Bose-Einstein Correlations in $\mathrm{e}^{+} \mathrm{e}^{-}$annihilation (a review)

W.J. Metzger

Radboud University Nijmegen

LHCb Workshop on Quantum Correlations, etc. CERN
20-22 October 2014

Introduction - BEC

$$
R_{2}=\frac{\rho_{2}\left(\rho_{1}, \rho_{2}\right)}{\rho_{1}\left(\rho_{1}\right) \rho_{1}\left(\rho_{2}\right)} \Longrightarrow \frac{\rho_{2}(Q)}{\rho_{0}(Q)}
$$

$\rho_{0}=2-$ particle density of 'reference sample'

Assuming particles produced incoherently with spatial source density $S(x)$,

$$
R_{2}(Q)=1+\lambda|\widetilde{S}(Q)|^{2}
$$

where $\widetilde{S}(Q)=\int \mathrm{d} x e^{i Q x} S(x)$

- Fourier transform of $S(x)$
$\lambda=1 \quad-\quad \lambda=0$ if production completely coherent

Assuming $S(x)$ is a spherically symmetric Lévy stable distribution with radius r, index of stability $\alpha(\alpha=2$ for a Gaussian $) \Longrightarrow$

$$
R_{2}(Q)=1+\lambda \mathrm{e}^{-(Q r)^{\alpha}}
$$

Problems with this approach

Assumes

- incoherent average over source λ tries to account for
- partial coherence
- multiple (distinguishable) sources, long-lived resonances
- pion purity
- spherical (radius r) Lévy (or Gauss) distribution of particle emitters seems unlikely in $\mathrm{e}^{+} \mathrm{e}^{-}$annihilation - jets
- static source, i.e., no t-dependence certainly wrong

Final-State Interactions

1. Coulomb

- form not certain
(usually use Gamow factor) overcorrects!
- for R_{2}, a few \% in lowest Q bin
- double if,+ ref. sample
- often neglected for R_{2}
- but not negligible for R_{3}

2. Strong interaction $-S=0 \pi \pi$ phase shifts can be incorporated together with Coulomb into the formula for R_{2}

Osada, Sano, Biyajima, Z.Phys. C72(1996)285)
tends to increase λ, decrease r Not used by LEP experiments

Reference Sample

Common choices:

1. + , - pairs

But different resonances than,++
2. Mixed events - pair particles from different events
But destroys all correlations, not just BEC
correct by MC (no BEC):

$$
\rho_{0} \Longrightarrow \rho_{0} \frac{\rho_{2}^{\mathrm{MC}}}{\rho_{0}^{\mathrm{MC}}}
$$

$$
R_{2}=\frac{\rho_{2}}{\rho_{0}} \Longrightarrow \frac{\rho_{2}}{\rho_{0}} / \frac{\rho_{2}^{\mathrm{MC}}}{\rho_{0}^{\mathrm{MC}}}
$$

'double ratio'

- But is the MC correct?
ref. sample, ρ_{0}, from,+- pairs
R_{2}

Long-range correlations inadequately treated in ref. sample:

Results from $R_{2}, \sqrt{\boldsymbol{s}}=M_{Z}$

- correction for π purity increases λ
- mixed ref. gives smaller λ, r than +- ref. - Average means little

$\sqrt{\boldsymbol{s}}$ dependence of \boldsymbol{r}

No evidence for \sqrt{s} dependence

Mass dependence of $\boldsymbol{r}-\mathrm{BEC}$ and FDC

No evidence for $r \sim 1 / \sqrt{m}$

$$
r(\text { mesons })>r(\text { baryons })
$$

$r_{\pi-\pi} \approx r_{\mathrm{K}-\mathrm{K}}$

Disclaimer

- There are many BEC measurements with pions.
- There are also BEC measurements with kaons, and FDC measurements with protons, lambdas, but fewer.
- From here on I will only treat pion results.

Multiplicity/Jet dependence of $\boldsymbol{\lambda}, \boldsymbol{r}$

Multiplicity dependence appears to be largely due to number of jets.

Elongation of the source

The usual parametrization assumes a symmetric Gaussian source But, there is no reason to expect this symmetry in $\mathrm{e}^{+} \mathrm{e}^{-} \rightarrow \mathrm{q} \overline{\mathrm{q}}$.
Therefore, do a 3-dim. analysis in the Longitudinal Center of Mass System aka Longitudinal Co-Moving System

LCMS:

Boost each π-pair along event axis, e.g., thrust axis

$$
\begin{aligned}
& p_{\mathrm{L} 1}=-p_{\mathrm{L} 2} \\
& \vec{p}_{1}+\vec{p}_{2} \text { defines 'out' axis } \\
& Q_{\text {side }} \perp\left(Q_{\mathrm{L}}, Q_{\text {out }}\right)
\end{aligned}
$$

the LCMS

Advantages of LCMS:

$$
\begin{aligned}
Q^{2} & =Q_{\mathrm{L}}^{2}+Q_{\text {side }}^{2}+Q_{\text {out }}^{2}-(\Delta E)^{2} \\
& =Q_{\mathrm{L}}^{2}+Q_{\text {side }}^{2}+Q_{\text {out }}^{2}\left(1-\beta^{2}\right)
\end{aligned}
$$

$$
\text { where } Q_{i}^{2}=\left(p_{i 1}-p_{i 2}\right)^{2}
$$

$$
\text { where } \beta \equiv \frac{p_{\text {out } 1}+p_{\text {out } 2}}{E_{1}+E_{2}}
$$

Thus, the energy difference, and therefore the difference in emission time of the pions couples only to the out-component, $Q_{\text {out }}$.
Thus,
Q_{L} and $Q_{\text {side }}$ reflect only spatial dimensions of the source
$Q_{\text {out }}$ reflects a mixture of spatial and temporal dimensions.
Assuming axial symmetry, source is elliptically shaped with

- r_{L} the logitudinal radius
- $r_{\text {side }}$ the transverse radius

Elongation Results

			Gauss Edgeworth	2-D $r_{\mathrm{t}} / r_{\mathrm{L}}$	3-D $r_{\text {side }} / r_{\mathrm{L}}$
DELPHI	mixed	2-jet	Gauss	$0.62 \pm 0.02 \pm 0.05$	-
ALEPH	mixed	2-jet	Gauss	$0.61 \pm 0.01 \pm 0 . ? ?$	-
	+- 2-jet mixed +- 2-jet 2-jet	Edgeworth	$0.91 \pm 0.02 \pm 0 . ? ?$	-	
Edgeworth	$0.68 \pm 0.01 \pm 0 . ? ?$	-			
OPAL	+-	2-jet	Gauss	-	$0.84 \pm 0.02 \pm 0 . ? ?$

~20\% elongation along thrust axis (ZEUS finds similar results in ep)

OPAL
Elongation larger for narrower jets

$3 \pi \mathrm{BEC}$

Assuming static source density $f(x)$ in space-time, $G(Q)=\int \mathrm{d} x e^{i \alpha x} f(x)=G e^{i \phi}$

$$
R_{2}(Q)=\frac{\rho_{2}(Q)}{\rho_{0}(Q)}=1+\lambda|G(Q)|^{2}
$$

Analog of Q for 3 particles: $\left(Q_{3}^{2}=M_{123}^{2}-9 m_{\pi}^{2}=Q_{12}^{2}+Q_{23}^{2}+Q_{13}^{2}\right)$

$$
\begin{aligned}
R_{3}\left(Q_{3}\right)=\frac{\rho_{3}\left(Q_{3}\right)}{\rho_{0}\left(Q_{3}\right)} & =1+\underbrace{\lambda\left(\left|G\left(Q_{12}\right)\right|^{2}+\left|G\left(Q_{23}\right)\right|^{2}+\left|G\left(Q_{13}\right)\right|^{2}\right)}_{\text {from 2-particle BEC }} \\
& +\underbrace{2 \lambda^{1.5} \Re\left\{G\left(Q_{13}\right) G\left(Q_{23}\right) G\left(Q_{13}\right)\right\}}_{\text {from genuine 3-particle BEC }} \\
R_{3}^{\text {genuine }} & =1+2 \lambda^{1.5} \Re\left\{G\left(Q_{12}\right) G\left(Q_{23}\right) G\left(Q_{13}\right)\right\} \\
\omega & =\frac{R_{3}^{\text {genuine }}\left(Q_{3}\right)-1}{2 \sqrt{\left(R_{2}\left(Q_{12}\right)-1\right)\left(R_{2}\left(Q_{23}\right)-1\right)\left(R_{2}\left(Q_{13}\right)-1\right)}} \\
& =\cos \left(\phi_{12}+\phi_{23}+\phi_{13}\right) \\
\omega & =\frac{R_{3}^{\text {genuine }}\left(Q_{3}\right)-1}{2 \sqrt{R_{2}\left(Q_{3}\right)-1} \quad \text { if } f(x) \text { is Gaussian }}
\end{aligned}
$$

If fully incoherent, $\phi_{i j} \neq 0$ only if $f(x)$ asymmetric and $Q_{i j}>0$
Completely incoherent particle production implies $\quad \lambda=1$

3π BEC

L3: | from | | Gaussian | Edgeworth |
| :--- | :---: | :---: | :---: |
| R_{2} | λ | $0.45 \pm 0.06 \pm 0.03$ | $0.72 \pm 0.08 \pm 0.03$ |
| $R_{3}^{\text {genuine }}$ | | $0.47 \pm 0.07 \pm 0.03$ | $0.75 \pm 0.10 \pm 0.03$ |
| R_{2} | r | $0.65 \pm 0.03 \pm 0.03$ | $0.74 \pm 0.06 \pm 0.02$ |
| $R_{3}^{\text {senuine }}$ | (fm) | $0.65 \pm 0.06 \pm 0.03$ | $0.72 \pm 0.08 \pm 0.03$ |

Data consistent with $\omega=1$, i.e., fully incoherent.
Values of λ, r from R_{2} and $R_{3}^{\text {genuine }}$ are consistent.

expt.		λ	r
MARK-II	R_{2}	$0.45 \pm 0.03 \pm 0.04$	$1.01 \pm 0.09 \pm 0.06$
$(29 \mathrm{GeV})$	R_{3}	$0.54 \pm 0.06 \pm 0.05$	$0.90 \pm 0.06 \pm 0.06$
DELPHI	R_{2}	$0.24 \pm 0.02 \pm 0 . ? ?$	$0.47 \pm 0.03 \pm 0 . ? ?$
	$R_{3}^{\text {genuine }}$	$0.43 \pm 0.05 \pm 0.07$	$0.93 \pm 0.06 \pm 0.04$
OPAL	R_{2}	$0.58 \pm 0.01 \pm 0 . ? ?$	$0.79 \pm 0.02 \pm 0 . ? ?$
	$R_{3}^{\text {genuine }}$	$0.63 \pm 0.01 \pm 0.03$	$0.82 \pm 0.01 \pm 0.04$

Values of λ, r from R_{2} and R_{3} are fairly consistent.

BEC in String Models

Longitudinal BEC

- Different string configurations give same final state
- Matrix element to get a final state depends on area, A : $\mathcal{M}=\exp [(\imath \kappa-b / 2) A]$ where κ is the string tension and b is the decay constant $\kappa \approx 1 \mathrm{GeV} / \mathrm{fm}$ and $b \approx 0.3 \mathrm{GeV} / \mathrm{fm}$
- So, must sum all the amplitudes But $3-\pi$ BEC incoherent ??

