac{C_3(Q_3)}{\rho_0(Q_3)}$ $= 1 + R_3(Q_3) - R_3^{\text{nongen}}(Q_3)$

Assuming static source density f(x) in space-time, $G(Q) = \int dx e^{iQx} f(x) = Ge^{i\phi}$ $R_2(Q) = \frac{\rho_2(Q)}{\rho_0(Q)} = 1 + \lambda |G(Q)|^2$ Analog of Q for 3 particles: $(Q_3^2 = M_{123}^2 - 9m_{\pi}^2 = Q_{12}^2 + Q_{23}^2 + Q_{13}^2)$

$$R_{3}(Q_{3}) = \frac{\rho_{3}(Q_{3})}{\rho_{0}(Q_{3})} = 1 + \frac{\lambda \left(|G(Q_{12})|^{2} + |G(Q_{23})|^{2} + |G(Q_{13})|^{2} \right)}{\lambda \left(|G(Q_{12})|^{2} + |G(Q_{23})|^{2} + |G(Q_{13})|^{2} \right)}$$

from 2-particle BEC

+
$$2\lambda^{1.5} \Re\{G(Q_{12})G(Q_{23})G(Q_{13})\}$$

from genuine 3-particle BEC

$$R_3^{\text{genuine}} = 1 + 2\lambda^{1.5} \Re\{G(Q_{12})G(Q_{23})G(Q_{13})\}$$
$$\omega = \frac{R_3^{\text{genuine}}(Q_3) - 1}{2\sqrt{(R_2(Q_{12}) - 1)(R_2(Q_{23}) - 1)(R_2(Q_{13}) - 1))}}$$

$$= \cos(\phi_{12} + \phi_{23} + \phi_{13})$$

$$\omega = \frac{R_3^{\text{genuine}}(Q_3) - 1}{2\sqrt{R_2(Q_3) - 1}} \quad \text{if } f(x) \text{ is Gaussian}$$

If fully incoherent, $\phi_{ij} \neq 0$ only if f(x) asymmetric and $Q_{ij} > 0$ Completely incoherent particle production implies $\lambda = 1$ $\omega = 1$

Conclusion: Data consistent with $\omega = 1$,

i.e., with completely incoherent pion production

	from		Gaussian	Edgeworth
L3:	R_2 R_3^{genuine}	λ	$\begin{array}{c} 0.45 \pm 0.06 \pm 0.03 \\ 0.47 \pm 0.07 \pm 0.03 \end{array}$	$\begin{array}{c} 0.72 \pm 0.08 \pm 0.03 \\ 0.75 \pm 0.10 \pm 0.03 \end{array}$
	R_2 R_3^{genuine}	r (fm)	$\begin{array}{c} 0.65 \pm 0.03 \pm 0.03 \\ 0.65 \pm 0.06 \pm 0.03 \end{array}$	$\begin{array}{c} 0.74 \pm 0.06 \pm 0.02 \\ 0.72 \pm 0.08 \pm 0.03 \end{array}$

Data consistent with $\omega = 1$, *i.e.*, fully incoherent.

Values of λ , *r* from R_2 and R_3^{genuine} are consistent.

		° ·	
expt.		λ	r
MARK-II (29 GeV)	R ₂ R ₃	$\begin{array}{c} 0.45 \pm 0.03 \pm 0.04 \\ 0.54 \pm 0.06 \pm 0.05 \end{array}$	$\begin{array}{c} 1.01 \pm 0.09 \pm 0.06 \\ 0.90 \pm 0.06 \pm 0.06 \end{array}$
DELPHI	R_2 R_3^{genuine}	$\begin{array}{c} 0.24 \pm 0.02 \pm 0.?? \\ 0.43 \pm 0.05 \pm 0.07 \end{array}$	$\begin{array}{c} 0.47 \pm 0.03 \pm 0.?? \\ 0.93 \pm 0.06 \pm 0.04 \end{array}$
OPAL	R_2 R_3^{genuine}	$\begin{array}{c} 0.58 \pm 0.01 \pm 0.?? \\ 0.63 \pm 0.01 \pm 0.03 \end{array}$	$\begin{array}{c} 0.79 \pm 0.02 \pm 0.?? \\ 0.82 \pm 0.01 \pm 0.04 \end{array}$

Values of λ , *r* from R_2 and R_3 are fairly consistent.

