

Latest Higgs results from CMS

M.Bachtis (CERN) on behalf of the CMS Collaboration

Introduction

- The observation of a new boson at the LHC started an era of precision measurements for the characterization of the new state
- Today, two years later, CMS closes chapter on Higgs measurements with the final harvest of results from the full Run I dataset

Data sample

CMS Integrated Luminosity, pp

Higgs production @ the LHC

M.Bachtis CERN-LHC Seminar 15/07/14

Higgs decay modes

 Probably expected to see Zy and µµ with very high luminosity

M.Bachtis CERN-LHC Seminar 15/07/14

Summary of CMS searches

200

400

★ "seen" ☆ "tried"	H→bb	Η→ττ	H→WW*	H→ZZ*	Н→үү	H→Zγ	H→inv.	Н→μμ
ggH		*	*	*	*	*		\overleftrightarrow
VBF		*	*	*	*	\$		\$
VH	*		☆	\$	\$			
ttH	\overleftrightarrow			\$	*			

$H \rightarrow ZZ^* \rightarrow 4$ charged leptons

- Data recorded: Wed May 23 21:09:26 2012 CES Run/Event: 194789 / 164079659 Lumi section: 118
- Fully reconstructed final state
- Exploit angular information to reject background and measure spin-parity properties

M.Bachtis CERN-LHC Seminar 15/07/14

- Signature of 4 high quality leptons
 - add tagged photons from FSR
- Small and flat (in mass) backgrounds
 - SM qq/gg \rightarrow ZZ \rightarrow 4I
 - Z+ bb/cc , top pairs
- Excellent mass resolution

g(q

7

$H \rightarrow ZZ^* \rightarrow 4l$ distributions

 m_{4l} (GeV) Fold angular information in a kinematic discriminant to separate Higgs and SM qq \rightarrow ZZ background

- Data distributions in agreement with expected SM Higgs signal
- Expected significance of 6.7σ (obs. 6.8σ)

H → ZZ* mass and signal strength

• $M_{H} = 125.6 \pm 0.4$ (stat) ± 0.2 (syst) GeV

 Consistency between the different four lepton final states

 Global signal strength and strength by production mode in agreement with SM

9

$H \rightarrow WW^* \rightarrow 2l2v$

- Two high quality OS leptons+ ME_T
- Final state not fully reconstructed
 - Broad signal peak
- Large expected yield for properties measurements
 - once the mass is known
- Exploit angular correlations to reject background

- Analysis performed in categories
 - Based on # jets including exclusive VBF tagging (di-jet)
 - Based on di-lepton signature
 - Using also tri-lepton events to probe VH

JHEP 1401 (2014) 096 10

H → WW* results

- Excess observed on top of the broad backgrounds
- Expected significance of 5.8σ (obs. 4.3σ)
- Signal strength @ 125.6 GeV = 0.72 +0.20
 _-0.18

- Reconstruct a pair of high • quality photons
- Smooth falling background \bullet spectra
 - Direct di-photon production
 - Events with fake photons
- Excellent mass resolution required! **Expected sensitivity**

Lumi section: 575

- Latest ECAL calibration
- Run dependent MC
- Better modeling of out of time PU
- New background model

M.Bachtis CERN-LHC Seminar 15/07/14

Improvements to the analysis

- Analysis chain re-optimized
- Additional exclusive categories
- Improvement on energy scale systematics

arXiv 1407.2856 12

M.Bachtis CERN-LHC Seminar 15/07/14

$H \rightarrow \gamma \gamma$ photon and vertex ID

- Built out of ECAL clusters expanding on the bending plane
 - Same clusters used for electrons
 - Conversion pairs also tagged
- Deploy a multivariate discriminant
 - using shower shape and isolation information

- MVA vertex selection using di-photon kinematics and vertex information
- Validated with Z → µµ after removing muon tracks
 - And re-reconstructing vertices

$H \rightarrow \gamma \gamma$ event categorization

- Di-photon discriminant defines categorization
 - for non-exclusive categories
 - based on kinematics and mass resolution

NEW!

$H \rightarrow \gamma \gamma$ category composition

- Untagged and di-jet categories split based on output of multivariate discriminants
- Resolution varies from 1.0-2.6 GeV in categories

M.Bachtis CERN-LHC Seminar 15/07/14

NEW!