Transverse BEC

- Transverse momentum via tunneling, also related to b

Using b from tuning of JETSET, predict

- BEC,
including genuine 3-particle BEC
- $r_{\mathrm{t}}<r_{\mathrm{L}}$
- $r\left(\pi^{0} \pi^{0}\right)<r\left(\pi^{+} \pi^{+}\right)$

2-particle BEC $\pi^{0} \pi^{0}$ and $\pi^{ \pm} \pi^{ \pm}$

- Naively expect same BEC for $\pi^{0} \pi^{0}$ and $\pi^{ \pm} \pi^{ \pm}$
- Hadronization with local charge conservation, e.g., string, $\Longrightarrow r_{00}<r_{ \pm \pm}$

But most π 's from resonances - dilutes this effect.

- Many measurements of BEC with charged π 's
- but few with π^{0} 's

$$
\begin{aligned}
& \text { in } \mathrm{e}^{+} \mathrm{e}^{-} \text {: L3, P.L. B524 (2002) } 55 \\
& \quad \text { OPAL, P.L. B559 (2003) } 131
\end{aligned}
$$

Selection:

OPAL	L3
$p_{\pi^{0}}>1.0 \mathrm{GeV}$	$E\left(\pi^{0}\right)<6.0 \mathrm{GeV}$
2 -jet, $T>0.9$	all events

2-particle BEC $\pi^{0} \pi^{0}$ and $\pi^{ \pm} \pi^{ \pm}$

	Expt.	ρ_{0}	$r(\mathrm{fm})$	λ
	Exp	+-	$1.00+0.03$	0.76 ± 0.06
BEC from Z decays	OPAL	L3	mix	0.65 ± 0.04
Gaussian	L3	0.45 ± 0.07		
parametrization	L3 3- π	mix	0.65 ± 0.07	0.47 ± 0.08
	L3 $E_{\pi}<6 \mathrm{GeV}$	MC	0.46 ± 0.01	0.29 ± 0.03
00 L3 $E_{\pi}<6 \mathrm{GeV}$	MC	0.31 ± 0.10	0.16 ± 0.09	
	OPAL $E_{\pi}>1,2$-jet	mix	0.59 ± 0.09	0.55 ± 0.14

- L3: $r_{00}<r_{ \pm \pm}$and $\lambda_{00}<\lambda_{ \pm \pm}$, both 1.5σ
- ALEPH, DELPHI find $r_{ \pm \pm}(\mathrm{mix}) / r_{ \pm \pm}(+-) \approx 0.68,0.51$

Applying this to OPAL $r_{ \pm \pm}$, OPAL $r_{00} \approx r_{ \pm \pm}$and $\lambda_{00} \approx \lambda_{ \pm \pm}$

- L3 and OPAL $\pi^{0} \pi^{0}$ results disagree by 2σ
- Is the L3-OPAL $\pi^{0} \pi^{0}$ difference due to E_{π} and/or 2-jet selection ???
- OPAL: MC shows that few of selected π^{0} 's are direct from string

Another source of $q \bar{q}: W$

$B E(W)=B E(Z \rightarrow$ light quarks $)$

$$
\mathrm{e}^{+} \mathrm{e}^{-} \rightarrow \mathrm{W}^{+} \mathrm{W}^{-} \rightarrow \mathrm{q} \overline{\mathrm{q}} \mathrm{q} \overline{\mathrm{q}}
$$

If independent decay of $\mathrm{W}^{+} \mathrm{W}^{-}$,
i.e., no BEC between pions from different W's

$$
\begin{array}{rlrl}
\rho_{4 \mathrm{q}}\left(p_{1}, p_{2}\right) & =\rho^{+}\left(p_{1}, p_{2}\right) & & 1,2 \text { from } \mathrm{W}^{+} \\
& +\rho^{-}\left(p_{1}, p_{2}\right) & & 1,2 \text { from } \mathrm{W}^{-} \\
& +\rho^{+}\left(p_{1}\right) \rho^{-}\left(p_{2}\right) & & 1 \text { from } \mathrm{W}^{+}, 2 \text { from } \mathrm{W}^{-} \\
& +\rho^{+}\left(p_{2}\right) \rho^{-}\left(p_{1}\right) & 1 \text { from } \mathrm{W}^{-}, 2 \text { from } \mathrm{W}^{+}
\end{array}
$$

Assuming $\rho^{+}=\rho^{-}=\rho_{2 \mathrm{q}}$, W separation $\sim 0.1 \mathrm{fm}$

$$
\rho_{4 \mathrm{q}}\left(p_{1}, p_{2}\right)=2 \rho_{2 \mathrm{q}}\left(p_{1}, p_{2}\right)+2 \rho_{2 \mathrm{q}}\left(p_{1}\right) \rho_{2 \mathrm{q}}\left(p_{2}\right)
$$

Inter-W BEC \Longrightarrow W decays not independent
\Longrightarrow this relation does not hold.
Measure

- $\rho_{4 q}\left(p_{1}, p_{2}\right)$ from $\mathrm{e}^{+} \mathrm{e}^{-} \rightarrow \mathrm{W}^{+} \mathrm{W}^{-} \rightarrow \mathrm{q} \overline{\mathrm{q} q \bar{q}}$
- $\rho_{2 \mathrm{q}}\left(p_{1}, p_{2}\right)$ from $\mathrm{e}^{+} \mathrm{e}^{-} \rightarrow \mathrm{W}^{+} \mathrm{W}^{-} \rightarrow \mathrm{q} \bar{q} \ell \nu$
- $\rho_{2 q}\left(p_{1}\right) \rho_{2 q}\left(p_{2}\right)$ from $\rho_{\text {mix }}\left(p_{1}, p_{2}\right)$ obtained by mixing $\ell^{+} \nu \mathrm{q} \overline{\mathrm{q}}$ and $\mathrm{q} \overline{\mathrm{q}} \ell^{-} \nu$ events

$\mathrm{W}^{+} \mathrm{W}^{-} \rightarrow \mathrm{q} \overline{\mathrm{q}} \mathrm{q} \overline{\mathrm{q}}$

Measure violation of

$$
\begin{aligned}
& \qquad \rho_{4 \mathrm{q}}(Q)=2 \rho_{2 \mathrm{q}}(Q)+2 \rho_{\text {mix }}(Q) \\
& \text { by } \\
& \Delta \rho(Q)=\rho_{4 \mathrm{q}}(Q)-\left[2 \rho_{2 \mathrm{q}}\left(p_{1}, p_{2}\right)+2 \rho_{\text {mix }}\left(p_{1}, p_{2}\right)\right] \\
& D(Q)=\frac{\rho_{4 \mathrm{q}}(Q)}{2 \rho_{2 \mathrm{q}}(Q)+2 \rho_{\text {mix }}(Q)} \\
& \delta_{\mathrm{I}}(Q)=\frac{\Delta \rho(Q)}{2 \rho_{\text {mix }}(Q)}
\end{aligned}
$$

Compare to expectation of BE_{32} model in PYTHIA

$\delta_{\mathrm{I}}(Q)$ measures genuine inter-W BEC

$$
\begin{array}{cc}
\text { DELPHI: } 0.51 \pm 0.24 & \sim 2 \sigma \\
\text { average: } 0.17 \pm 0.13 & \sim 1 \sigma
\end{array}
$$

Conclusion: BEC (mostly) between π 's from same string But event selection (4 separated jets) suppresses small Q for π pairs from different strings

Results - ‘Classic’ Parametrizations

$R_{2}=\gamma \cdot[1+\lambda G] \cdot(1+\epsilon Q)$

- Gaussian

$$
G=\exp \left(-(r Q)^{2}\right)
$$

- Edgeworth expansion
$G=\exp \left(-(r Q)^{2}\right) \cdot\left[1+\frac{\kappa}{3!} H_{3}(r Q)\right]$
Gaussian if $\kappa=0$
Fit: $\kappa=0.71 \pm 0.06$
- symmetric Lévy

$$
\begin{aligned}
& G=\exp \left(-|r Q|^{\alpha}\right) \\
& 0<\alpha \leq 2
\end{aligned}
$$

Gaussian if $\alpha=2$
Fit: $\alpha=1.34 \pm 0.04$

Gauss Edgew Lévy
CL: $10^{-15} \quad 10^{-5} \quad 10^{-8}$

Poor χ^{2}. Edgeworth and Lévy better than Gaussian, but poor.
Problem is the dip of R_{2} in the region $0.6<Q<1.5 \mathrm{GeV}$

The $\boldsymbol{\tau}$-model

- Assume avg. production point is related to momentum:

$$
\bar{x}^{\mu}\left(p^{\mu}\right)=a \tau p^{\mu}
$$

where for 2-jet events, $a=1 / m_{t}$

$$
\tau=\sqrt{\tilde{t}^{2}-\bar{r}_{z}^{2}} \text { is the "longitudinal" proper time }
$$

$$
\text { and } m_{t}=\sqrt{E^{2}-p_{z}^{2}} \text { is the "transverse" mass }
$$

- Let $\delta_{\Delta}\left(x^{\mu}-\bar{x}^{\mu}\right)$ be dist. of prod. points about their mean, and $H(\tau)$ the dist. of τ. Then the emission function is

$$
S(x, p)=\int_{0}^{\infty} \mathrm{d} \tau H(\tau) \delta_{\Delta}(x-a \tau p) \rho_{1}(p)
$$

- In the plane-wave approx.

$$
\rho_{2}\left(p_{1}, p_{2}\right)=\int \mathrm{d}^{4} x_{1} \mathrm{~d}^{4} x_{2} S\left(x_{1}, p_{1}\right) S\left(x_{2}, p_{2}\right)\left(1+\cos \left(\left[p_{1}-p_{2}\right]\left[x_{1}-x_{2}\right]\right)\right)
$$

- Assume $\delta_{\Delta}\left(x^{\mu}-\bar{x}^{\mu}\right)$ is very narrow - a δ-function. Then

$$
R_{2}\left(p_{1}, p_{2}\right)=1+\lambda \operatorname{Re} \widetilde{H}\left(\frac{a_{1} Q^{2}}{2}\right) \widetilde{H}\left(\frac{a_{2} Q^{2}}{2}\right), \quad \widetilde{H}(\omega)=\int \mathrm{d} \tau H(\tau) \exp (i \omega \tau)
$$

BEC in the $\boldsymbol{\tau}$-model

- Assume a Lévy distribution for $H(\tau)$ Since no particle production before the interaction, $H(\tau)$ is one-sided.
Characteristic function is

$$
\widetilde{H}(\omega)=\exp \left[-\frac{1}{2}(\Delta \tau|\omega|)^{\alpha}\left(1-i \operatorname{sign}(\omega) \tan \left(\frac{\alpha \pi}{2}\right)\right)+i \omega \tau_{0}\right], \quad \alpha \neq 1
$$

where

- α is the index of stability;
- τ_{0} is the proper time of the onset of particle production;
- $\Delta \tau$ is a measure of the width of the distribution.
- Then, R_{2} depends on Q, a_{1}, a_{2}

$$
\begin{aligned}
R_{2}\left(Q, a_{1}, a_{2}\right)= & \gamma\left\{1+\lambda \cos \left[\frac{\tau_{0} Q^{2}\left(a_{1}+a_{2}\right)}{2}+\tan \left(\frac{\alpha \pi}{2}\right)\left(\frac{\Delta \tau Q^{2}}{2}\right)^{\alpha} \frac{a_{1}^{\alpha}+a_{2}^{\alpha}}{2}\right]\right. \\
& \left.\cdot \exp \left[-\left(\frac{\Delta \tau Q^{2}}{2}\right)^{\alpha} \frac{a_{1}^{\alpha}+a_{2}^{\alpha}}{2}\right]\right\} \cdot(1+\epsilon Q)
\end{aligned}
$$