BEC in String Models

Longitudinal BEC

- Different string configurations give same final state
- Matrix element to get a final state depends on area, A: $\mathcal{M} = \exp[(\imath \kappa - b/2)A]$ where κ is the string tension and b is the decay constant $\kappa \approx 1 \text{ GeV/fm}$ and $b \approx 0.3 \text{ GeV/fm}$
- So, must sum all the amplitudes But 3-π BEC incoherent ??

Transverse BEC

 Transverse momentum via tunneling, also related to b

Using **b** from tuning of JETSET, predict

 BEC, including genuine 3-particle BEC

• $r_{\rm t} < r_{\rm L}$

• $r(\pi^0\pi^0) < r(\pi^+\pi^+)$

2-particle BEC $\pi^0\pi^0$ and $\pi^\pm\pi^\pm$

- ▶ Naively expect same BEC for $\pi^0\pi^0$ and $\pi^{\pm}\pi^{\pm}$
- Hadronization with local charge conservation,
 e.g., string, ⇒ r₀₀ < r_{±±}
 But most π's from resonances dilutes this effect.
- Many measurements of BEC with charged π's
- but few with π^0 's

```
in e<sup>+</sup>e<sup>-</sup>: L3, P.L. B524 (2002) 55
OPAL, P.L. B559 (2003) 131
```

Selection:

OPAL	L3
$p_{\pi^0} > 1.0~{ m GeV}$ 2-jet, $T > 0.9$	$E(\pi^0) < 6.0 \text{ GeV}$ all events

2-particle BEC $\pi^0\pi^0$ and $\pi^{\pm}\pi^{\pm}$

2-particle BEC $\pi^0\pi^0$ and $\pi^\pm\pi^\pm$

		Expt.	$ ho_0$	<i>r</i> (fm)	λ
BEC from Z decays Gaussian parametrization	±±	OPAL	+	$1.00\substack{+0.03 \\ -0.10}$	$\textbf{0.76} \pm \textbf{0.06}$
		L3	mix	$\textbf{0.65} \pm \textbf{0.04}$	$\textbf{0.45} \pm \textbf{0.07}$
		L3 3- π	mix	$\textbf{0.65} \pm \textbf{0.07}$	$\textbf{0.47} \pm \textbf{0.08}$
		L3 E_{π} < 6 GeV	MC	$\textbf{0.46} \pm \textbf{0.01}$	$\textbf{0.29} \pm \textbf{0.03}$
	00	L3 E_{π} < 6 GeV	MC	0.31 ± 0.10	$\textbf{0.16} \pm \textbf{0.09}$
		OPAL $E_{\pi} > 1$, 2-jet	mix	$\textbf{0.59} \pm \textbf{0.09}$	0.55 ± 0.14

▶ L3: $r_{00} < r_{\pm\pm}$ and $\lambda_{00} < \lambda_{\pm\pm}$, both 1.5 σ

- ► ALEPH, DELPHI find r_{±±}(mix)/r_{±±}(+-) ≈ 0.68, 0.51 Applying this to OPAL r_{±±}, OPAL r₀₀ ≈ r_{±±} and λ₀₀ ≈ λ_{±±}
- ▶ L3 and OPAL $\pi^0\pi^0$ results disagree by 2σ
- ▶ Is the L3-OPAL $\pi^0 \pi^0$ difference due to E_{π} and/or 2-jet selection ???
- OPAL: MC shows that few of selected π^0 's are direct from string