$H \rightarrow \gamma \gamma$ combined mass spectra

- Visible excess at ~ 125 GeV
 - Even unweighted

V • Expected Significance of 5.2σ(Obs 5.7σ)

NEW!

$H \rightarrow \gamma \gamma$ mass measurement

M.Bachtis CERN-LHC Seminar 15/07/14

arXiv 1407.2856 17

$H \rightarrow \gamma \gamma$ signal strength

- Signal strength of 1.14 +0.26 -0.23
- Compatibility between categories, production modes and with the SM

NEW!

Mass combination

19.7 fb⁻¹ (8 TeV) + 5.1 fb⁻¹ (7 TeV)

Combined

 $H \rightarrow \gamma \gamma$ tagged

H → ZZ tagged

CMS PAS HIG-14-009 19

- Combination of $H \rightarrow yy$ and $H \rightarrow ZZ$
 - Floating yields for production and decay
- Individual final states compatible @ 1.6σ level

10

9

8

CMS

Preliminary

 $H \rightarrow \gamma \gamma + H \rightarrow ZZ$

2∆ In

M.Bachtis CERN-LHC Seminar 15/07/14

$\mathbf{H} \to \mathbf{\tau}\mathbf{\tau}$

- Plethora of final states based on tau decay modes
- Experimental challenges
 - Hadronic tau identification
 - Di-tau mass reconstruction

JHEP 1405 (2014) 104 20

M.Bachtis CERN-LHC Seminar 15/07/14

$H \rightarrow \tau \tau$ results

$H \rightarrow bb$ and fermion combination

- Obs.(Exp) Significance of ~2σ
 @ 125 GeV
- Diboson(VZ) peak extracted as cross check >6σ

 Combination with di-tau final state provides solid evidence for fermionic decays of the Higgs boson

M.Bachtis CERN-LHC Seminar 15/07/14

ttH combined results

- Expected uncertainty on signal strength ~ 100%
 - Mild excess observed in SS di muon events
 - Within two standard deviations wrt SM expectation

Combined signal strength

m_u = 125 GeV

per decay

19.7 fb⁻¹ (8 TeV) + 5.1 fb⁻¹ (7 TeV)

CMS

Preliminarv

 $\mu = 1.00 \pm 0.13 \pm 0.09 \text{(stat)}$

Combined

 $H \rightarrow bb tagged$

 $H \rightarrow \tau \tau$ tagged

 $\mu = 1.00 \pm 0.13$

 $\mu = 0.93 \pm 0.49$

- Uncertainty at 15% level
- Theoretical systematics start to become important
- Compatibility between measurements and with SM

M.Bachtis CERN-LHC Seminar 15/07/14

Measurement of the couplings (I)

In each analysis we measure:

$$\sigma(XX \to H) \times BR(H \to YY) \approx \frac{g_x^2 g_y^2}{\Gamma_{tot}}$$

Defining deviations from the SM couplings of the form: $\kappa_x = \frac{g_X}{q_Y^{SM}}$

the signal strength is μ

$$\iota \approx \frac{\kappa_X^2 \kappa_Y^2}{\frac{\Gamma_{tot}}{\Gamma_{tot}^{\rm SM}}}$$

The total width deviation in principle depends on all couplings $\frac{\Gamma_{tot}}{\Gamma_{tot}^{\rm SM}} \approx \sum_{i} \kappa_i^2 BR(H \to Y_i Y_i)^{\rm SM} + \text{BSM contribution}$

For a given set of coupling deviations, a fit is performed in all final states

Measurement of the couplings(II)

- Loops can be resolved (at NLO QCD and LO EWK)
 - Or assume effective couplings [model independent]
- Assume undetected states 100% correlated with similar detected

Simplest model $[\mathbf{K}_{V}\mathbf{K}_{F}]$

- Scale all fermions couplings by the same factor and all vector boson couplings by the same factor
 - Negative sign allowed due to destructive interference in di-photon loop
- Compatibile with the SM

M.Bachtis CERN-LHC Seminar 15/07/14

Other models

- Six benchmark models studied
 - Fermions vs bosons
 - Test of Custodial symmetry (W vs Z)
 - Up vs down fermions
 - Interesting for 2HDMs
 - Quarks vs leptons
 - Common (Yukawa) structure?
 - Physics in the loops
 - New physics at nearby scales?
 - Extra width to BSM?
- No significant deviations

More general model

- Assuming effective loop couplings for quarks and gluons
 - Top coupling from ttH
 - Gluon coupling from gluon fusion
- Top coupling directly from ttH
- Gluon coupling from gluon fusion production
- Compatibility with the SM
- With larger statistics, will start looking at deviations...