BEC in the τ-model

$$
\begin{array}{r}
R_{2}\left(Q, a_{1}, a_{2}\right)=\gamma\left\{1+\lambda \cos \left[\frac{\tau_{0} Q^{2}\left(a_{1}+a_{2}\right)}{2}+\tan \left(\frac{\alpha \pi}{2}\right)\left(\frac{\Delta \tau Q^{2}}{2}\right)^{\alpha} \frac{a_{1}^{\alpha}+a_{2}^{\alpha}}{2}\right]\right. \\
\\
\left.\cdot \exp \left[-\left(\frac{\Delta \tau Q^{2}}{2}\right)^{\alpha} \frac{a_{1}^{\alpha}+a_{2}^{\alpha}}{2}\right]\right\} \cdot(1+\epsilon Q)
\end{array}
$$

Simplification:

- effective radius, R, defined by $R^{2 \alpha}=\left(\frac{\Delta \tau}{2}\right)^{\alpha} \frac{a_{1}^{\alpha}+a_{2}^{\alpha}}{2}$
- Particle production begins immediately, $\tau_{0}=0$
- Then

$$
R_{2}(Q)=\gamma\left[1+\lambda \cos \left(\left(R_{\mathrm{a}} Q\right)^{2 \alpha}\right) \exp \left(-(R Q)^{2 \alpha}\right)\right] \cdot(1+\epsilon Q)
$$

where $R_{a}^{2 \alpha}=\tan \left(\frac{\alpha \pi}{2}\right) R^{2 \alpha}$
Compare to sym. Lévy parametrization:

$$
R_{2}(Q)=\gamma\left[1+\lambda \quad \exp \left[-|r Q|^{\alpha}\right]\right](1+\epsilon Q)
$$

- R describes the BEC peak
- R_{a} describes the anticorrelation dip
- τ-model: both anticorrelation and BEC are related to 'width' $\Delta \tau$ of $H(\tau)$

2-jet Results on Simplified τ-model from Lз Z decay

Elongation?

- Previous results using fits of Gaussian or Edgeworth found (in LCMS) $r_{\text {side }} / r_{\mathrm{L}} \approx 0.8$ for all events
- But we find that Gaussian and Edgeworth fit $R_{2}(Q)$ poorly
- τ-model predicts no elongation and fits the data well
- Could the elongation results be an artifact of an incorrect fit function? or is the τ-model in need of modification?
- So, we modify ad hoc the τ-model description to allow elongation

Elongation in the Simplified τ-model?

LCMS: $\quad Q^{2}=Q_{\mathrm{L}}^{2}+Q_{\text {side }}^{2}+Q_{\text {out }}^{2}-(\Delta E)^{2}$

$$
=Q_{\mathrm{L}}^{2}+Q_{\text {side }}^{2}+Q_{\text {out }}^{2}\left(1-\beta^{2}\right), \quad \beta=\frac{p_{1 \text { out }}+p_{\text {out }}}{E_{1}+E_{2}}
$$

Replace $\quad R^{2} Q^{2} \Longrightarrow A^{2}=R_{\mathrm{L}}^{2} Q_{\mathrm{L}}^{2}+R_{\text {side }}^{2} Q_{\text {side }}^{2}+\rho_{\text {out }}^{2} Q_{\text {out }}^{2}$
Then in τ-model,

$$
\begin{aligned}
R_{2}\left(Q_{\mathrm{L}}, Q_{\text {side }}, Q_{\text {out }}\right)=\gamma & {\left[1+\lambda \cos \left(\tan \left(\frac{\alpha \pi}{2}\right) A^{2 \alpha}\right) \exp \left(-A^{2 \alpha}\right)\right] } \\
& \cdot\left(1+\epsilon_{\mathrm{L}} Q_{\mathrm{L}}+\epsilon_{\text {side }} Q_{\text {side }}+\epsilon_{\text {out }} Q_{\text {out }}\right)
\end{aligned}
$$

for 2-jet events:
τ-model
Edgeworth
$\begin{array}{ccc}R_{\text {side }} / R_{\mathrm{L}}=0.61 \pm 0.02 & 14847 / 14921 & 66 \% \\ r_{\text {side }} / r_{\mathrm{L}}=0.64 \pm 0.02 & 14891 / 14919 & 56 \% \\ \text { consistent } & & \end{array}$
Elongation is real

- LLA parton shower leads to a fractal in momentum space fractal dimension, α, is related to α_{s}
- Lévy dist. arises naturally from a fractal, or random walk, or anomalous diffusion
- strong momentum-space/configuration space correlation of τ-model \Longrightarrow fractal in configuration space with same α
- generalized LPHD suggests particle dist. has same properties as gluon dist.
- Putting this all together leads to

$$
\alpha_{\mathrm{s}}=\frac{2 \pi}{3} \alpha^{2}
$$

- Using our value of $\alpha=0.47 \pm 0.04$ yields $\alpha_{\mathrm{s}}=0.46 \pm 0.04$
- This value is reasonable for a scale of $1-2 \mathrm{GeV}$, where production of hadrons takes place cf., from τ decays $\quad \alpha_{\mathrm{s}}\left(m_{\tau} \approx 1.8 \mathrm{GeV}\right)=0.34 \pm 0.03$

Multiplicity/Jet/rapidity dependence in τ-model

Use simplified τ-model, $\tau_{0}=0$
to investigate multiplicity and jet dependence
To stabilize fits against large correlation of parameters α and R, fix $\alpha=0.44$

Jets

Jets - JADE and Durham algorithms

- force event to have 3 jets:
- normally stop combining when all 'distances' between jets are $>y_{\text {cut }}$
- instead, stop combining when there are only 3 jets left
- y_{23} is the smallest 'distance' between any 2 of the 3 jets
- y_{23} is value of y_{cut} where number of jets changes from 2 to 3
 define regions of y_{23}^{D} (Durham):

$$
\begin{array}{cllll}
& y_{23}^{\mathrm{D}}<0.002 & \text { narrow two-jet } & \text { or } & \\
0.002<y_{23}^{\mathrm{D}}<0.006 & \text { less narrow two-jet } & y_{23}^{\mathrm{D}}<0.006 & \text { two-jet } \\
0.006<y_{23}^{\mathrm{D}}<0.018 & \text { narrow three-jet } & 0.006<y_{23}^{\mathrm{D}} & \text { three-jet } \\
0.0018<y_{23}^{\mathrm{D}} & \text { wide three-jet } & & \\
\text { and similarly for } y_{23}^{\mathrm{J}} & \text { (JADE): } 0.009,0.023,0.056 & &
\end{array}
$$

Multiplicity/Jet dependence in τ-model

Using simplified τ-model, $\alpha=0.44, \tau_{0}=0$

L3 PRELIMINARY

- R increases with $N_{\text {ch }}$ and with number of jets whereas OPAL found $r_{\text {n-jet }}$ approx. indep. of $N_{c h}$
- Increase of R with $N_{\text {ch }}$ similar for 2- and 3-jet events
- However, $R_{3 \text {-jet }} \approx R_{\mathrm{all}}$

Multiplicity/Jet dependence in τ-model

Using simplified τ-model, $\alpha=0.44, \tau_{0}=0$
L3 PRELIMINARY

- $\lambda_{3 \text {-jet }}>\lambda_{2 \text {-jet }}$ opposite of OPAL
- λ initially decreases with $N_{\text {ch }}$
- then $\lambda_{\text {all }}$ and $\lambda_{3 \text {-jet }}$ approx. constant while $\lambda_{2 \text {-jet }}$ continues to decrease, but more slowly
- whereas OPAL found $\lambda_{\text {all }}$ decreasing approx. linearly with $N_{\text {ch }}$

$\boldsymbol{m}_{\mathrm{t}}$ dependence in τ-model

Using simplified τ-model, $\alpha=0.44, \tau_{0}=0$
L3 PRELIMINARY
and cutting on $p_{\mathrm{t}}=0.5 \mathrm{GeV}\left(m_{\mathrm{t}}=0.52 \mathrm{GeV}\right)$

- R decreases with m_{t} for all $N_{\text {ch }}$ smallest when both particles at high p_{t}

On what do $\boldsymbol{r}, \boldsymbol{R}, \boldsymbol{\lambda}$ depend?

- r, R increase with $N_{\text {ch }}$
- r, R increase with $N_{\text {jets }}$
- for fixed number of jets, R increases with $N_{\text {ch }}$ but r is constant (OPAL)
- r, R decrease with m_{t}
- Although $m_{\mathrm{t}}, N_{\mathrm{ch}}, N_{\text {jets }}$ are correlated, each contributes to the increase/decrease of R but only $m_{\mathrm{t}}, N_{\text {jets }}$ contribute to the increase/decrease of r
- λ decreases with $N_{\text {ch }}, N_{\text {jets }}$ though somewhat differently for τ-model, Gaussian (OPAL)
- λ decreases with m_{t}

Jets and Rapidity

order jets by energy: $E_{1}>E_{2}>E_{3}$
Note: thrust only defines axis $\left|\vec{n}_{\mathrm{T}}\right|$, not its direction.
Choose positive thrust direction such that jet 1 is in positive thrust hemisphere rapidity, y_{E}, of particles from jet 1, jet 2, jet 3 :

- $y_{\mathrm{E}}>1$ almost all jet 1
- $y_{\mathrm{E}}<-1$ mostly jet 2, some jet 3 w.s. Merzger $-1<y_{\mathrm{E}} \leq 1$ jet-3 enrichehed

Jets and Rapidity - simplified τ-model - \llcorner preliminary

To stabilize fits against large correlation of α, \boldsymbol{R}, fix $\alpha=0.44$ Select particle pairs by rapidity of pair

Conclusion (Durham agrees):
Increase in R with y_{23}^{J} is due to appearance of gluon jet

τ-model elongation - $\llcorner 3$ preliminary

- Durham, JADE agree
- Elongation decreases with $y_{23}, R_{\text {side }} \approx 0.5-0.9 R_{\text {long }}$
- agrees with Gaussian/Edgeworth

Conclusions/Comments/Lessons

1. Ref. sample is important

- Comparison of results using different ρ_{0} is very problematic
- Agreement among LHC expts. would facilitate comparisons, e.g., central rapidity vs. forward rapidity

2. Ratios, e.g., $r_{\text {side }} / r_{\mathrm{L}}$ are robust to differences
in ρ_{0}, parametrization (Gauss, Lévy, τ-model)
3. Look beyond $Q=2 \mathrm{GeV}$ - at least to 3 , preferably 4 GeV
4. τ-model

- τ-model is closely related to a string picture
- strong x - p correlation
- fractal - Lévy distribution
- CMS finds BEC in pp at 0.9 and 7 TeV are described by simplified τ-model formula
- suggests that BEC in pp is (mostly) from string fragmentation

5. Anticorrelation region is important

- On what does it depend, $N_{\text {ch }}$, rapidity, m_{t}, \ldots ?
- Is the τ-model the correct explanation?

