
1. Introduction

2. Monitoring-related features of XRootD

3. Issues with CMS federation monitoring

Talk outline:

Matevž Tadel mtadel@ucsd.edu

XRootD@UCSD, 1/28/15 M. Tadel: Understanding XRootD Monitoring 2

• Are your servers configured and used right?
– We care, because it affects xrootd operation and you’ll

blame us if things are not good enough.

• XRootD daemon performance
– Memory, CPU, storage & network usage

– How are xrootd daemons using their resources
– e.g.: threads, data buffers, number of connections

• Cluster performance:
– File lookup & Redirection to “right” servers

• Accounting – who is using the system and how

XRootD@UCSD, 1/28/15 M. Tadel: Understanding XRootD Monitoring 3

• Are things running smoothly

– all servers up and reasonably balanced

– users are able to get data out

• When xrootd is used on top of local access

– Impact on site storage and LAN

– is xrootd usage within expected parameters

– are users doing bad™ things

XRootD@UCSD, 1/28/15 M. Tadel: Understanding XRootD Monitoring 4

• Is the site working for us?
– Can find its data / be redirected to it
– Users can open and read files
➙ authentication & storage access configuration

• Is site & federation performance acceptable:
– Lookup, redirection and file open rate
– Read / request rate – global and per connection

• Impacts CPU efficiency for remote reading

➙ Storage and WAN throughput & latency
➙ How suitable the application is for remote access

• Accounting that can be correlated with centrally
controlled activities.

XRootD@UCSD, 1/28/15 M. Tadel: Understanding XRootD Monitoring 5

XRootD monitoring can only provide a part of the

total picture. It does not do:
1. overall system monitoring

2. network / connectivity monitoring

3. check if authentication / file access works

4. performance / scaling measurements

If needed, one needs to do it independently:
– 1, 2 on site level

– 3, 4 (and maybe 2) on VO level

Large VOs (like LHC ones) and Grid providers (like
OSG) all have frameworks for handling this.

XRootD@UCSD, 1/28/15 M. Tadel: Understanding XRootD Monitoring 6

Documentation: http://xrootd.org/docs.html

• Configuration: “Xrd/XRootd Configuration Reference”

• What is reported: “System monitoring reference”

XRootD@UCSD, 1/28/15 M. Tadel: Understanding XRootD Monitoring 7

http://xrootd.org/docs.html
http://xrootd.org/docs.html

• Report what XRootD processes are doing
– on the level of a whole process
 Summary monitoring
– on the level of individual user session / open file
 Detailed monitoring
 Includes also redirection & staging events

• Both are sent as UDP packages to up to two
destinations
– Implemented so as to have minimal impact on servers.
– Detailed monitoring is somewhat stateful (packet loss can

be a problem).
– Ideally, collectors should run “close” to servers (sigh, etc).

XRootD@UCSD, 1/28/15 M. Tadel: Understanding XRootD Monitoring 8

• Specifying site name

 all.sitename sname

– If configured, this shows up in

• every summary message

• in server identification (‘=‘) detailed stream
– periodic, typically every 2 to 5 min

– E.g., at UCSD for CMS:

 all.sitename T2_US_UCSD

XRootD@UCSD, 1/28/15 M. Tadel: Understanding XRootD Monitoring 9

• Periodic reports from xrootd and cmsd
daemons in XML format
xrd.report dest1[,dest2] [every rsec] [-]option

 option: all | buff | info | link | poll | process |

 prot[ocols] | sched | sgen | sync | syncwp

 [[-]option]

• E.g., for CMS, collector running at UCSD:
 xrd.report xrootd.t2.ucsd.edu:9931 every 30s all sync

XRootD@UCSD, 1/28/15 M. Tadel: Understanding XRootD Monitoring 10

<statistics tod="1421698118" ver="v3.3.5" src="cabinet-8-8-

6.t2.ucsd.edu:1094" tos="1418409578" pgm="xrootd" ins="anon" pid="3541"