Higgs width from off-shell ZZ

- Off-shell production sizeable at high mass
 - ~7.6% of the total cross section > 2Mz
 - Destructive interference between H and gg → ZZ
- On-shell and off-shell production comparison constrains the width:

- Mild model dependence
 - No new physics at high M_{zz}
 - Gluon fusion production and ZZ decay

<u>Final states</u>

- Four lepton final state
 - 2D fit in mass and gluon fusion discriminant
- 2l2v final state
 - 1D fit in transverse mass

Results on bounds on \Gamma_{tot}

- Expected width < 30 MeV @95%CL
 - Observed width<22 MeV
 - SM Width of 4.15 MeV

M.Bachtis CERN-LHC Seminar 15/07/14

Anomalous couplings in spin 0

Generic decay amplitude in $H \rightarrow VV$ defined in terms of complex and momentum dependent couplings (up to q²) SM tree level +

 $A(X_{J=0} \rightarrow V_1 V_2) = v^{-1} \left(\begin{array}{c} a_1 - e^{i\phi_{\Lambda_1}} \frac{q_{Z_1}^2 + q_{Z_2}^2}{(\Lambda_1)^2} \\ + a_2 f_{\mu\nu}^{*(Z_1)} f^{*(Z_2),\mu\nu} + a_3 f_{\mu\nu}^{*(Z_1)} \tilde{f}^{*(Z_2),\mu\nu} \\ + a_2^{2\gamma} f_{\mu\nu}^{*(Z)} f^{*(\gamma),\mu\nu} + a_3^{2\gamma} f_{\mu\nu}^{*(Z)} \tilde{f}^{*(\gamma),\mu\nu} \\ + a_2^{2\gamma} f_{\mu\nu}^{*(\gamma)} f^{*(\gamma_2),\mu\nu} + a_3^{2\gamma} f_{\mu\nu}^{*(\gamma_1)} \tilde{f}^{*(\gamma_2),\mu\nu} \\ + a_2^{\gamma\gamma} f_{\mu\nu}^{*(\gamma_1)} f^{*(\gamma_2),\mu\nu} + a_3^{\gamma\gamma} f_{\mu\nu}^{*(\gamma_1)} \tilde{f}^{*(\gamma_2),\mu\nu} \\ \end{array} \right)$ $A(X_{J=0} \rightarrow V_1 V_2) = v^{-1} \left(\begin{array}{c} a_1 - e^{i\phi_{\Lambda_1}} \frac{q_{Z_1}^2 + q_{Z_2}^2}{(\Lambda_1)^2} \\ F^{*(Z_1)} (\Lambda_1)^2 \end{array} \right) + \left(\begin{array}{c} a_1 - e^{i\phi_{\Lambda_1}} \frac{q_{Z_1}^2 + q_{Z_2}^2}{(\Lambda_1)^2} \\ F^{*(Z_1)} (\Lambda_1)^2 \end{array} \right) + \left(\begin{array}{c} a_2 + e^{i\phi_{\Lambda_1}} \frac{q_2}{(\Lambda_1)^2} \\ F^{*(Z_1)} f^{*(Z_2),\mu\nu} + a_3^{2\gamma} f_{\mu\nu}^{*(Z_1)} \tilde{f}^{*(\gamma_1),\mu\nu} \\ F^{*(\gamma_1)} f^{*(\gamma_2),\mu\nu} + a_3^{2\gamma} f_{\mu\nu}^{*(\gamma_1)} \tilde{f}^{*(\gamma_2),\mu\nu} \\ F^{*(\gamma_1)} f^{*(\gamma_1)} f^{*(\gamma_1)} f^{*(\gamma_1)} F^{*(\gamma_1)} F^{*(\gamma_1)} \\ F^{*(\gamma_1)} f^{*(\gamma_1)} f^{*(\gamma_1)} f^{*(\gamma_1)} F^{*(\gamma_1)} \\ F^{*(\gamma_1)} f^{*(\gamma_1)} f^{*(\gamma_1)} f^{*(\gamma_1)} f^{*(\gamma_1)} f^{*(\gamma_1)} \\ F^{*(\gamma_1)} f^{*(\gamma_1)} f^{*(\gamma_1)}$

- Zy* and $\gamma*\gamma*$ only present in the ZZ* case
- $\Lambda_1 \rightarrow$ scale of new physics affecting tree level VV* coupling
- goal \rightarrow extract the α_i parameters!