Another source of $q\overline{q}$: W

 $e^+e^-{\rightarrow} W^+W^-{\rightarrow} q\overline{q}q\overline{q}$

If independent decay of W⁺W⁻, *i.e.*, no BEC between pions from different W's

 $\begin{array}{rcl} \rho_{4q}(p_1,p_2) = & \rho^+(p_1,p_2) & 1,2 \text{ from } W^+ \\ & + & \rho^-(p_1,p_2) & 1,2 \text{ from } W^- \\ & + & \rho^+(p_1)\rho^-(p_2) & 1 \text{ from } W^+, 2 \text{ from } W^- \\ & + & \rho^+(p_2)\rho^-(p_1) & 1 \text{ from } W^-, 2 \text{ from } W^+ \end{array}$

Assuming $\rho^+ = \rho^- = \rho_{2q}$, W separation ~ 0.1 fm $\rho_{4q}(p_1, p_2) = 2\rho_{2q}(p_1, p_2) + 2\rho_{2q}(p_1)\rho_{2q}(p_2)$

Inter-W BEC \implies W decays *not* independent \implies this relation does *not* hold.

Measure

- $\rho_{4q}(p_1, p_2)$ from $e^+e^- \rightarrow W^+W^- \rightarrow q\overline{q}q\overline{q}$
- $\rho_{2q}(p_1, p_2)$ from $e^+e^- \rightarrow W^+W^- \rightarrow q\overline{q}\ell\nu$
- $\rho_{2q}(p_1)\rho_{2q}(p_2)$ from $\rho_{mix}(p_1, p_2)$ obtained by mixing $\ell^+ \nu q \overline{q}$ and $q \overline{q} \ell^- \nu$ events

$W^+W^-{\rightarrow} q\overline{q}q\overline{q}$

Measure violation of $\rho_{4q}(Q) = 2\rho_{2q}(Q) + 2\rho_{mix}(Q)$

by

$$\begin{aligned} \Delta \rho(Q) &= \rho_{4q}(Q) - [2\rho_{2q}(p_1, p_2) + 2\rho_{mix}(p_1, p_2)] \\ D(Q) &= \frac{\rho_{4q}(Q)}{2\rho_{2q}(Q) + 2\rho_{mix}(Q)} \\ \delta_1(Q) &= \frac{\Delta \rho(Q)}{2\rho_{mix}(Q)} \end{aligned}$$

Compare to expectation of BE₃₂ model in PYTHIA

fraction of model seen

$$\begin{split} \delta_{\rm I}(Q) \mbox{ measures genuine inter-W BEC } & {\rm DELPHI: } 0.51 \pm 0.24 & \sim 2\sigma \\ {\rm average: } 0.17 \pm 0.13 & \sim 1\sigma \\ \mbox{ Conclusion: BEC (mostly) between π's from same string } \\ \mbox{ But event selection (4 separated jets) } \\ \mbox{ suppresses small Q for π pairs from different strings } \end{split}$$

W.J. Metzger

$W^+W^-{\rightarrow} q \overline{q} q \overline{q}$

DELPHI

But conclusions are tricky: Also effect in (+, -)

W.J. Metzger

Results - 'Classic' Parametrizations

 $R_2 = \gamma \cdot [1 + \lambda G] \cdot (1 + \epsilon Q)$

- Gaussian $G = \exp(-(rQ)^2)$
- Edgeworth expansion $G = \exp\left(-(rQ)^2\right) \cdot \left[1 + \frac{\kappa}{3!}H_3(rQ)\right]$ Gaussian if $\kappa = 0$ Fit: $\kappa = 0.71 \pm 0.06$
- symmetric Lévy $G = \exp(-|rQ|^{\alpha})$ $0 < \alpha \le 2$ Gaussian if $\alpha = 2$ Fit: $\alpha = 1.34 \pm 0.04$