site="T2_US_UCSD"><stats id="info"><host>cabinet-8-8-

6.t2.ucsd.edu</host><port>1094</port><name>anon</name></stats><stats

id="buff"><reqs>110624</reqs><mem>176465920</mem><buffs>358</buffs><adj>0</

adj></stats><stats

id="link"><num>1</num><maxn>122</maxn><tot>5301</tot><in>526680393</in><out

>1749220925590</out><ctime>36508960</ctime><tmo>249066</tmo><stall>3</stall

><sfps>0</sfps></stats><stats

id="poll"><att>1</att><en>249066</en><ev>249072</ev><int>0</int></stats><st

ats

id="proc"><usr><s>11863</s><u>39543</u></usr><sys><s>5465</s><u>697087</u><

/sys></stats><stats

id="xrootd"><num>4680</num><ops><open>55092</open><rf>0</rf><rd>21972049</r

d><pr>0</pr><rv>137063</rv><rs>9095834</rs><wr>0</wr><sync>0</sync><getf>0<

/getf><putf>0</putf><misc>61578</misc></ops><aio><num>0</num><max>44</max><

rej>41</rej></aio><err>17690</err><rdr>0</rdr><dly>0</dly><lgn><num>4679</n

um><af>3</af><au>4673</au><ua>0</ua></lgn></stats><stats

id="ofs"><role>server</role><opr>1</opr><opw>0</opw><opp>0</opp><ups>0</ups

><han>1</han><rdr>0</rdr><bxq>0</bxq><rep>0</rep><err>0</err><dly>0</dly><s

ok>0</sok><ser>0</ser><tpc><grnt>0</grnt><deny>0</deny><err>0</err><exp>0</

exp></tpc></stats><stats

id="sched"><jobs>831528</jobs><inq>0</inq><maxinq>6</maxinq><threads>48</th

reads><idle>45</idle><tcr>115</tcr><tde>67</tde><tlimr>0</tlimr></stats><st

ats

id="sgen"><as>0</as><et>0</et><toe>1421698118</toe></stats></statistics>

XRootD@UCSD, 1/28/15 M. Tadel: Understanding XRootD Monitoring 11

• For xrootd & cmsd
– info: name, port, host
– link: in/out transfers, # of connections, …
– proc: sys and user cpu usage
– sched: total / used threads, max task queue length
– sgen: time needed for generation of the report

• For xrootd
– buff: data buffer number, total size, # of requests
– ofs: files-system level operation counts
– oss: list of used paths / configured spaces + free space
– poll: # of polling operations / events
– xrootd: # of different operations, logins on protocol level

• For cmsd, mostly relevant for manager cmsds
– cmsm: per server statistics of redirections, responses, …

XRootD@UCSD, 1/28/15 M. Tadel: Understanding XRootD Monitoring 12

• mpxstats included in distribution
– aggregates messages into a single stream

• xrd-rep-snatcher developed for AAA
– https://github.com/osschar/xrd-rep-snatcher

– What it does:
• Normalize input

• Domain -> site name (a bit obsolete with all.sitename)

• Calculate rates on relevant fields

• Report selected fields to MonALISA using ApMon
– Can be extended for other time series tracking tools

XRootD@UCSD, 1/28/15 M. Tadel: Understanding XRootD Monitoring 13

https://github.com/osschar/xrd-rep-snatcher
https://github.com/osschar/xrd-rep-snatcher
https://github.com/osschar/xrd-rep-snatcher
https://github.com/osschar/xrd-rep-snatcher
https://github.com/osschar/xrd-rep-snatcher

XRootD@UCSD, 1/28/15 M. Tadel: Understanding XRootD Monitoring 14

XRootD@UCSD, 1/28/15 M. Tadel: Understanding XRootD Monitoring 15

Requires post processing to merge
all servers from a given site

• Inspect in detail what servers are doing
– xrootd process only

– redirectors can also report every redirection

• “Standard operations”:
– Session begin / end, authentication, user info

– Open / close a file

– Reporting of read / write events:
• report totals on file close

• periodic “progress” updates (f-stream)

• individual requests (t-stream with io option)

• unpacked vector read requests (t-stream with iov option)

XRootD@UCSD, 1/28/15 M. Tadel: Understanding XRootD Monitoring 16

• Detailed accounting
– When, who, from where, how long and how much

– Every access is reported.

• Analyze data-access patterns
– Improve application access to data

– Tune parameters for a prefetching proxy-cache

• Misuse and abuse detection

What could be added:
– Reporting of failed authentication attempts

– Getting exit status and CPU efficiency from client

XRootD@UCSD, 1/28/15 M. Tadel: Understanding XRootD Monitoring 17

• Collecting and archiving this information gets
hard in a large, non-uniform federation.

– But then again, running large, non-uniform
federations is really hard in itself.

• Somebody has to analyze this information and
stay on top of it.