6. R, r depends on $N_{\text {jets }}, N_{\text {ch }}, m_{\mathrm{t}}$.

Also on (mini)jets, color reconnection, $N_{\text {strings }}$, color ropes?

BACKUP

Introduction - Correlations

$$
q \text {-particle density } \quad \rho_{q}\left(p_{1}, \ldots, p_{q}\right)=\frac{1}{\sigma_{\text {ted }}} \frac{{ }^{\text {d}} \sigma_{q}\left(p_{1}, \ldots, p_{q}\right)}{d p_{1} \ldots d p_{q}}
$$

where σ_{q} is inclusive cross section
Normalization:

$$
\begin{aligned}
\int \rho_{1}(p) \mathrm{d} p & =\langle n\rangle \\
\int \rho_{2}\left(p_{1}, p_{2}\right) \mathrm{d} p_{1} \mathrm{~d} p_{2} & =\langle n(n-1)\rangle
\end{aligned}
$$

In terms of 'factorial cumulants', C

$$
\begin{aligned}
\rho_{1}\left(p_{1}\right) & =C_{1}\left(p_{1}\right) \\
\rho_{2}\left(p_{1}, p_{2}\right) & =C_{1}\left(p_{1}\right) C_{1}\left(p_{2}\right)+C_{2}\left(p_{1}, p_{2}\right) \\
\left.\rho_{3}\left(p_{1}, p_{2}, p_{3}\right)\right) & =C_{1}\left(p_{1}\right) C_{1}\left(p_{2}\right) C_{1}\left(p_{3}\right) \\
& +\sum_{3} \text { perss } \\
& C_{1}\left(p_{1}\right) C_{2}\left(p_{2}, p_{3}\right) \\
& +C_{3}\left(p_{1}, p_{2}, p_{3}\right)
\end{aligned}
$$

2-particle correlations

$$
C_{2}=\rho_{2}\left(p_{1}, p_{2}\right)-C_{1}\left(p_{1}\right) C_{1}\left(p_{2}\right)
$$

Convenient to normalize $\quad R_{q}=\frac{\rho_{q}}{\prod_{i=1}^{q} \rho_{i}\left(\rho_{i}\right)} \quad K_{q}=\frac{C_{q}}{\prod_{i=1}^{q} \rho_{i}\left(\rho_{i}\right)}$

$$
\text { e.g., } \quad R_{2}=1+\frac{C_{2}}{\rho_{1}\left(p_{1}\right) p_{1}\left(p_{2}\right)}=1+K_{2}
$$

Introduction - BEC

To study BEC, not other correlations, replace $\prod_{i=1}^{q} \rho_{1}\left(p_{i}\right)$ by $\rho_{0}\left(p_{1}, \ldots, p_{q}\right)$, the q-particle density if no BEC (reference sample)
e.g., 2-particle BEC are studied in terms of

$$
\begin{aligned}
& \text { of } \\
& R_{2}\left(p_{1}, p_{2}\right)=\frac{\rho\left(p_{1}, p_{2}\right)}{\rho_{0}\left(p_{1}, p_{2}\right)}
\end{aligned}
$$

Assuming incoherent particle production and spatial source density $S(x)$,

$$
R_{2}(Q)=1+|G(Q)|^{2}
$$

where $G(Q)=\int \mathrm{d} x e^{i Q x} S(x)$ is the Fourier transform of $S(x)$
Assuming $S(x)$ is a Gaussian with radius r
Since $2-\pi$ BEC only at small

$$
Q=\sqrt{-\left(p_{1}-p_{2}\right)^{2}}=\sqrt{M_{12}^{2}-4 m_{\pi}^{2}}
$$

$$
\Longrightarrow
$$ integrate over other variables

$$
R_{2}(Q)=\frac{\rho(Q)}{\rho_{0}(Q)}
$$

$R_{2}(Q) \propto 1+\lambda e^{-Q^{2} r^{2}}$

Assumes

- incoherent average over source λ tries to account for
- partial coherence
- multiple (distinguishable) sources, long-lived resonances
- pion purity
- spherical (radius r) Gaussian density of particle emitters seems unlikely in $\mathrm{e}^{+} \mathrm{e}^{-}$annihilation - jets
- static source, i.e., no t-dependence certainly wrong
Nevertheless, this Gaussian formula is the most often used parametrization And it works fairly well
But what do the values of λ and r actually mean?

When Gaussian parametrization does not fit well,

- can expand about the Gaussian (Edgeworth expansion).
Keeping only the lowest-order non-Gaussian term, $\exp \left(-Q^{2} r^{2}\right)$ becomes

$$
\exp \left(-Q^{2} r^{2}\right) \cdot\left[1+\frac{\kappa}{3!} H_{3}(Q r)\right]
$$

(H_{3} is third-order Hermite polynomial)

- Assume source radius is a symmetric Lévy distribution rather than Gaussian.
Then $\exp \left(-Q^{2} r^{2}\right)$ becomes

$$
\exp \left(-Q^{2} r^{\alpha}\right) \quad, 0<\alpha \leq 2
$$

α is the Lévy index of stability

Experimental Problems I

I. Pion purity

1. mis-identified pions $-K, p$

- correct by MC.

But is the MC correct?
2. resonances

- long-lived affect λ

BEC peak narrower than resolution

- short-lived, e.g., ρ, - affect r
- correct by MC.

But is the MC correct?
3. weak decays
$\sim 20 \%$ of Z decays are $b \bar{b}$
like long-lived resonances, decrease λ

- per Z: $17.0 \pi^{ \pm}, 2.3 \mathrm{~K}^{ \pm}, 1.0 \mathrm{p}$ (15\% non- π)

Origin of π^{+}in Z decay	(\%) (JETSET 7.4$)$
direct (string fragmentation)	16
decay (short-lived resonances) $\Gamma>6.7 \mathrm{MeV}, \tau<30 \mathrm{fm}$ $\left(\rho, \omega, \mathrm{K}^{*}, \Delta, \ldots\right)$	62
decay (long-lived resonances) $\Gamma<6.7 \mathrm{MeV}, \tau>30 \mathrm{fm}$	22

Experimental Problems II

II. Reference Sample, ρ_{0}

- it does NOT exist

Common choices:
1.,+- pairs

But different resonances than,++ - correct by MC. - But is it correct?
2. Monte Carlo - But is it correct?
3. Mixed events - pair particles from different events
But destroys all correlations, not just BEC

- correct by MC. - But is it correct?

4. Mixed hemispheres (for 2-jet events) - pair particle with particle reflected from opposite hemisphere
But destroys all correlations

- correct by MC. - But is it correct?
ref. sample, ρ_{0}, from,+- pairs

Experimental Problems III, IV
 \section*{III. Final-State Interactions}

1. Coulomb

- form not certain
(usually use Gamow factor) overcorrects!
- for R_{2}, a few \% in lowest Q bin
- double if,+ - ref. sample
- often neglected for R_{2}
- but not negligible for R_{3}

2. Strong interaction $-S=0 \pi \pi$ phase shifts can be incorporated together with
Coulomb into the formula for R_{2}
Osada, Sano, Biyajima, Z.Phys. C72(1996)285)
tends to increase λ, decrease r
e.g., OPAL data:
$\lambda_{\text {noFSI }}=0.71, \lambda_{\text {FSI }}=1.04$
$r_{\text {noFSI }}=1.34, r_{\text {FSI }}=1.09 \mathrm{fm}$

- Not used by experimental

IV. Long-range correlations inadequately treated in ref. sample: $R_{2}(Q) \propto\left(1+\lambda e^{-Q^{2} r^{2}}\right)(1+\delta Q)$

Results from $R_{2}, \sqrt{\boldsymbol{s}}=M_{Z}$

- correction for π purity increases λ
- mixed ref. gives smaller λ, r than +- ref. - Average means little

$\sqrt{\boldsymbol{s}}$ dependence of \boldsymbol{r}

No evidence for \sqrt{s} dependence

Mass dependence of $\boldsymbol{r}-\mathrm{BEC}$ and FDC

No evidence for $r \sim 1 / \sqrt{m}$

$$
r(\text { mesons })>r(\text { baryons })
$$

$r_{\pi-\pi} \approx r_{\mathrm{K}-\mathrm{K}}$

Disclaimer

- There are many BEC measurements with pions.
- There are also BEC measurements with kaons, and FDC measurements with protons, lambdas, but fewer.
- From here on I will only treat pion results.

Multiplicity/Jet dependence of $\boldsymbol{\lambda}, \boldsymbol{r}$

Multiplicity dependence appears to be largely due to number of jets.

Elongation of the source

The usual parametrization assumes a symmetric Gaussian source But, there is no reason to expect this symmetry in $\mathrm{e}^{+} \mathrm{e}^{-} \rightarrow \mathrm{q} \overline{\mathrm{q}}$.
Therefore, do a 3-dim. analysis in the Longitudinal Center of Mass System aka Longitudinal Co-Moving System

LCMS:

Boost each π-pair along event axis, e.g., thrust axis

$$
\begin{aligned}
& p_{\mathrm{L} 1}=-p_{\mathrm{L} 2} \\
& \vec{p}_{1}+\vec{p}_{2} \text { defines 'out' axis } \\
& Q_{\text {side }} \perp\left(Q_{\mathrm{L}}, Q_{\text {out }}\right)
\end{aligned}
$$

the LCMS

Advantages of LCMS:

$$
\begin{aligned}
Q^{2} & =Q_{\mathrm{L}}^{2}+Q_{\text {side }}^{2}+Q_{\text {out }}^{2}-(\Delta E)^{2} \\
& =Q_{\mathrm{L}}^{2}+Q_{\text {side }}^{2}+Q_{\text {out }}^{2}\left(1-\beta^{2}\right)
\end{aligned}
$$

$$
\text { where } Q_{i}^{2}=\left(p_{i 1}-p_{i 2}\right)^{2}
$$

$$
\text { where } \beta \equiv \frac{p_{\text {out } 1}+p_{\text {out } 2}}{E_{1}+E_{2}}
$$

Thus, the energy difference, and therefore the difference in emission time of the pions couples only to the out-component, $Q_{\text {out }}$.
Thus,
Q_{L} and $Q_{\text {side }}$ reflect only spatial dimensions of the source
$Q_{\text {out }}$ reflects a mixture of spatial and temporal dimensions.
Assuming axial symmetry, source is elliptically shaped with

- r_{L} the logitudinal radius
- $r_{\text {side }}$ the transverse radius

Parametrization of \boldsymbol{R}_{2}

Writing R_{2} in terms of $\vec{Q}=\left(Q_{\mathrm{L}}, Q_{\text {side }}, Q_{\text {out }}\right): \quad R_{2}(\vec{Q})=\frac{\rho(\vec{Q})}{\rho_{0}(\vec{Q})}$
We parametrize $R_{2}(\vec{Q})$ by a 3 -dimensional Gaussian

$$
R_{2}\left(Q_{\mathrm{L}}, Q_{\text {out }}, Q_{\text {side }}\right)=\gamma \cdot(1+\lambda G) \cdot B
$$

where

- $\gamma=$ normalization (≈ 1)
- $\lambda=$ "incoherence", or strength of BE effect
- $G=$ azimuthally symmetric Gaussian:

$$
G=\exp \left(-r_{\mathrm{L}}^{2} Q_{\mathrm{L}}^{2}-r_{\text {out }}^{2} Q_{\text {out }}^{2}-r_{\text {side }}^{2} Q_{\text {side }}^{2}+2 \rho_{\mathrm{L}, \text { out }} R_{\mathrm{L}} R_{\text {out }} Q_{\mathrm{L}} Q_{\mathrm{out}}\right)
$$

longitudinal sym. $\Longrightarrow \rho_{\mathrm{L}, \text { out }}=0$ (do not tag $\mathrm{q}, \overline{\mathrm{q}}$, and fragment the same)