M.Bachtis CERN-LHC Seminar 15/07/14

Analysis strategy in ZZ* and WW*

Instead of the couplings themselves define ratios of cross sections:

$$f_{a3} = \frac{|a_3|^2 \sigma_3}{|a_1|^2 \sigma_1 + |a_2|^2 \sigma_2 + |a_3|^2 \sigma_3 + \tilde{\sigma}_{\Lambda_1} / (\Lambda_1)^4} \qquad \phi_{a3} = \arg\left(\frac{a_3}{a_1}\right)$$

- In the ZZ* final state possible to perform 8D fit to extract the results
 - Dimensionality can be reduced to 2D /3D by exploiting kinematic discriminants
- Both real and complex couplings are studied

- In the WW* final state, angular information is packed in the transverse mass and the dilepton mass distributions
 - Use 2D templates
 - Only real couplings studied

Probing a single coupling in ZZ*

- Real phases (0 or π)
- Good agreement between different techniques
- Better observed exclusion in fa3

M.Bachtis CERN-LHC Seminar 15/07/14

NEW

Probing 2D couplings

• 2D fit of fa_2 vs fa_3 with real phases

- Good agreement between discriminants and multidimensional fit
- 2D fit of fa2 vs $f\Lambda_1$ using the kinematic discriminant method
 - For real phases and after profiling the phases
 - As expected lower sensitivity when profiling
- Observation consistent with the SM

M.Bachtis CERN-LHC Seminar 15/07/14

NEW!

Hypotheses tests for J=1,2

Combining ZZ* and WW* final states

Several pure states have been considered

All alternative hypotheses excluded > 99% CL

M.Bachtis CERN-LHC Seminar 15/07/14

Search for LFV Higgs decays

M.Bachtis CERN-LHC Seminar 15/07/14

- Main backgrounds: $Z/H \rightarrow \tau\tau$
- Similar strategy as in the di-tau analysis
- Exploit collinearity between tau and MET
 - Use collinear approximation

CMS PAS HIG-14-005 38

LFV Higgs mass distributions

M.Bachtis CERN-LHC Seminar 15/07/14

CMS PAS HIG-14-005 39

NEW!

Limits on BR(H $\rightarrow \tau \mu$)

- Expected limit on BR(H $\rightarrow \mu\tau$) = 0.75% @ 95% CL
 - Observed limit=1.57% @95% CL
- Mild excess on data at the level of 2.5σ

NEW!

FV Yukawa couplings

Promising future in the LFV Yukawa sector

M.Bachtis CERN-LHC Seminar 15/07/14

CMS PAS HIG-14-005 41

Invisible Decays

- Higgs → a portal to dark matter searches
 - CMS searches in VBF and ZH
 - $Z \rightarrow I^+I^-/bb$

Invisible Decays: Results

- BR results reinterpreted in the context of Higgs portal of DM interactions
- LHC Higgs search improves reach at low DM mass

M.Bachtis CERN-LHC Seminar 15/07/14

Improving ttH with $H \rightarrow bb$

- Improved sensitivity by introducing event probability
 - Based on ME probabilities

NEW!

Prospects for H $\rightarrow \mu\mu$

- Analysis a la di-photon
- Expected limit of 5.1 x SM [25x more data to probe it]
- Leptons not universal regarding Higgs decays !

M.Bachtis CERN-LHC Seminar 15/07/14

Conclusions

- CMS closes chapter of Higgs measurements
 - After the publication of the combination paper the main Run I analyses will be finished
 - Focus on preparation for data taking next year
- Excellent results with many measurements in many final states and production modes
- With the current statistical precision we observe a Higgs boson fully consistent with the SM
 - Regarding couplings and spin-parity properties
- Focus on using the new particle as tool to probe new physics (directly or indirectly)

Additional material

Challenges of *in situ* operations

Light yield variations:

- scintillation light \rightarrow temperature dependence: $\Delta S/S \sim -2\%/^{\circ}C @ 18 °C$
- crystal transparency \rightarrow radiation dose-rate dependence

Photo-detector response:

- gain temperature dependence: $\Delta G/G \sim -2\%/^{\circ}C$
- APD → gain High-Voltage dependence: $\Delta G/G \sim 3\%/V$ direct ionization effects, a.k.a. "spikes"
- \blacksquare VPT \rightarrow response dependence on the incremental charge at the cathode

Tracker material in front of ECAL:

- photon conversions
- bremsstrahlung losses for electrons

3.8 T solenoidal magnetic field:

- **spread** of the *e*, γ energy along φ , at \approx constant η
- \rightarrow Excellent environmental stability (×2 to ×3 better than required) [3]
- ightarrow Dedicated monitoring system and calibration techniques

[4, 5]

 \rightarrow Specific energy reconstruction algorithms and corrections

federico.ferri@cern.ch

ICHEP 2014, Valencia, July 2-9 2014

Monitoring and calibration signals

ICHEP 2014, Valencia, July 2-9 2014

Performance: energy resolution

With electrons from Z

federico.ferri@cern.ch

Accurate simulation

Noise model:

- realistic noise with sample-correlations and channel-to-channel variations
- increase of the APD dark current (expected)
- transparency variations for realistic light-yield (and corresponding photo-statistics)

Material description:

- including in-homogeneities in φ of services in front of the endcaps
- for systematic uncertainties, being implemented in current simulation

Light propagation effects in the crystals (only relevant for upgrade studies) Varying conditions used for a "run-dependent" simulation [N. Marinelli's talk] federico.ferri@cern.ch ICHEP 2014, Valencia, July 2-9 2014

Performance evolution

- The energy resolution measured in data with $Z \rightarrow ee$ is used to model the expected $H \rightarrow \gamma \gamma$ signal in the simulation
- Steady progress and excellent results

ICHEP 2014, Valencia, July 2-9 2014

ECAL-related systematic uncertainties on m_H

From $H \rightarrow \gamma \gamma$:

 $m_H = 124.70 \pm 0.31(\text{stat}) \pm 0.15(\text{syst}) \text{ GeV}$

Electron/photon differencies in the simulation	eV
 material distribution 0.07 Ge longitudinal light-yield non-uniformity 0.02 Ge Geant4 0.06 Ge uncertainty on the single contribution: ≈ 10 MeV 	e∨ e∨
N.B.: the detector response to electrons and photons <u>shows</u> differences at the level of 0.5%. What matters is the <i>difference of these differences</i> between da and simulation.	e ta
■ Residual non-linearity in scale 0.10 Ge	eV
Photon energy scale corrections 0.05 Get	eV
\blacksquare Z line shape 0.01 Ge	eV
Checked and negligible contribution: gain switch of the electronics	

More detail: residual non-linearity in scale

- Residual non-linearity of the energy response in data relative to simulation, relevant in the extrapolation from the energy scale measured at the Z peak (\approx 90 GeV) to the Higgs boson mass (\approx 125 GeV)
 - 1. electron E/p vs. E_T with electrons from Z and W decays
 - 2. di-electron invariant mass vs. $H_T = E_T^1 + E_T^2$ in $Z \to ee$ events

0.08% effect on the Higgs boson mass

54 federico.ferri@cern.ch

More detail: longitudinal non-uniformity (NUF)

R&D achievements: adequate uniformity of longitudinal light yield

one face of each barrel crystal depolished

Simulation: rear non-uniformity of 0.15%, front part assumed uniform

- Ionizing radiation found to induce additional NUF of 30% of its initial value (worst case scenario) at the end of Run1 [6]
- $\rightarrow\,$ simulation modified to account for these effects
- at most 0.06% effect on the energy scale, anti-correlated between converted and un-converted photons \rightarrow 0.015% effect on the mass

Diphoton background model

- Imagine a simple case with one POI, x, and one nuisance parameter, θ
 - Black line standard likelihood scan of x profiling θ
 - Blue line standard likelihood scan of x freezing θ (stat. only)
 - Red lines standard likelihood scans of freezing θ to different values
 - Pink line Envelope around this
- If you sample enough of the infinite θ phasespace eventually you can reproduce the black curve with the pink "envelope".
 If you sample enough of the infinite θ phasespace eventually you can reproduce the black curve with the

122

123

124

125

128

129

130 x

Di-photon background model

- In principle would like to sample the "infinite" phase space of all possible functions.
 - In practice this is impossible.
- Instead, choose from four classes which we expect ca reasonably cover the phase-space:
 - Power law sum.
 - Exponential sum.
 - Laurent series.
 - Bernstein polynomials.
- Lowest order selected by loose G.O.F test.
- Highest order selected by loose variant of the F-test.