– Every access is registered, including active
monitoring probes, scaling tests, etc

• Can easily skew the results / conclusions

XRootD@UCSD, 1/28/15 M. Tadel: Understanding XRootD Monitoring 18

Different types of UDP packets – each coming in their own
“stream” (from xrootd point of view).
All have binary header followed by either string or more
binary data.
• = server identification – track server restarts
• u user session + optional authentication info
• r redirection events
• d file open events
• i application info; arbitrary string from client
• Read/write progress – also include file close and session

end records.
– f periodic report on amount of data read/written
– t reports individual read/write requests

Streams use 8-bit sequential ids to determine out of order /
lost packets.

XRootD@UCSD, 1/28/15 M. Tadel: Understanding XRootD Monitoring 19

xrootd.monitor [options] dest [dest]

options:[all] [auth] [flush [io] intvl[m|s|h]]

 [fstat intvl[m|s|h] [lfn] [ops] [ssq] [xfr cnt]]

 [ident sec] [mbuff size[k] [rbuff size[k]]

 [rnums cnt] [window intvl[m|s|h]]

 dest: dest events host:port

 events: [files] [fstat] [io[v]] [info] [redir] [user]

E.g., at UCSD for CMS:
xrootd.monitor all auth flush io 60s ident 5m mbuff 8k

 rbuff 4k rnums 3 window 10s

 dest files io info user redir xrootd.t2.ucsd.edu:9930

 dest files iov info user xrootd.t2.ucsd.edu:9932

XRootD@UCSD, 1/28/15 M. Tadel: Understanding XRootD Monitoring 20

ident 5m server identification interval

all monitor all sessions / transfers

auth include authentication details

flush io 60s send out interval, including IO (t-stream)

mbuff 8k monitoring buffer size

window 10s timestamp precision

rbuff 4k rnums 3 redirection buffer size & number

dest files io info user redir xrootd.t2.ucsd.edu:9930

dest files iov info user xrootd.t2.ucsd.edu:9932

XRootD@UCSD, 1/28/15 M. Tadel: Understanding XRootD Monitoring 21

• Report static information about the process
srvinfo: &pgm=prog&ver=vname&inst=iname&port=pnum&site=sname

– Server is fully identified by hostname, port and start
time.

• UDP source port is also unique for the lifetime of server.

• Start time is in header of every packet.

• Heart-beat – detect servers that go down

XRootD@UCSD, 1/28/15 M. Tadel: Understanding XRootD Monitoring 22

u userid[\n[authinfo]]

userid: user.pid:sid@host

authinfo:&p=prot&n=[name]&h=[hname]&o=[org]&r=[role]

 &g=[grp]&m=[info]

• Maps the user to an dictid (32-bit unsigned int)

– dictid in map record header

– used in binary streams ‘t’, ‘f’

• Single record per UDP packet, sent out as soon as it happens.
• userid: provided by client: local username, process id and socket file

descriptor
– This uniquely identifies a user session, used in ‘d’ stream

• authinfo: filled if requested, depends on protocol
– &m= a special field for monitoring info

• User identity sent in plain-text
– This got us into EU data privacy law hell

XRootD@UCSD, 1/28/15 M. Tadel: Understanding XRootD Monitoring 23

d u s e r i d \ n p a t h

• Maps file name to a dictid passed in header.
– used in binary streams ‘t’, ‘f’

• Single record per UDP packet, sent out as soon as it
happens.

• User must be found through user id (string).

Note: When using f-stream, one can get the information
by specifying lfn option in fstat configuration fragment.

XRootD@UCSD, 1/28/15 M. Tadel: Understanding XRootD Monitoring 24

• Highly encoded binary stream:
– Packet is sent out when mbuff is full or flush timeout

is reached … but only when the next message comes!
• With io/iov each session has its own buffer!

– A vector of messages describing session / file events:
• time window transition

• file close / session end messages. Close includes xfer totals.

• with io option: write / read / vector read messages
– read/write requests have offset, length

– vector reads have: time, total length, number of sub-requests
(offsets are not known).

• With iov option: as above but
– vector reads are unpacked so length and offset for every sub-

request are known

XRootD@UCSD, 1/28/15 M. Tadel: Understanding XRootD Monitoring 25

• Highly encoded binary stream:
– Packet is sent out at configured interval

• Begin/End times in header

– After that the following records follow:
• file open events, optionally including file name
• transfer progress for files that were accessed in the interval;

total bytes read/written
• close events with detailed statistics of accesses
• disconnect events

• Uses much less resources
– A good option when access details are not needed

• Is also supported by dCache-2.6 and later!

XRootD@UCSD, 1/28/15 M. Tadel: Understanding XRootD Monitoring 26

• ‘u’ packet – session will not be tracked

• ‘d’ packet – the file will not be tracked

• ‘t’ packet without a file close/disconnect event

– The lost part of accesses is not accounted for.