- Or $G=$ Edgeworth expansion about azimuthally symmetric Gaussian:
$\exp \left(-r_{i}^{2} Q_{i}^{2}\right) \longrightarrow \exp \left(-r_{i}^{2} Q_{i}^{2}\right) \cdot\left[1+\frac{\kappa_{i}}{3!} H_{3}\left(r_{i} Q_{i}\right)\right], H_{3}=3^{\text {rd }}$ order Hermite polynomial
- $B=\left(1+\delta \boldsymbol{Q}_{\mathrm{L}}+\varepsilon \boldsymbol{Q}_{\mathrm{out}}+\xi \boldsymbol{Q}_{\text {side }}\right)$ describes large Q (long-range correlations)

Elongation Results (L3)

parameter	Gaussian	Edgeworth	Edgeworth fit significantly better than Gaussian $R_{\text {side }} / R_{\mathrm{L}}<1$ more than 5 std. dev. Elongation along thrust axis Models which assume a spherical source are too simple.
λ	$0.41 \pm 0.01_{-0.19}^{+0.02}$	$0.54 \pm 0.02_{-0.26}^{+0.04}$	
$\begin{gathered} R_{\mathrm{L}}(\mathrm{fm}) \\ R_{\text {out }}(\mathrm{fm}) \\ R_{\text {side }}(\mathrm{fm}) \end{gathered}$	$\begin{aligned} & \hline 0.74 \pm 0.02_{-0.03}^{+0.04} \\ & 0.53 \pm 0.02_{-0.06}^{+0.05} \\ & 0.59 \pm 0.01_{-0.13}^{+0.03} \end{aligned}$	$\begin{aligned} & 0.69 \pm 0.02_{-0.03}^{+0.04} \\ & 0.44 \pm 0.02_{-0.06}^{+0.06} \\ & 0.56 \pm 0.02_{-0.12}^{+0.03} \end{aligned}$	
$\begin{aligned} & R_{\text {out }} / R_{\mathrm{L}} \\ & R_{\text {side }} / R_{\mathrm{L}} \end{aligned}$	$\begin{aligned} & 0.71 \pm 0.02_{-0.08}^{+0.05} \\ & 0.80 \pm 0.02_{-0.18}^{+0.03} \end{aligned}$	$\begin{aligned} & 0.65 \pm 0.03_{-0.09}^{+0.06} \\ & 0.81 \pm 0.02_{-0.19}^{+0.03} \end{aligned}$	
κ_{L} $\kappa_{\text {out }}$ $\kappa_{\text {side }}$	-	$\begin{gathered} 0.5 \pm 0.1_{-0.2}^{+0.1} \\ 0.8 \pm 0.1 \pm 0.3 \\ 0.1 \pm 0.1 \pm 0.3 \end{gathered}$	
δ ϵ ξ	$\begin{gathered} 0.025 \pm 0.005_{-0.015}^{+0.014} \\ 0.005 \pm 0.005_{-0.014}^{+0.012} \\ -0.035 \pm 0.005_{-0.024}^{+0.031} \end{gathered}$	$\begin{gathered} 0.036 \pm 0.007_{-0.023}^{+0.012} \\ 0.011 \pm 0.005_{-0.012}^{+0.037} \\ -0.022 \pm 0.006_{-0.025}^{+0.020} \end{gathered}$	
$\begin{aligned} & \chi^{2} / \operatorname{DoF} \\ & \text { C.L. (\%) } \end{aligned}$	$\begin{gathered} 2314 / 2189 \\ 3.1 \end{gathered}$	$\begin{gathered} 2220 / 2186 \\ 30 \end{gathered}$	

Elongation Results

			Gauss Edgeworth	2-D $r_{\mathrm{t}} / r_{\mathrm{L}}$	3-D $r_{\text {side }} / r_{\mathrm{L}}$
DELPHI	mixed	2-jet	Gauss	$0.62 \pm 0.02 \pm 0.05$	-
ALEPH	mixed	2-jet	Gauss	$0.61 \pm 0.01 \pm 0 . ? ?$	-
	+- 2-jet mixed +- 2-jet 2-jet	Edgeworth	$0.91 \pm 0.02 \pm 0 . ? ?$	-	
Edgeworth	$0.68 \pm 0.01 \pm 0 . ? ?$	-			
OPAL	+-	2-jet	Gauss	-	$0.84 \pm 0.02 \pm 0 . ? ?$

~20\% elongation along thrust axis (ZEUS finds similar results in ep)

OPAL
Elongation larger for narrower jets

3π BEC

Recall

$$
\left.\rho_{3}\left(p_{1}, p_{2}, p_{3}\right)\right)=C_{1}\left(p_{1}\right) C_{1}\left(p_{2}\right) C_{1}\left(p_{3}\right)
$$

"trivial" 3-particle correlations "genuine" 3-particle correlations $+\quad \sum_{3 \text { perms }} C_{1}\left(p_{1}\right) C_{2}\left(p_{2}, p_{3}\right)$
$+C_{3}\left(p_{1}, p_{2}, p_{3}\right)$ or

$$
\begin{aligned}
\rho_{3}\left(p_{1}, p_{2}, p_{3}\right) & =\rho_{1}\left(p_{1}\right) \rho_{1}\left(p_{2}\right) \rho_{1}\left(p_{3}\right) \\
& +\sum_{\substack{3 \\
\text { perm }}}\left[\rho_{1}\left(p_{1}\right)\left(\rho_{2}\left(p_{2}, p_{3}\right)-\rho_{1}\left(p_{2}\right) \rho_{1}\left(p_{3}\right)\right)\right] \\
& +C_{3}\left(p_{1}, p_{2}, p_{3}\right)
\end{aligned}
$$

3-particle BEC are studied in terms of

$$
R_{3}\left(p_{1}, p_{2}, p_{3}\right)=\frac{\rho_{3}\left(p_{1}, p_{2}, p_{3}\right)}{\rho_{0}\left(p_{1}, p_{2}, p_{3}\right)}
$$

3π BEC

Since BEC at small $Q_{3} \quad\left(Q_{3}^{2}=M_{123}^{2}-9 m_{\pi}^{2}=Q_{12}^{2}+Q_{23}^{2}+Q_{13}^{2}\right)$

$$
\begin{aligned}
\text { we use } R_{3}\left(Q_{3}\right) & =\frac{\rho\left(Q_{3}\right)}{\rho_{0}\left(Q_{3}\right)} \quad \text { and } \quad R_{2}=\frac{\rho(Q)}{\rho_{0}(Q)} \\
R_{3}^{\text {nongen }}\left(Q_{3}\right) & =1+\sum_{\substack{3 \text { perm } \\
Q_{3}}} \frac{\rho_{1} \rho_{2}}{\rho_{0}}-3=1+\sum_{\substack{3 \text { perm } \\
Q_{3}}}\left[R_{2}\left(Q_{12}\right)-1\right] \\
R_{3}^{\text {genuine }}\left(Q_{3}\right) & =1+\frac{C_{3}\left(Q_{3}\right)}{\rho_{0}\left(Q_{3}\right)} \\
& =1+R_{3}\left(Q_{3}\right)-R_{3}^{\text {nongen }}\left(Q_{3}\right)
\end{aligned}
$$

$3 \pi \mathrm{BEC}$

Assuming static source density $f(x)$ in space-time, $G(Q)=\int \mathrm{d} x e^{i \alpha x} f(x)=G e^{i \phi}$

$$
R_{2}(Q)=\frac{\rho_{2}(Q)}{\rho_{0}(Q)}=1+\lambda|G(Q)|^{2}
$$

Analog of Q for 3 particles: $\left(Q_{3}^{2}=M_{123}^{2}-9 m_{\pi}^{2}=Q_{12}^{2}+Q_{23}^{2}+Q_{13}^{2}\right)$

$$
\begin{aligned}
R_{3}\left(Q_{3}\right)=\frac{\rho_{3}\left(Q_{3}\right)}{\rho_{0}\left(Q_{3}\right)} & =1+\underbrace{\lambda\left(\left|G\left(Q_{12}\right)\right|^{2}+\left|G\left(Q_{23}\right)\right|^{2}+\left|G\left(Q_{13}\right)\right|^{2}\right)}_{\text {from 2-particle BEC }} \\
& +\underbrace{2 \lambda^{1.5} \Re\left\{G\left(Q_{13}\right) G\left(Q_{23}\right) G\left(Q_{13}\right)\right\}}_{\text {from genuine 3-particle BEC }} \\
R_{3}^{\text {genuine }} & =1+2 \lambda^{1.5} \Re\left\{G\left(Q_{12}\right) G\left(Q_{23}\right) G\left(Q_{13}\right)\right\} \\
\omega & =\frac{R_{3}^{\text {genuine }}\left(Q_{3}\right)-1}{2 \sqrt{\left(R_{2}\left(Q_{12}\right)-1\right)\left(R_{2}\left(Q_{23}\right)-1\right)\left(R_{2}\left(Q_{13}\right)-1\right)}} \\
& =\cos \left(\phi_{12}+\phi_{23}+\phi_{13}\right) \\
\omega & =\frac{R_{3}^{\text {genuine }}\left(Q_{3}\right)-1}{2 \sqrt{R_{2}\left(Q_{3}\right)-1} \quad \text { if } f(x) \text { is Gaussian }}
\end{aligned}
$$

If fully incoherent, $\phi_{i j} \neq 0$ only if $f(x)$ asymmetric and $Q_{i j}>0$
Completely incoherent particle production implies $\quad \lambda=1$

$3 \pi \mathrm{BEC}$

L3, PLB540 (2002) 185

$R_{2} \propto 1+\lambda \exp \left(-Q^{2} r^{2}\right)$
-- - Gaussian $\chi^{2}=60$, 29 dof
—Edgeworth $\chi^{2}=26,28$ dof
$R_{3}^{\text {genuine }} \propto 1+2 \lambda^{1.5} \exp \left(-Q^{2} r^{2} / 2\right)$
-- - Gaussian $\chi^{2}=30,27$ dof
-Edgeworth $\chi^{2}=18,26$ dof

$\omega=\frac{R_{3}^{\text {genuine }}\left(Q_{3}\right)-1}{2 \sqrt{R_{2}\left(Q_{3}\right)-1}}$
Using $R_{3}^{\text {genuine }}$ from data, R_{2} from fit

Conclusion: Data consistent with $\omega=1$,
i.e., with completely incoherent pion production

3π BEC

L3: | from | | Gaussian | Edgeworth |
| :--- | :---: | :---: | :---: |
| R_{2} | λ | $0.45 \pm 0.06 \pm 0.03$ | $0.72 \pm 0.08 \pm 0.03$ |
| $R_{3}^{\text {genuine }}$ | | $0.47 \pm 0.07 \pm 0.03$ | $0.75 \pm 0.10 \pm 0.03$ |
| R_{2} | r | $0.65 \pm 0.03 \pm 0.03$ | $0.74 \pm 0.06 \pm 0.02$ |
| $R_{3}^{\text {senuine }}$ | (fm) | $0.65 \pm 0.06 \pm 0.03$ | $0.72 \pm 0.08 \pm 0.03$ |

Data consistent with $\omega=1$, i.e., fully incoherent.
Values of λ, r from R_{2} and $R_{3}^{\text {genuine }}$ are consistent.

expt.		λ	r
MARK-II	R_{2}	$0.45 \pm 0.03 \pm 0.04$	$1.01 \pm 0.09 \pm 0.06$
$(29 \mathrm{GeV})$	R_{3}	$0.54 \pm 0.06 \pm 0.05$	$0.90 \pm 0.06 \pm 0.06$
DELPHI	R_{2}	$0.24 \pm 0.02 \pm 0 . ? ?$	$0.47 \pm 0.03 \pm 0 . ? ?$
	$R_{3}^{\text {genuine }}$	$0.43 \pm 0.05 \pm 0.07$	$0.93 \pm 0.06 \pm 0.04$
OPAL	R_{2}	$0.58 \pm 0.01 \pm 0 . ? ?$	$0.79 \pm 0.02 \pm 0 . ? ?$
	$R_{3}^{\text {genuine }}$	$0.63 \pm 0.01 \pm 0.03$	$0.82 \pm 0.01 \pm 0.04$

Values of λ, r from R_{2} and R_{3} are fairly consistent.