Summary of couplings

CMS

Model		B	est-fit resul	lt	Comment
Parameters	Table in Ref. [27]	Parameter	68% CL	95% CL	Comment
$\kappa_Z, \lambda_{\rm WZ}(\kappa_{\rm f}{=}1)$		λ_{WZ}	$0.94\substack{+0.22\\-0.18}$	[0.61,1.45]	$\lambda_{WZ} = \kappa_W / \kappa_Z$ using ZZ and 0/1-jet WW channels.
$\kappa_Z, \lambda_{WZ}, \kappa_f$	44 (top)	λ_{WZ}	$0.91\substack{+0.14 \\ -0.12}$	[0.70,1.22]	$\lambda_{WZ} = \kappa_W / \kappa_Z$ from full combination.
κ _V , κ _f	43	κ _V	$1.01\substack{+0.07 \\ -0.07}$	[0.88,1.15]	κ _V scales couplings to W and Z bosons.
1000000	(top)	κ _f	$0.89\substack{+0.14 \\ -0.13}$	[0.64,1.16]	κ _f scales couplings to all fermions.
v v	48	$\kappa_{\rm g}$	$0.89\substack{+0.10\\-0.10}$	[0.69,1.10]	Effective couplings to
~g, ~ ~	(top)	Kγ	$1.15_{-0.13}^{+0.13}$	[0.89,1.42]	gluons (g) and photons (γ).
$\kappa_{g}, \kappa_{\gamma}, BR_{BSM}$	48 (middle)	BR _{BSM}	≤ 0.13	[0.00,0.32]	Branching fraction for BSM decays.
$\kappa_{\rm V}, \lambda_{\rm du}, \kappa_{\rm u}$	46 (top)	λ_{du}	$1.01\substack{+0.20 \\ -0.19}$	[0.66,1.43]	$\lambda_{du} = \kappa_u / \kappa_d$, relating up-type and down-type fermions.
$\kappa_{\rm V}, \lambda_{\ell \rm q}, \kappa_{\rm q}$	47 (top)	$\lambda_{\ell q}$	$1.02\substack{+0.22\\-0.21}$	[0.61,1.49]	$\lambda_{\ell q} = \kappa_{\ell} / \kappa_{q}$, relating leptons and quarks.
		ĸg	$0.76^{+0.15}_{-0.13}$	[0.51,1.09]	
* * *		xy	$0.99^{+0.18}_{-0.17}$	[0.66,1.37]	
~g, ~γ, ~V,	Similar to	κ_V	$0.97^{+0.15}_{-0.16}$	[0.64,1.26]	
	50 (top)	$\kappa_{\rm b}$	$0.67^{+0.31}_{-0.32}$	[0.00,1.31]	Down-type quarks (via b).
<i>κ</i> _b , <i>κ</i> _τ , <i>κ</i> _t		κτ	$0.83^{+0.19}_{-0.18}$	[0.48,1.22]	Charged leptons (via τ).
		κ_{t}	$1.61^{+0.33}_{-0.32}$	[0.97,2.28]	Up-type quarks (via t).
as above		2000-00-00-00-00-00-00-00-00-00-00-00-00			
plus BR_{BSM} and $\kappa_V \le 1$	-	BR _{BSM}	≤ 0.34	[0.00,0.58]	

Production mode scaling

Di-photon analyses Compatibility

- Jack-knife provides estimate of expected width, σ(δμ), between two correlated analyses using sub-samples of each dataset.
 - Used Bernstein polynomial background model for simplicity.

Analysis 1	Analysis 2	σ(δμ)	δμ (obs)	Linear correlation
Final MVA 8 TeV	Final CiC 8 TeV	0.20	0.19	74%
Final MVA 7 TeV	Final CiC 7 TeV	0.42	0.17	72%
Final MVA 8 TeV	Moriond MVA 8 TeV	0.21	0.22	71%
Final CiC 8 TeV	Moriond CiC 8 TeV	0.21	0.03	76%
Final MVA (Envelope) 8 TeV	Final MVA (Bernsteins) 8 TeV	0.22	0.35	-
CiC – (Find	MVA Overlap al Data 8 TeV)	CiC	CiC – MVA (Final Sign	al 8 TeV)

Production modes