– Totals are still reported in close record.

• ‘t’ or ‘f’ packet containing a file close or a disconnect
event:

– Collector keeps the file / session as open and eventually
times out on inactivity.

– A possible way out: server periodically reports all session /
filed dictids that are still active.

XRootD@UCSD, 1/28/15 M. Tadel: Understanding XRootD Monitoring 27

• xrootd does not always get notified that a client
got zapped. Contributing factors:
– Brutal killing of processes

– Virtual machines, natted hosts, firewalls

• Monitoring can not know what happened, either.

• Solution: tell xrootd to be more vigilant:
 xrd.network keepalive kaparms 10m,1m,5

 xrd.timeout idle 60m

• With this, we have practically no hanging
connections at UCSD and MIT.

XRootD@UCSD, 1/28/15 M. Tadel: Understanding XRootD Monitoring 28

XRootD@UCSD, 1/28/15 M. Tadel: Understanding XRootD Monitoring 29

• Not entirely straightforward 

– Maintain mapping of user and file dictids to
corresponding objects for each server

• Tracking progress:

– For io/iov: Accumulate information in memory
until a file is closed

– For f-stream: Just update counters on update

• Real action can only be taken when file is
closed.

XRootD@UCSD, 1/28/15 M. Tadel: Understanding XRootD Monitoring 30

• The official collector XrdMon:
– http://www.gled.org/cgi-

bin/twiki/view/Main/XrdMon

• Binary distribution:
– RPM: ftp://ftp.gled.org/xrdmon/

– Yum repo: http://linuxsoft.cern.ch/wlcg/

init.d scripts packaged for usage at CERN

• A bit of a monster but not a hog!

• Includes UDP to TCP translation service

ALICE uses their own Java implementation.

XRootD@UCSD, 1/28/15 M. Tadel: Understanding XRootD Monitoring 31

http://www.gled.org/cgi-bin/twiki/view/Main/XrdMon
http://www.gled.org/cgi-bin/twiki/view/Main/XrdMon
http://www.gled.org/cgi-bin/twiki/view/Main/XrdMon
http://www.gled.org/cgi-bin/twiki/view/Main/XrdMon
ftp://ftp.gled.org/xrdmon/
ftp://ftp.gled.org/xrdmon/
ftp://ftp.gled.org/xrdmon/
http://linuxsoft.cern.ch/wlcg/
http://linuxsoft.cern.ch/wlcg/
http://linuxsoft.cern.ch/wlcg/

• Implemented as a library within Gled, http://gled.org

– C++ framework for The Brave & Bold

– Uses ROOT for network interface, serialization, and
configuration (scripts)

• Components:
– Packet queues, sources and consumers

– XrdMonSucker – processing of detailed streams

– Domain, Server, User, File representations

– Classes for generating output

– Simple ROOT classes for exporting data in binary format.

XRootD@UCSD, 1/28/15 M. Tadel: Understanding XRootD Monitoring 32

http://gled.org

• View currently opened files:

– via GUI on the collector itself

• useful for development & debugging

– via a web page, e.g. for CMS, docs for url args

• Other options were discussed:

– Send periodic reports to higher level aggregators

– Abuse detection: reports are only sent out when a
file is closed – collector could do it in real time.

XRootD@UCSD, 1/28/15 M. Tadel: Understanding XRootD Monitoring 33

http://xrootd.t2.ucsd.edu:4243/?no_same_site
http://www.gled.org/cgi-bin/twiki/view/Main/XrdMon#xrd_http_serve_open_files_C

• File Access Reports are produced at file close
– Historically, t-stream with io/iov was used

• statistics of access produced at file close
– number, min/avg/sigma/max size of requests, vread stats

• now f-stream produces the same information, collected
at the server

• Output options:
– ROOT TTrees, optionally including full IO and IOV

records

– Plain text to an UDP destination ➙ OSG Gratia

– JSON record via ActiveMQ ➙ Dashboard

XRootD@UCSD, 1/28/15 M. Tadel: Understanding XRootD Monitoring 34

• When using TTrees it’s a lot like any physics
analysis 

– Bunch of root files you have to chain together.

– An awful lot of background and noise.

• In a large federation the sample is polluted by:
– Monitoring, probes, test jobs, scaling tests

– Access types one is not interested in, e.g. local, xrdcp, ...