BEC in String Models

Longitudinal BEC

- Different string configurations give same final state
- Matrix element to get a final state depends on area, A : $\mathcal{M}=\exp [(\imath \kappa-b / 2) A]$ where κ is the string tension and b is the decay constant $\kappa \approx 1 \mathrm{GeV} / \mathrm{fm}$ and $b \approx 0.3 \mathrm{GeV} / \mathrm{fm}$
- So, must sum all the amplitudes But $3-\pi$ BEC incoherent ??

Transverse BEC

- Transverse momentum via tunneling, also related to b

Using b from tuning of JETSET, predict

- BEC,
including genuine 3-particle BEC
- $r_{\mathrm{t}}<r_{\mathrm{L}}$
- $r\left(\pi^{0} \pi^{0}\right)<r\left(\pi^{+} \pi^{+}\right)$

2-particle BEC $\pi^{0} \pi^{0}$ and $\pi^{ \pm} \pi^{ \pm}$

- Naively expect same BEC for $\pi^{0} \pi^{0}$ and $\pi^{ \pm} \pi^{ \pm}$
- Hadronization with local charge conservation, e.g., string, $\Longrightarrow r_{00}<r_{ \pm \pm}$

But most π 's from resonances - dilutes this effect.

- Many measurements of BEC with charged π 's
- but few with π^{0} 's

$$
\begin{aligned}
& \text { in } \mathrm{e}^{+} \mathrm{e}^{-} \text {: L3, P.L. B524 (2002) } 55 \\
& \quad \text { OPAL, P.L. B559 (2003) } 131
\end{aligned}
$$

Selection:

OPAL	L3
$p_{\pi^{0}}>1.0 \mathrm{GeV}$	$E\left(\pi^{0}\right)<6.0 \mathrm{GeV}$
2 -jet, $T>0.9$	all events

2-particle BEC $\pi^{0} \pi^{0}$ and $\pi^{ \pm} \pi^{ \pm}$

$$
\begin{aligned}
\lambda & =0.55 \pm 0.10 \pm 0.10 \\
r & =0.59 \pm 0.08 \pm 0.05 \quad \mathrm{fm}
\end{aligned}
$$

2-particle BEC $\pi^{0} \pi^{0}$ and $\pi^{ \pm} \pi^{ \pm}$

BEC from Z decays Gaussian parametrization	Expt.	ρ_{0}	r (fm)	λ
	$\pm \pm$ OPAL	+-	$1.00_{-0.10}^{+0.03}$	0.76 ± 0.06
	L3	mix	0.65 ± 0.04	0.45 ± 0.07
	L3 3-ォ	mix	0.65 ± 0.07	0.47 ± 0.08
	L3 $E_{\pi}<6 \mathrm{GeV}$	MC	0.46 ± 0.01	0.29 ± 0.03
	00 L3 $E_{\pi}<6 \mathrm{GeV}$	MC	0.31 ± 0.10	0.16 ± 0.09
	OPAL $E_{\pi}>1,2$-jet	mix	0.59 ± 0.09	0.55 ± 0.14

- L3: $r_{00}<r_{ \pm \pm}$and $\lambda_{00}<\lambda_{ \pm \pm}$, both 1.5σ
- ALEPH, DELPHI find $r_{ \pm \pm}(\mathrm{mix}) / r_{ \pm \pm}(+-) \approx 0.68,0.51$

Applying this to OPAL $r_{ \pm \pm}$, OPAL $r_{00} \approx r_{ \pm \pm}$and $\lambda_{00} \approx \lambda_{ \pm \pm}$

- L3 and OPAL $\pi^{0} \pi^{0}$ results disagree by 2σ
- Is the L3-OPAL $\pi^{0} \pi^{0}$ difference due to E_{π} and/or 2-jet selection ???
- OPAL: MC shows that few of selected π^{0} 's are direct from string

Another source of $q \bar{q}: W$

$B E(W)=B E(Z \rightarrow$ light quarks $)$

$$
\mathrm{e}^{+} \mathrm{e}^{-} \rightarrow \mathrm{W}^{+} \mathrm{W}^{-} \rightarrow \mathrm{q} \overline{\mathrm{q}} \mathrm{q} \overline{\mathrm{q}}
$$

If independent decay of $\mathrm{W}^{+} \mathrm{W}^{-}$,
i.e., no BEC between pions from different W's

$$
\begin{array}{rlrl}
\rho_{4 \mathrm{q}}\left(p_{1}, p_{2}\right) & =\rho^{+}\left(p_{1}, p_{2}\right) & & 1,2 \text { from } \mathrm{W}^{+} \\
& +\rho^{-}\left(p_{1}, p_{2}\right) & & 1,2 \text { from } \mathrm{W}^{-} \\
& +\rho^{+}\left(p_{1}\right) \rho^{-}\left(p_{2}\right) & & 1 \text { from } \mathrm{W}^{+}, 2 \text { from } \mathrm{W}^{-} \\
& +\rho^{+}\left(p_{2}\right) \rho^{-}\left(p_{1}\right) & 1 \text { from } \mathrm{W}^{-}, 2 \text { from } \mathrm{W}^{+}
\end{array}
$$

Assuming $\rho^{+}=\rho^{-}=\rho_{2 \mathrm{q}}$, W separation $\sim 0.1 \mathrm{fm}$

$$
\rho_{4 \mathrm{q}}\left(p_{1}, p_{2}\right)=2 \rho_{2 \mathrm{q}}\left(p_{1}, p_{2}\right)+2 \rho_{2 \mathrm{q}}\left(p_{1}\right) \rho_{2 \mathrm{q}}\left(p_{2}\right)
$$

Inter-W BEC \Longrightarrow W decays not independent
\Longrightarrow this relation does not hold.
Measure

- $\rho_{4 q}\left(p_{1}, p_{2}\right)$ from $\mathrm{e}^{+} \mathrm{e}^{-} \rightarrow \mathrm{W}^{+} \mathrm{W}^{-} \rightarrow \mathrm{q} \overline{\mathrm{q} q \bar{q}}$
- $\rho_{2 \mathrm{q}}\left(p_{1}, p_{2}\right)$ from $\mathrm{e}^{+} \mathrm{e}^{-} \rightarrow \mathrm{W}^{+} \mathrm{W}^{-} \rightarrow \mathrm{q} \bar{q} \ell \nu$
- $\rho_{2 q}\left(p_{1}\right) \rho_{2 q}\left(p_{2}\right)$ from $\rho_{\text {mix }}\left(p_{1}, p_{2}\right)$ obtained by mixing $\ell^{+} \nu \mathrm{q} \overline{\mathrm{q}}$ and $\mathrm{q} \overline{\mathrm{q}} \ell^{-} \nu$ events

$\mathrm{W}^{+} \mathrm{W}^{-} \rightarrow \mathrm{q} \overline{\mathrm{q}} \mathrm{q} \overline{\mathrm{q}}$

Measure violation of

$$
\begin{aligned}
& \qquad \rho_{4 \mathrm{q}}(Q)=2 \rho_{2 \mathrm{q}}(Q)+2 \rho_{\text {mix }}(Q) \\
& \text { by } \\
& \Delta \rho(Q)=\rho_{4 \mathrm{q}}(Q)-\left[2 \rho_{2 \mathrm{q}}\left(p_{1}, p_{2}\right)+2 \rho_{\text {mix }}\left(p_{1}, p_{2}\right)\right] \\
& D(Q)=\frac{\rho_{4 \mathrm{q}}(Q)}{2 \rho_{2 \mathrm{q}}(Q)+2 \rho_{\text {mix }}(Q)} \\
& \delta_{\mathrm{I}}(Q)=\frac{\Delta \rho(Q)}{2 \rho_{\text {mix }}(Q)}
\end{aligned}
$$

Compare to expectation of BE_{32} model in PYTHIA

$\delta_{\mathrm{I}}(Q)$ measures genuine inter-W BEC

$$
\begin{array}{cc}
\text { DELPHI: } 0.51 \pm 0.24 & \sim 2 \sigma \\
\text { average: } 0.17 \pm 0.13 & \sim 1 \sigma
\end{array}
$$

Conclusion: BEC (mostly) between π 's from same string But event selection (4 separated jets) suppresses small Q for π pairs from different strings

$\mathrm{W}^{+} \mathrm{W}^{-} \rightarrow \mathrm{q} \overline{\mathrm{q}} \mathrm{q} \overline{\mathrm{q}}$

DELPHI

But conclusions are tricky: Also effect in (+, -)

Results - 'Classic’ Parametrizations

$R_{2}=\gamma \cdot[1+\lambda G] \cdot(1+\epsilon Q)$

- Gaussian

$$
G=\exp \left(-(r Q)^{2}\right)
$$

- Edgeworth expansion
$G=\exp \left(-(r Q)^{2}\right) \cdot\left[1+\frac{\kappa}{3!} H_{3}(r Q)\right]$
Gaussian if $\kappa=0$
Fit: $\kappa=0.71 \pm 0.06$
- symmetric Lévy

$$
\begin{aligned}
& G=\exp \left(-|r Q|^{\alpha}\right) \\
& 0<\alpha \leq 2
\end{aligned}
$$

Gaussian if $\alpha=2$
Fit: $\alpha=1.34 \pm 0.04$

Gauss Edgew Lévy
CL: $10^{-15} \quad 10^{-5} \quad 10^{-8}$

Poor χ^{2}. Edgeworth and Lévy better than Gaussian, but poor.
Problem is the dip of R_{2} in the region $0.6<Q<1.5 \mathrm{GeV}$

The $\boldsymbol{\tau}$-model

- Assume avg. production point is related to momentum:

$$
\bar{x}^{\mu}\left(p^{\mu}\right)=a \tau p^{\mu}
$$

where for 2-jet events, $a=1 / m_{t}$

$$
\tau=\sqrt{\tilde{t}^{2}-\bar{r}_{z}^{2}} \text { is the "longitudinal" proper time }
$$

$$
\text { and } m_{t}=\sqrt{E^{2}-p_{z}^{2}} \text { is the "transverse" mass }
$$