Poor χ^2 . Edgeworth and Lévy better than Gaussian, but poor. Problem is the dip of R_2 in the region 0.6 < Q < 1.5 GeV

W.J. Metzger

20-22 Oct 2014

The au-model

T.Csörgő, W.Kittel, W.J.Metzger, T.Novák, Phys.Lett. B663(2008)214 T.Csörgő, J.Zimányi, Nucl.Phys.A517(1990)588

Assume avg. production point is related to momentum:

 $\overline{x}^{\mu}(p^{\mu}) = a \tau p^{\mu}$ where for 2-jet events, $a = 1/m_t$ $\tau = \sqrt{\overline{t}^2 - \overline{r}_z^2}$ is the "longitudinal" proper time and $m_t = \sqrt{E^2 - p_z^2}$ is the "transverse" mass

- ► Let $\delta_{\Delta}(x^{\mu} \overline{x}^{\mu})$ be dist. of prod. points about their mean, and $H(\tau)$ the dist. of τ . Then the emission function is $S(x, p) = \int_{0}^{\infty} d\tau H(\tau) \delta_{\Delta}(x - a\tau p) \rho_{1}(p)$
- ► In the plane-wave approx. $\rho_2(p_1, p_2) = \int d^4 x_1 d^4 x_2 S(x_1, p_1) S(x_2, p_2) \left(1 + \cos\left(\left[p_1 - p_2\right] [x_1 - x_2]\right)\right)$ ► Assume $\delta_{\Delta}(x^{\mu} - \overline{x}^{\mu})$ is very narrow — a δ -function. Then

$$R_2(p_1, p_2) = \mathbf{1} + \lambda \operatorname{Re}\widetilde{H}\left(\frac{a_1 Q^2}{2}\right) \widetilde{H}\left(\frac{a_2 Q^2}{2}\right), \quad \widetilde{H}(\omega) = \int \mathrm{d}\tau H(\tau) \exp(i\omega\tau)$$

BEC in the au-model

• Assume a Lévy distribution for $H(\tau)$ Since no particle production before the interaction, $H(\tau)$ is one-sided. Characteristic function is

 $\widetilde{H}(\omega) = \exp\left[-\frac{1}{2}\left(\Delta\tau|\omega|\right)^{\alpha} \left(1 - i\operatorname{sign}(\omega)\tan\left(\frac{\alpha\pi}{2}\right)\right) + i\,\omega\tau_0\right], \quad \alpha \neq 1$

where

- α is the index of stability;
- τ_0 is the proper time of the onset of particle production;
- $\Delta \tau$ is a measure of the width of the distribution.
- Then, R_2 depends on Q, a_1, a_2

$$B_{2}(Q, a_{1}, a_{2}) = \gamma \left\{ 1 + \lambda \cos\left[\frac{\tau_{0}Q^{2}(a_{1} + a_{2})}{2} + \tan\left(\frac{\alpha\pi}{2}\right)\left(\frac{\Delta\tau Q^{2}}{2}\right)^{\alpha}\frac{a_{1}^{\alpha} + a_{2}^{\alpha}}{2}\right] \\ \cdot \exp\left[-\left(\frac{\Delta\tau Q^{2}}{2}\right)^{\alpha}\frac{a_{1}^{\alpha} + a_{2}^{\alpha}}{2}\right]\right\} \cdot (1 + \epsilon Q)$$

BEC in the au-model

$$R_{2}(Q, \boldsymbol{a}_{1}, \boldsymbol{a}_{2}) = \gamma \left\{ 1 + \lambda \cos \left[\frac{\tau_{0} Q^{2} (\boldsymbol{a}_{1} + \boldsymbol{a}_{2})}{2} + \tan \left(\frac{\alpha \pi}{2} \right) \left(\frac{\Delta \tau Q^{2}}{2} \right)^{\alpha} \frac{\boldsymbol{a}_{1}^{\alpha} + \boldsymbol{a}_{2}^{\alpha}}{2} \right] \\ \cdot \exp \left[- \left(\frac{\Delta \tau Q^{2}}{2} \right)^{\alpha} \frac{\boldsymbol{a}_{1}^{\alpha} + \boldsymbol{a}_{2}^{\alpha}}{2} \right] \right\} \cdot (1 + \epsilon Q)$$