• Using event lists or skims makes a lot of sense

– Fun with aggregation into cumulative plots

– The ultimate fun with ROOT 2D graphics

XRootD@UCSD, 1/28/15 M. Tadel: Understanding XRootD Monitoring 35

• Micro framework for analysis of XrdMon TTrees

– Steering code / manager

– Filters

– Extractors

• Produce 1D/2D histograms and cumulative plots

• Several extractors with different filters get run in one pass

– Run over 1 year of AAA data can take close to an hour

• IOV analyzers, including caching proxy simulation

– “Given this IOV trace, how would caching proxy perform?”

– Plotting scripts (combine histograms for comparison)

XRootD@UCSD, 1/28/15 M. Tadel: Understanding XRootD Monitoring 36

XRootD@UCSD, 1/28/15 M. Tadel: Understanding XRootD Monitoring 37

XRootD@UCSD, 1/28/15 M. Tadel: Understanding XRootD Monitoring 38

• Notice xrdcp / lazy-preload
peaks

• Again, AOD access
consistent, +/- an order of
magnitude 

AOD

non-AOD, non-user non-AOD, user

Averages (in bytes):

• requests: 10 kB

• offsets: 1 – 10 MB

• total extent: up to 1 GB

Sum of each:

• requests: sum up to at
most the file size

• offsets and total extent
practically the same:

They add up to from a
couple to 20-times!

This covers the “missing”
positive offsets.

Federated Storage, 4/10/14 M. Tadel: Transcending the AAA access patterns 39

US CMS, remote AOD access

• Code is at:

https://github.com/osschar/AnXrdMon

• I expect it will get extended and improved
with OSG non-HEP VOs trying to use XRootD.

• Let me know if you’re interested in using this.

XRootD@UCSD, 1/28/15 M. Tadel: Understanding XRootD Monitoring 40

https://github.com/osschar/AnXrdMon
https://github.com/osschar/AnXrdMon

After the sun comes the rain.

XRootD@UCSD, 1/28/15 M. Tadel: Understanding XRootD Monitoring 41

• Several sites are not sending detailed monitoring at all,
e.g., FNAL using dCache-2.4

• Discrepancy between summary monitoring and what is
seen by CERN Dashboard
– Of course we are all pointing fingers across the Atlantic.

• Hanging connections – collector closes them after 24
hours:
– Wrong open duration ➙ data rate calculations get screwed.

• EU privacy laws

• Problem with mixed VO sites – to whom to report?

XRootD@UCSD, 1/28/15 M. Tadel: Understanding XRootD Monitoring 42

• We have a limited and erratic view of the
federation. Yay, etc …

• The mngmnt wants a reliable reporting for
production and centrally controlled jobs.

Solution:

• Collect statistics in CMS’s XrdAdapter and attach
it into cmssw job report.

• Detailed monitoring as we have it:
– Remains as an opt-in service for sites.
– Is used by experts for data access debugging,

optimizations and development of new services.

XRootD@UCSD, 1/28/15 M. Tadel: Understanding XRootD Monitoring 43

Provide detailed monitoring from XRootD Client:
– Report progress in streams, as detailed monitoring does

now.
– Accumulate access history:

• Send a complete report at the end.
• Application can also do what it wants, send it on to whomever,

include it in its log / job report.

– Can report full redirection paths, reconnects, multi-
stream input etc.

– No problem with mixed VO sites!
– Easier to avoid violation of privacy laws.

– The problem with zapped jobs remains (is even worse).

XRootD@UCSD, 1/28/15 M. Tadel: Understanding XRootD Monitoring 44

• Original monitoring design called for collectors to be
“close” to monitored servers.
– Nobody really expected them to be half way across the world

…

• It also turned out that letting “random people” control
your redirectors isn’t such a great idea.

Provide a VM image that contains redirector and collector.

– Controlled by federation operators, not site admins.

– Monitoring data can be collected on site and/or distributed to
a central location in a controlled and secure way.

XRootD@UCSD, 1/28/15 M. Tadel: Understanding XRootD Monitoring 45

XRootD@UCSD, 1/28/15 M. Tadel: Understanding XRootD Monitoring 46

• XRootD provides powerful and complete set of
monitoring features, services, and tools.

• There is no complete framework:
– The idea is one integrates this functionality with other site

/ VO monitoring probes and tools.

– XRootD can not provide all required information anyway.

• It is really hard to monitor huge non-homogenous
federations with limited control over resources.
– Client side monitoring seems to be the way to go – keep

sites out of the loop.

• It will be interesting to see how things go with OSG …

• We’re here to help: xrootd-l@slac.stanford.edu

XRootD@UCSD, 1/28/15 M. Tadel: Understanding XRootD Monitoring 47