- Let $\delta_{\Delta}\left(x^{\mu}-\bar{x}^{\mu}\right)$ be dist. of prod. points about their mean, and $H(\tau)$ the dist. of τ. Then the emission function is

$$
S(x, p)=\int_{0}^{\infty} \mathrm{d} \tau H(\tau) \delta_{\Delta}(x-a \tau p) \rho_{1}(p)
$$

- In the plane-wave approx.

$$
\rho_{2}\left(p_{1}, p_{2}\right)=\int \mathrm{d}^{4} x_{1} \mathrm{~d}^{4} x_{2} S\left(x_{1}, p_{1}\right) S\left(x_{2}, p_{2}\right)\left(1+\cos \left(\left[p_{1}-p_{2}\right]\left[x_{1}-x_{2}\right]\right)\right)
$$

- Assume $\delta_{\Delta}\left(x^{\mu}-\bar{x}^{\mu}\right)$ is very narrow - a δ-function. Then

$$
R_{2}\left(p_{1}, p_{2}\right)=1+\lambda \operatorname{Re} \widetilde{H}\left(\frac{a_{1} Q^{2}}{2}\right) \widetilde{H}\left(\frac{a_{2} Q^{2}}{2}\right), \quad \widetilde{H}(\omega)=\int \mathrm{d} \tau H(\tau) \exp (i \omega \tau)
$$

BEC in the $\boldsymbol{\tau}$-model

- Assume a Lévy distribution for $H(\tau)$ Since no particle production before the interaction, $H(\tau)$ is one-sided.
Characteristic function is

$$
\widetilde{H}(\omega)=\exp \left[-\frac{1}{2}(\Delta \tau|\omega|)^{\alpha}\left(1-i \operatorname{sign}(\omega) \tan \left(\frac{\alpha \pi}{2}\right)\right)+i \omega \tau_{0}\right], \quad \alpha \neq 1
$$

where

- α is the index of stability;
- τ_{0} is the proper time of the onset of particle production;
- $\Delta \tau$ is a measure of the width of the distribution.
- Then, R_{2} depends on Q, a_{1}, a_{2}

$$
\begin{aligned}
R_{2}\left(Q, a_{1}, a_{2}\right)= & \gamma\left\{1+\lambda \cos \left[\frac{\tau_{0} Q^{2}\left(a_{1}+a_{2}\right)}{2}+\tan \left(\frac{\alpha \pi}{2}\right)\left(\frac{\Delta \tau Q^{2}}{2}\right)^{\alpha} \frac{a_{1}^{\alpha}+a_{2}^{\alpha}}{2}\right]\right. \\
& \left.\cdot \exp \left[-\left(\frac{\Delta \tau Q^{2}}{2}\right)^{\alpha} \frac{a_{1}^{\alpha}+a_{2}^{\alpha}}{2}\right]\right\} \cdot(1+\epsilon Q)
\end{aligned}
$$

BEC in the τ-model

$$
\begin{array}{r}
R_{2}\left(Q, a_{1}, a_{2}\right)=\gamma\left\{1+\lambda \cos \left[\frac{\tau_{0} Q^{2}\left(a_{1}+a_{2}\right)}{2}+\tan \left(\frac{\alpha \pi}{2}\right)\left(\frac{\Delta \tau Q^{2}}{2}\right)^{\alpha} \frac{a_{1}^{\alpha}+a_{2}^{\alpha}}{2}\right]\right. \\
\\
\left.\cdot \exp \left[-\left(\frac{\Delta \tau Q^{2}}{2}\right)^{\alpha} \frac{a_{1}^{\alpha}+a_{2}^{\alpha}}{2}\right]\right\} \cdot(1+\epsilon Q)
\end{array}
$$

Simplification:

- effective radius, R, defined by $R^{2 \alpha}=\left(\frac{\Delta \tau}{2}\right)^{\alpha} \frac{a_{1}^{\alpha}+a_{2}^{\alpha}}{2}$
- Particle production begins immediately, $\tau_{0}=0$
- Then

$$
R_{2}(Q)=\gamma\left[1+\lambda \cos \left(\left(R_{\mathrm{a}} Q\right)^{2 \alpha}\right) \exp \left(-(R Q)^{2 \alpha}\right)\right] \cdot(1+\epsilon Q)
$$

where $R_{\mathrm{a}}^{2 \alpha}=\tan \left(\frac{\alpha \pi}{2}\right) R^{2 \alpha}$
Compare to sym. Lévy parametrization:

$$
R_{2}(Q)=\gamma\left[1+\lambda \quad \exp \left[-|r Q|^{\alpha}\right]\right](1+\epsilon Q)
$$

- R describes the BEC peak
- R_{a} describes the anticorrelation dip
- τ-model: both anticorrelation and BEC are related to 'width' $\Delta \tau$ of $H(\tau)$

2-jet Results on Simplified τ-model from Lз Z decay

3-jet Results on Simplified τ-model from Lз Z decay

Full τ-model for 2 -jet events $-a=1 / m_{t}$

Full τ-model for 2-jet events

- τ-model predicts dependence on $m_{\mathrm{t}}, R_{2}\left(Q, m_{\mathrm{t} 1}, m_{\mathrm{t} 2}\right)$
- Parameters $\alpha, \Delta \tau, \tau_{0}$ are independent of m_{t}
- λ (strength of BEC) can depend on m_{t}

Summary of τ-model

- τ-model with a one-sided Lévy proper-time distribution describes BEC well
- in simplified form it provides a new parametrization of $R_{2}(Q)$ for both 2- and 3 -jet events,
- in full form for 2-jet events, $R_{2}\left(Q, m_{11}, m_{12}\right)$
- both Q - and m_{t}-dependence described correctly
- Note: we found $\Delta \tau$ to be independent of m_{t}
$\Delta \tau$ enters R_{2} as $\Delta \tau Q^{2} / m_{\mathrm{t}}$
In Gaussian parametrization, r enters R_{2} as $r^{2} Q^{2}$
Thus $\Delta \tau$ independent of m_{t} corresponds to $r \propto 1 / \sqrt{m_{t}}$
- BUT, what about elongation?

Elongation?

- Previous results using fits of Gaussian or Edgeworth found (in LCMS) $r_{\text {side }} / r_{\mathrm{L}} \approx 0.8$ for all events
- But we find that Gaussian and Edgeworth fit $R_{2}(Q)$ poorly
- τ-model predicts no elongation and fits the data well
- Could the elongation results be an artifact of an incorrect fit function? or is the τ-model in need of modification?
- So, we modify ad hoc the τ-model description to allow elongation

Elongation in the Simplified τ-model?

LCMS: $\quad Q^{2}=Q_{\mathrm{L}}^{2}+Q_{\text {side }}^{2}+Q_{\text {out }}^{2}-(\Delta E)^{2}$

$$
=Q_{\mathrm{L}}^{2}+Q_{\text {side }}^{2}+Q_{\text {out }}^{2}\left(1-\beta^{2}\right), \quad \beta=\frac{p_{1 \text { out }}+p_{\text {out }}}{E_{1}+E_{2}}
$$

Replace $\quad R^{2} Q^{2} \Longrightarrow A^{2}=R_{\mathrm{L}}^{2} Q_{\mathrm{L}}^{2}+R_{\text {side }}^{2} Q_{\text {side }}^{2}+\rho_{\text {out }}^{2} Q_{\text {out }}^{2}$
Then in τ-model,

$$
\begin{aligned}
R_{2}\left(Q_{\mathrm{L}}, Q_{\text {side }}, Q_{\text {out }}\right)=\gamma & {\left[1+\lambda \cos \left(\tan \left(\frac{\alpha \pi}{2}\right) A^{2 \alpha}\right) \exp \left(-A^{2 \alpha}\right)\right] } \\
& \cdot\left(1+\epsilon_{\mathrm{L}} Q_{\mathrm{L}}+\epsilon_{\text {side }} Q_{\text {side }}+\epsilon_{\text {out }} Q_{\text {out }}\right)
\end{aligned}
$$

for 2-jet events:
τ-model
Edgeworth

Elongation is real

Direct Test of \boldsymbol{Q}^{2}-only Dependence

1. $Q^{2}=Q_{\mathrm{LE}}^{2}+Q_{\mathrm{side}}^{2}+Q_{\mathrm{out}}^{2} \quad$ where $Q_{\mathrm{LE}}^{2}=Q_{\mathrm{L}}^{2}-(\Delta E)^{2}$ inv. boosts along thrust axis
2. $Q^{2}=Q_{\mathrm{L}}^{2}+Q_{\text {side }}^{2}+q_{\text {out }}^{2} \quad$ where $q_{\text {out }}=Q_{\text {out }}$ boosted (β) along out direction to rest frame of pair
In τ-model, for case 1

$$
\begin{aligned}
R_{2}\left(Q_{\mathrm{LE}}, Q_{\text {side }}, Q_{\text {out }}\right) & =\gamma\left[1+\lambda \cos \left(\tan \left(\frac{\alpha \pi}{2}\right) B^{2 \alpha}\right) \exp \left(-B^{2 \alpha}\right)\right] b \\
\text { where } B^{2} & =R_{\mathrm{LE}}^{2} Q_{\mathrm{LE}}^{2}+R_{\text {side }}^{2} Q_{\text {side }}^{2}+R_{\text {out }}^{2} Q_{\text {out }}^{2} \\
b & =1+\epsilon_{\mathrm{LE}} Q_{\mathrm{LE}}+\epsilon_{\text {side }} Q_{\text {side }}+\epsilon_{\text {out }} Q_{\text {out }}
\end{aligned}
$$

and comparable expression for case $2, R_{2}\left(Q_{\mathrm{L}}, Q_{\text {side }}, q_{\text {out }}\right)$

Direct Test of \boldsymbol{Q}^{2}-only Dependence

Compare fits with all 'radii' free
to fits with all 'radii' constrained to be equal

case 1	α	0.46 ± 0.01	0.46 ± 0.01	
	$R_{\text {LE }}(f m)$	0.84 ± 0.04	0.71 ± 0.04	
	$R_{\text {side }} / R_{\text {LE }}$	0.60 ± 0.02	1	
	$R_{\text {out }} / R_{\text {LE }}$	0.986 ± 0.003	1	difference
	$\chi^{2} /$ DoF	$14590 / 14538$	$14886 / 14540$	$\Delta \chi^{2}=296 / 2$
	CL	38%	2%	≈ 0
case 2	α	0.41 ± 0.01	0.44 ± 0.01	
	$R_{\mathrm{L}}(\mathrm{fm})$	0.96 ± 0.05	0.82 ± 0.04	
	$R_{\text {side }} / R_{\mathrm{L}}$	0.62 ± 0.02	1	
	$r_{\text {out }} / R_{\mathrm{L}}$	1.23 ± 0.03	1	difference
	$\chi^{2} /$ DoF	$10966 / 10647$	$11430 / 10649$	$\Delta \chi^{2}=464 / 2$
	CL	2%	10^{-7}	≈ 0

Dependence on components of Q is strongly preferred.