Simplification:

- effective radius, *R*, defined by $R^{2\alpha} = \left(\frac{\Delta \tau}{2}\right)^{\alpha} \frac{a_1^{\alpha} + a_2^{\alpha}}{2}$
- Particle production begins immediately, $\tau_0 = 0$
- ► Then $R_{2}(Q) = \gamma \left[1 + \lambda \cos \left(\left(R_{a} Q \right)^{2\alpha} \right) \exp \left(- \left(R Q \right)^{2\alpha} \right) \right] \cdot (1 + \epsilon Q)$ where $R_{a}^{2\alpha} = \tan \left(\frac{\alpha \pi}{2} \right) R^{2\alpha}$ Compare to sym. Lévy parametrization: $R_{2}(Q) = \gamma \left[1 + \lambda \qquad \exp \left[- |rQ|^{-\alpha} \right] \right] (1 + \epsilon Q)$
- R describes the BEC peak
- R_a describes the anticorrelation dip
- τ -model: both anticorrelation and BEC are related to 'width' $\Delta \tau$ of $H(\tau)$

Full au-model for 2-jet events

- τ -model predicts dependence on m_t , $R_2(Q, m_{t1}, m_{t2})$
- Parameters α , $\Delta \tau$, τ_0 are independent of m_t
- λ (strength of BEC) can depend on $m_{\rm t}$

Summary of au-model

τ-model with a one-sided Lévy proper-time distribution describes BEC well

- in simplified form it provides a new parametrization of $R_2(Q)$ for both 2- and 3-jet events,
- in full form for 2-jet events, $R_2(Q, m_{t1}, m_{t2})$
 - ► both *Q* and *m*_t-dependence described correctly
 - ► Note: we found $\Delta \tau$ to be independent of m_t $\Delta \tau$ enters R_2 as $\Delta \tau Q^2/m_t$ In Gaussian parametrization, r enters R_2 as r^2Q^2 Thus $\Delta \tau$ independent of m_t corresponds to $r \propto 1/\sqrt{m_t}$
- BUT, what about elongation?

Elongation?

- ► Previous results using fits of Gaussian or Edgeworth found (in LCMS) $r_{side}/r_L \approx 0.8$ for all events
- But we find that Gaussian and Edgeworth fit $R_2(Q)$ poorly
- τ -model predicts no elongation and fits the data well
- Could the elongation results be an artifact of an incorrect fit function? or is the τ-model in need of modification?
- So, we modify ad hoc the τ -model description to allow elongation

Elongation in the Simplified τ -model?

Elongation is real

consistent

_

Direct Test of **Q**²-only Dependence

$$1. \quad Q^2 = Q_{\rm LE}^2 + Q_{\rm side}^2 + Q_{\rm out}^2$$

2.
$$Q^2 = Q_L^2 + Q_{side}^2 + q_{out}^2$$

In τ -model, for case 1

where
$$Q_{LE}^2 = Q_L^2 - (\Delta E)^2$$

inv. boosts along thrust axis
where $q_{out} = Q_{out}$ boosted (β) along
out direction to rest frame of pair

$$\begin{aligned} R_{2}(Q_{\text{LE}}, Q_{\text{side}}, Q_{\text{out}}) &= \gamma \left[1 + \lambda \cos \left(\tan \left(\frac{\alpha \pi}{2} \right) B^{2\alpha} \right) \exp \left(-B^{2\alpha} \right) \right] b \\ \text{where } B^{2} &= R_{\text{LE}}^{2} Q_{\text{LE}}^{2} + R_{\text{side}}^{2} Q_{\text{side}}^{2} + R_{\text{out}}^{2} Q_{\text{out}}^{2} \\ b &= 1 + \epsilon_{\text{LE}} Q_{\text{LE}} + \epsilon_{\text{side}} Q_{\text{side}} + \epsilon_{\text{out}} Q_{\text{out}} \end{aligned}$$

and comparable expression for case 2, $R_2(Q_L, Q_{side}, q_{out})$

Direct Test of **Q**²-only Dependence

Compare fits with all 'radii' free

to fits with all 'radii' constrained to be equal

case 1	α	$\textbf{0.46} \pm \textbf{0.01}$	$\textbf{0.46} \pm \textbf{0.01}$	
	R _{LE} (fm)	$\textbf{0.84} \pm \textbf{0.04}$	$\textbf{0.71} \pm \textbf{0.04}$	
	$R_{ m side}/R_{ m LE}$	$\textbf{0.60} \pm \textbf{0.02}$	1	
	$R_{ m out}/R_{ m LE}$	0.986 ± 0.003	1	difference
	$\chi^2/{\sf DoF}$	14590/14538	14886/14540	$\Delta \chi^{2} = 296/2$
	CL	38%	2%	pprox 0
case 2	α	0.41 ± 0.01	0.44 ± 0.01	
	$R_{ m L}$ (fm)	$\textbf{0.96} \pm \textbf{0.05}$	$\textbf{0.82}\pm\textbf{0.04}$	
	$R_{ m side}/R_{ m L}$	$\textbf{0.62} \pm \textbf{0.02}$	1	
	$r_{ m out}/R_{ m L}$	$\textbf{1.23} \pm \textbf{0.03}$	1	difference
	$\chi^2/{\sf DoF}$	10966/10647	11430/10649	$\Delta \chi^2 = 464/2$
	CL	2%	10 ⁻⁷	pprox 0

Dependence on components of Q is strongly preferred.

Q Dependence

 $\begin{array}{l} R_2(\textit{Q}_{\rm L},\textit{Q}_{\rm side},\textit{q}_{\rm out}) \ \textit{vs.} \\ \textit{Q}_{\rm L} \ \text{for} \quad \textit{Q}_{\rm side},\textit{q}_{\rm out} < 0.08 \ \text{GeV} \\ \textit{Q}_{\rm side} \ \text{for} \quad \textit{Q}_{\rm L},\textit{q}_{\rm out} < 0.08 \ \text{GeV} \\ \textit{q}_{\rm out} \ \text{for} \quad \textit{Q}_{\rm L},\textit{q}_{\rm side} < 0.08 \ \text{GeV} \end{array}$

Dependence on components of Q is preferred.

 $r_{\rm out} > R_{\rm L} > R_{\rm side}$ Not azimuthally symmetric

Summary

- *R*₂ depends, to some degree, separately on components of *Q*, *i.e.*, on *Q*
- contradicts τ -model, where dependence is on Q, not on \vec{Q}
- Nevertheless, τ-model with a one-sided Lévy proper-time distribution succeeds:
 - Simplified, provides a new parametrization of R₂(Q) which works well
 - ► R₂(Q, m_{t1}, m_{t2}) successfully fits R₂ for 2-jet events both Q- and m_t-dependence described correctly
- But dependence of R_2 on components of Q implies τ -model is in need of modification

Perhaps, a should be different for transverse/longitudinal

 $\overline{x}^{\mu}(p^{\mu}) = a \tau p^{\mu}, \qquad a = 1/m_{t}$ for 2-jet

Emission Function of 2-jet Events.