Q Dependence

$$
\begin{array}{ll}
R_{2}\left(Q_{\mathrm{L}}, Q_{\text {side }}, q_{\text {out }}\right) \text { vs. } \\
Q_{\mathrm{L}} \text { for } & Q_{\text {side }}, q_{\text {out }}<0.08 \mathrm{GeV} \\
Q_{\text {side }} \text { for } & Q_{\mathrm{L}}, q_{\text {out }}<0.08 \mathrm{GeV} \\
q_{\text {out }} \text { for } & Q_{\mathrm{L}}, Q_{\text {side }}<0.08 \mathrm{GeV}
\end{array}
$$

Dependence on components of Q is preferred.
$r_{\text {out }}>R_{\mathrm{L}}>R_{\text {side }}$
Not azimuthally symmetric

Summary

- R_{2} depends, to some degree, separately on components of Q, i.e., on \vec{Q}
- contradicts τ-model, where dependence is on Q, not on \vec{Q}
- Nevertheless, τ-model with a one-sided Lévy proper-time distribution succeeds:
- Simplified, provides a new parametrization of $R_{2}(Q)$ which works well
- $R_{2}\left(Q, m_{11}, m_{12}\right)$ successfully fits R_{2} for 2-jet events both Q - and m_{t}-dependence described correctly
- But dependence of R_{2} on components of Q implies τ-model is in need of modification
Perhaps, a should be different for transverse/longitudinal

$$
\bar{x}^{\mu}\left(p^{\mu}\right)=a \tau p^{\mu}, \quad a=1 / m_{\mathrm{t}} \text { for } 2 \text {-jet }
$$

Emission Function of 2-jet Events.

In the τ-model, the emission function in configuration space is

$$
S(\vec{x}, \tau)=\frac{1}{\bar{n}} \frac{\mathrm{~d}^{4} n}{\mathrm{~d} \tau \mathrm{~d} \vec{x}}=\frac{1}{\bar{n}}\left(\frac{m_{\mathrm{t}}}{\tau}\right)^{3} H(\tau) \rho_{1}\left(\vec{p}=\frac{m_{\mathrm{t}} \vec{x}}{\tau}\right)
$$

For simplicity, assume $\rho_{1}(\vec{p})=\rho_{\mathrm{y}}(y) \rho_{p_{\mathrm{t}}}\left(\boldsymbol{p}_{\mathrm{t}}\right) / \bar{n}$
($\rho_{1}, \rho_{y}, \rho_{p_{\mathrm{t}}}$ are inclusive single-particle distributions)
Then $S(\vec{x}, \tau)=\frac{1}{\vec{n}^{2}} H(\tau) G(\eta) I(r)$
Strongly correlated $x, p \Longrightarrow$

$$
\begin{array}{rlrl}
\eta & =y & r=p_{\mathrm{t}} \tau / m_{\mathrm{t}} \\
G(\eta) & =\rho_{\mathrm{y}}(\eta) & & I(r)=\left(\frac{m_{\mathrm{t}}}{\tau}\right)^{3} \rho_{p_{\mathrm{t}}}\left(r m_{\mathrm{t}} / \tau\right)
\end{array}
$$

So, using experimental $\rho_{\mathrm{y}}(y), \rho_{\mathrm{p}_{\mathrm{t}}}\left(p_{\mathrm{t}}\right)$ dists.
expt. -
Factorization OK and $H(\tau)$ from BEC fits, we can reconstruct S.

Emission Function of 2-jet Events.

Integrating over r,

Particle production is close to the light-cone

Emission Function of 2-jet Events.

Integrating over r,

"Boomerang" shape

Integrating over z,

Expanding ring

Particle production is close to the light-cone

- LLA parton shower leads to a fractal in momentum space fractal dimension, α, is related to α_{s}
- Lévy dist. arises naturally from a fractal, or random walk, or anomalous diffusion
- strong momentum-space/configuration space correlation of τ-model \Longrightarrow fractal in configuration space with same α
- generalized LPHD suggests particle dist. has same properties as gluon dist.
- Putting this all together leads to

$$
\alpha_{\mathrm{s}}=\frac{2 \pi}{3} \alpha^{2}
$$

- Using our value of $\alpha=0.47 \pm 0.04$ yields $\alpha_{\mathrm{s}}=0.46 \pm 0.04$
- This value is reasonable for a scale of $1-2 \mathrm{GeV}$, where production of hadrons takes place cf., from τ decays $\quad \alpha_{\mathrm{s}}\left(m_{\tau} \approx 1.8 \mathrm{GeV}\right)=0.34 \pm 0.03$

A Comment

- τ-model is closely related to a string picture
- strong x - p correlation
- fractal - Lévy distribution
- CMS finds BEC in pp at 0.9 and 7 TeV are described by simplified τ-model formula
- suggests that BEC in pp is (mostly) from string fragmentation

Summary

- $R_{2}(Q)$, not $R_{2}(\vec{Q})$ is a reasonably good approximation
- But sym. Gaussian, Edgeworth, Lévy $R_{2}(Q)$ do not fit well
- τ-model with a one-sided Lévy proper-time distribution
- Simplified, it provides a new parametrization of R_{2} :
- Works well with eff. R, R_{a} for all events;
- with only eff. R for 2 -jet events.
- $R_{2}\left(Q, m_{\mathrm{t}}\right)$ successfully fits R_{2} for 2-jet events
- both Q - and m_{t}-dependence described correctly
- Note: we found $\Delta \tau$ to be independent of m_{t}
$\Delta \tau$ enters R_{2} as $\Delta \tau Q^{2} / m_{t}$
In Gaussian parametrization, r enters R_{2} as $r^{2} Q^{2}$
Thus $\Delta \tau$ independent of m_{t} corresponds to $r \propto 1 / \sqrt{m_{t}}$
- Emission function shaped like a boomerang in $z-t$ and an expanding ring in $x-y$
Particle production is close to the light-cone

Multiplicity/Jet/rapidity dependence in τ-model

Use simplified τ-model, $\tau_{0}=0$
to investigate multiplicity and jet dependence
To stabilize fits against large correlation of parameters α and R, fix $\alpha=0.44$

Jets

Jets - JADE and Durham algorithms

- force event to have 3 jets:
- normally stop combining when all 'distances' between jets are $>y_{\text {cut }}$
- instead, stop combining when there are only 3 jets left
- y_{23} is the smallest 'distance' between any 2 of the 3 jets
- y_{23} is value of y_{cut} where number of jets changes from 2 to 3
 define regions of y_{23}^{D} (Durham):

$$
\begin{array}{cllll}
& y_{23}^{\mathrm{D}}<0.002 & \text { narrow two-jet } & \text { or } & \\
0.002<y_{23}^{\mathrm{D}}<0.006 & \text { less narrow two-jet } & y_{23}^{\mathrm{D}}<0.006 & \text { two-jet } \\
0.006<y_{23}^{\mathrm{D}}<0.018 & \text { narrow three-jet } & 0.006<y_{23}^{\mathrm{D}} & \text { three-jet } \\
0.0018<y_{23}^{\mathrm{D}} & \text { wide three-jet } & & \\
\text { and similarly for } y_{23}^{\mathrm{J}} & \text { (JADE): } 0.009,0.023,0.056 & &
\end{array}
$$

Multiplicity dependence in τ-model

Using simplified τ-model, $\alpha=0.44, \tau_{0}=0$

R increases with multiplicity

Multiplicity dependence in τ-model

Using simplified τ-model, $\alpha=0.44, \tau_{0}=0$
L3 PRELIMINARY

R increases with multiplicity
R not constant
$\Longrightarrow R$ from fit is an average
But maybe not the average we want To get R at avg. multiplicity of sample, should weight pairs by $1 / N_{\text {pairs in event }}$ or calculate average multiplicity as

$$
\frac{\sum_{\text {events }} N_{\text {event }} N_{\text {pairs in event }}}{N_{\text {pairs }}}
$$

But the difference is small So I ignore it.

Multiplicity/Jet dependence in τ-model

Using simplified τ-model, $\alpha=0.44, \tau_{0}=0$

L3 PRELIMINARY

- R increases with $N_{\text {ch }}$ and with number of jets whereas OPAL found $r_{\text {n-jet }}$ approx. indep. of $N_{c h}$
- Increase of R with $N_{\text {ch }}$ similar for 2- and 3-jet events
- However, $R_{3 \text {-jet }} \approx R_{\mathrm{all}}$

Multiplicity/Jet dependence in τ-model

Using simplified τ-model, $\alpha=0.44, \tau_{0}=0$
L3 PRELIMINARY

- $\lambda_{3 \text {-jet }}>\lambda_{2 \text {-jet }}$ opposite of OPAL
- λ initially decreases with $N_{\text {ch }}$
- then $\lambda_{\text {all }}$ and $\lambda_{3 \text {-jet }}$ approx. constant while $\lambda_{2 \text {-jet }}$ continues to decrease, but more slowly
- whereas OPAL found $\lambda_{\text {all }}$ decreasing approx. linearly with $N_{\text {ch }}$

$\boldsymbol{m}_{\mathrm{t}}$ dependence in τ-model

Using simplified τ-model, $\alpha=0.44, \tau_{0}=0$
L3 PRELIMINARY
and cutting on $p_{\mathrm{t}}=0.5 \mathrm{GeV}\left(m_{\mathrm{t}}=0.52 \mathrm{GeV}\right)$

- R decreases with m_{t} for all $N_{\text {ch }}$ smallest when both particles at high p_{t}

$\boldsymbol{m}_{\mathrm{t}}$ dependence in τ-model

Using simplified τ-model, $\alpha=0.44, \tau_{0}=0$
and cutting on $p_{\mathrm{t}}=0.5 \mathrm{GeV}\left(m_{\mathrm{t}}=0.52 \mathrm{GeV}\right)$

- λ decreases with m_{t} smallest when both particles at high p_{t}

On what do $\boldsymbol{r}, \boldsymbol{R}, \boldsymbol{\lambda}$ depend?

- r, R increase with $N_{\text {ch }}$
- r, R increase with $N_{\text {jets }}$
- for fixed number of jets, R increases with $N_{\text {ch }}$ but r is constant (OPAL)
- r, R decrease with m_{t}
- Although $m_{\mathrm{t}}, N_{\mathrm{ch}}, N_{\text {jets }}$ are correlated, each contributes to the increase/decrease of R but only $m_{\mathrm{t}}, N_{\text {jets }}$ contribute to the increase/decrease of r
- λ decreases with $N_{\text {ch }}, N_{\text {jets }}$ though somewhat differently for τ-model, Gaussian (OPAL)
- λ decreases with m_{t}

Jets and Rapidity

order jets by energy: $E_{1}>E_{2}>E_{3}$
Note: thrust only defines axis $\left|\vec{n}_{\mathrm{T}}\right|$, not its direction.
Choose positive thrust direction such that jet 1 is in positive thrust hemisphere rapidity, y_{E}, of particles from jet 1, jet 2, jet 3 :

- $y_{\mathrm{E}}>1$ almost all jet 1
- $y_{\mathrm{E}}<-1$ mostly jet 2, some jet 3 w.s. Merzger $1<y_{\mathrm{E}} \leq 1$ jet-3 entrichedod

Jets and Rapidity - simplified τ-model - \llcorner preliminary

To stabilize fits against large correlation of α, \boldsymbol{R}, fix $\alpha=0.44$ Select particle pairs by rapidity of pair

Conclusion (Durham agrees):
Increase in R with y_{23}^{J} is due to appearance of gluon jet

τ-model elongation - $\llcorner 3$ preliminary

- Durham, JADE agree
- Elongation decreases with $y_{23}, R_{\text {side }} \approx 0.5-0.9 R_{\text {long }}$
- agrees with Gaussian/Edgeworth