In the $\tau\text{-model},$ the emission function in configuration space is

$$S(\vec{x},\tau) = \frac{1}{\overline{n}} \frac{\mathrm{d}^4 n}{\mathrm{d}\tau \mathrm{d}\vec{x}} = \frac{1}{\overline{n}} \left(\frac{m_{\mathrm{t}}}{\tau}\right)^3 H(\tau) \rho_1 \left(\vec{p} = \frac{m_{\mathrm{t}}\vec{x}}{\tau}\right)$$

For simplicity, assume $\rho_1(\vec{p}) = \rho_y(y)\rho_{p_t}(p_t)/\overline{n}$

 $(\rho_1, \rho_y, \rho_{p_t}$ are inclusive single-particle distributions) Then $S(\vec{x}, \tau) = \frac{1}{\vec{p}^2} H(\tau) G(\eta) I(r)$ Strongly correlated $x, p \Longrightarrow$

 $\begin{array}{l} \eta = \mathbf{y} \qquad \mathbf{r} = \mathbf{p}_{\mathrm{t}} \tau / \mathbf{m}_{\mathrm{t}} \\ \mathbf{G}(\eta) = \rho_{\mathrm{y}}(\eta) \quad \mathbf{I}(\mathbf{r}) = \left(\frac{m_{\mathrm{t}}}{\tau}\right)^3 \rho_{\mathrm{p}_{\mathrm{t}}}(\mathbf{r} \mathbf{m}_{\mathrm{t}} / \tau) \end{array}$

So, using experimental $\rho_y(y)$, $\rho_{p_t}(p_t)$ dists. and $H(\tau)$ from BEC fits, we can reconstruct *S*.

Emission Function of 2-jet Events.

"Boomerang" shape

Integrating over r,

Particle production is close to the light-cone

Emission Function of 2-jet Events.

Particle production is close to the light-cone

- LLA parton shower leads to a fractal in momentum space fractal dimension, α, is related to α_s
- Lévy dist. arises naturally from a fractal, or random walk, or anomalous diffusion
- ► strong momentum-space/configuration space correlation of τ -model \implies fractal in configuration space with same α
- generalized LPHD suggests particle dist. has same properties as gluon dist.
- Putting this all together leads to

$$\alpha_{\rm s}=\frac{2\pi}{3}\alpha^2$$

- Using our value of $\alpha = 0.47 \pm 0.04$ yields $\alpha_s = 0.46 \pm 0.04$
- ► This value is reasonable for a scale of 1–2 GeV, where production of hadrons takes place *cf.*, from τ decays $\alpha_s(m_\tau \approx 1.8 \text{ GeV}) = 0.34 \pm 0.03$

Gustafson et al.

Metzler and Klafter, Phys.Rep.339(2000)1.

Csörgő et al.

PDG

20-22 Oct 2014

p. 86

A Comment

- τ -model is closely related to a string picture
 - strong x-p correlation
 - fractal Lévy distribution
- CMS finds BEC in pp at 0.9 and 7 TeV are described by simplified τ-model formula

_

suggests that BEC in pp is (mostly) from string fragmentation

Summary

- ► $R_2(Q)$, not $R_2(\vec{Q})$ is a reasonably good approximation
- But sym. Gaussian, Edgeworth, Lévy R₂(Q) do not fit well
- - Simplified, it provides a new parametrization of R₂:
 - ► Works well with eff. *R*, *R*_a for all events;
 - ▶ with only eff. *R* for 2-jet events.
 - R₂(Q, m_t) successfully fits R₂ for 2-jet events
 - ▶ both *Q* and *m*t-dependence described correctly
 - ► Note: we found $\Delta \tau$ to be independent of m_t $\Delta \tau$ enters R_2 as $\Delta \tau Q^2/m_t$ In Gaussian parametrization, *r* enters R_2 as r^2Q^2 Thus $\Delta \tau$ independent of m_t corresponds to $r \propto 1/\sqrt{m_t}$
- Emission function shaped like a boomerang in z-t and an expanding ring in x-y Particle production is close to the light-cone

Multiplicity/Jet/rapidity dependence in τ -model

Use simplified τ -model, $\tau_0 = 0$ to investigate multiplicity and jet dependence

To stabilize fits against large correlation of parameters α and R, fix $\alpha = 0.44$

Jets

Jets — JADE and Durham algorithms

- force event to have 3 jets:
 - normally stop combining when all 'distances' between jets are > y_{cut}
 - instead, stop combining when there are only 3 jets left
 - y₂₃ is the smallest 'distance' between any 2 of the 3 jets
- y₂₃ is value of y_{cut} where number of jets changes from 2 to 3

define regions of $y_{23}^{\rm D}$ (Durham):

 $\begin{array}{c} \underset{(a,b)}{(a,b)}{(a,b)}{\underset{(a,b)}{\underset{(a,b)}{\underset{(a,b)}{\underset{(a,b)}{$

 $y_{23}^{\rm D} < 0.006$ two-jet 0.006 < $y_{23}^{\rm D}$ three-jet

Multiplicity dependence in au-model

R increases with multiplicity

Multiplicity dependence in au-model

Using simplified
$$\tau$$
-model, $\alpha = 0.44$, $\tau_0 = 0$

L3 PRELIMINARY

R increases with multiplicity

R not constant \implies R from fit is an average But maybe not the average we want To get R at avg. multiplicity of sample, should weight pairs by $1/N_{\text{pairs in event}}$ or calculate average multiplicity as

$$\frac{\sum_{\text{events}} N_{\text{event}} N_{\text{pairs in event}}}{N_{\text{pairs}}}$$

But the difference is small So I ignore it.

Multiplicity/Jet dependence in au-model

 R increases with N_{ch} and with number of jets whereas OPAL found r_{n-jet} approx. indep. of N_{ch}

- Increase of R with N_{ch} similar for 2- and 3-jet events
- However, $R_{3-jet} \approx R_{all}$

Multiplicity/Jet dependence in au-model

- $\lambda_{3-jet} > \lambda_{2-jet}$ opposite of OPAL
- λ initially decreases with N_{ch}
- then λ_{all} and λ_{3-jet} approx. constant while λ_{2-jet} continues to decrease, but more slowly
- ▶ whereas OPAL found λ_{all} decreasing approx. linearly with N_{ch}

$m_{\rm t}$ dependence in au-model

Using simplified τ -model, $\alpha = 0.44$, $\tau_0 = 0$

and cutting on $p_t = 0.5 \,\text{GeV} (m_t = 0.52 \,\text{GeV})$

 R decreases with m_t for all N_{ch} smallest when both particles at high p_t

$m_{\rm t}$ dependence in au-model

Using simplified τ -model, $\alpha = 0.44$, $\tau_0 = 0$

and cutting on $p_t = 0.5 \text{ GeV}$ ($m_t = 0.52 \text{ GeV}$)

 λ decreases with m_t smallest when both particles at high p_t

On what do r, R, λ depend?

- r, R increase with N_{ch}
- r, R increase with N_{jets}
- for fixed number of jets, *R* increases with N_{ch} but *r* is constant (OPAL)
- r, R decrease with m_t
- Although m_t, N_{ch}, N_{jets} are correlated, each contributes to the increase/decrease of R but only m_t, N_{jets} contribute to the increase/decrease of r
- λ decreases with N_{ch}, N_{jets} though somewhat differently for τ-model, Gaussian (OPAL)
- λ decreases with m_t

Jets and Rapidity order jets by energy: $E_1 > E_2 > E_3$ Note: thrust only defines axis $|\vec{n}_T|$, not its direction.

Choose positive thrust direction such that jet 1 is in positive thrust hemisphere

Jets and Rapidity – simplified au-model – L3 preliminary

au-model elongation – L3 preliminary

- Durham, JADE agree
- ► Elongation decreases with y₂₃, R_{side} ≈ 0.5–0.9 R_{long}
- agrees with Gaussian/Edgeworth