Understanding

' XRootD

Monitoring

(|

I.I""'-

Talk outline:

1. Introduction
2. Monitoring-related features of XRootD

3. Issues with CMS federation monitoring

Matevz Tadel mtadel@ucsd.edu

WHAT’S THERE TO MONITOR

XRootD perspective

Are your servers configured and used right?

— We care, because it affects xrootd operation and you’ll
blame us if things are not good enough.

XRootD daemon performance
— Memory, CPU, storage & network usage

— How are xrootd daemons using their resources
— e.g.: threads, data buffers, number of connections

Cluster performance:
— File lookup & Redirection to “right” servers

Accounting — who is using the system and how

Site / operator perspective

* Are things running smoothly
— all servers up and reasonably balanced
— users are able to get data out

* When xrootd is used on top of local access
— Impact on site storage and LAN

— is xrootd usage within expected parameters
— are users doing bad™ things

VO / Data-federation perspective

* |s the site working for us?
— Can find its data / be redirected to it
— Users can open and read files
—> authentication & storage access configuration

* |ssite & federation performance acceptable:
— Lookup, redirection and file open rate

— Read / request rate — global and per connection
* Impacts CPU efficiency for remote reading

—> Storage and WAN throughput & latency
= How suitable the application is for remote access

* Accounting that can be correlated with centrally
controlled activities.

What XRootD can not do for you

XRootD monitoring can only provide a part of the
total picture. It does not do:

1. overall system monitoring

2. network / connectivity monitoring

3. check if authentication / file access works
4. performance / scaling measurements

If needed, one needs to do it independently:
— 1, 2 on site level
— 3, 4 (and maybe 2) on VO level

Large VOs (like LHC ones) and Grid providers (like
OSG) all have frameworks for handling this.

Documentation: http://xrootd.org/docs.html

Configuration: “Xrd/XRootd Configuration Reference”

What is reported: “System monitoring reference”

BUILTIN XROOTD MONITORING
FEATURES

XRootD@UCSD, 1/28/15 M. Tadel: Understanding XRootD Monitoring

http://xrootd.org/docs.html
http://xrootd.org/docs.html

Built-in Monitoring from 30kft

* Report what XRootD processes are doing
— on the level of a whole process
Summary monitoring
— on the level of individual user session / open file
Detailed monitoring
Includes also redirection & staging events
 Both are sent as UDP packages to up to two
destinations
— Implemented so as to have minimal impact on servers.

— Detailed monitoring is somewhat stateful (packet loss can
be a problem).

— ldeally, collectors should run “close” to servers (sigh, etc).

Common configuration

e Specifying site name

all.sitename sname
— If configured, this shows up in

e every summary message
* in server identification (‘=‘) detailed stream

— periodic, typically every 2 to 5 min

— E.g., at UCSD for CMS:
all.sitename T2 US UCSD

Summary monitoring

* Periodic reports from xrootd and cmsd
daemons in XML format

xrd.report destl[,dest2] [every rsec] [-]loption

option: all | buff | info | 1link | poll | process |
prot[ocols] | sched | sgen | sync | syncwp
[[-]option]

e E.g., for CMS, collector running at UCSD:

xrd.report xrootd.t2.ucsd.edu:9931 every 30s all sync

How it looks ...

<statistics tod="1421698118" ver="v3.3.5" src="cabinet-8-8-
6.t2.ucsd.edu:1094" tos="1418409578" pgm="xrootd" ins="anon" pid="3541"
site="T2 US UCSD"><stats id="info"><host>cabinet-8-8-
6.t2.ucsd.edu</host><port>1094</port><name>anon</name></stats><stats
id="buff"><regs>110624</reqs><mem>176465920</mem><buffs>358</buffs><adj>0</
adj></stats><stats
id="1ink"><num>1</num><maxn>122</maxn><tot>5301</tot><in>526680393</in><out
>1749220925590</out><ctime>36508960</ctime><tmo>249066</tmo><stall>3</stall
><sfps>0</sfps></stats><stats
id="poll"><att>1</att><en>249066</en><ev>249072</ev><int>0</int></stats><st
ats
id="proc"><usr><s>11863</s><u>39543</u></usr><sys><s>5465</s><u>697087</u><
/sys></stats><stats
id="xrootd"><num>4680</num><ops><open>55092</open><rf>0</rf><rd>21972049</r
d><pr>0</pr><rv>137063</rv><rs>9095834</rs><wr>0</wr><sync>0</sync><get£>0<
/getf><putf>0</putf><misc>61578</misc></ops><aio><num>0</num><max>44</max><
rej>41</rej></aio><err>17690</err><rdr>0</rdr><dly>0</dly><lgn><num>4679</n
um><af>3</af><au>4673</au><ua>0</ua></lgn></stats><stats
id="ofs"><role>server</role><opr>1</opr><opw>0</opw><opp>0</opp><ups>0</ups
><han>1</han><rdr>0</rdr><bxq>0</bxg><rep>0</rep><err>0</err><dly>0</dly><s
ok>0</sok><ser>0</ser><tpc><grnt>0</grnt><deny>0</deny><err>0</err><exp>0</
exp></tpc></stats><stats
id="sched"><jobs>831528</jobs><ing>0</ing><maxing>6</maxing><threads>48</th
reads><idle>45</idle><tcr>115</tcr><tde>67</tde><tlimr>0</tlimr></stats><st
BRo38tD@UCSD, 1/28/15 M. Tadel: Understanding XRootD Monitoring 11
id="sgen"><as>0</as><et>0</et><toe>1421698118</toe></stats></statistics>

What it contains

 For xrootd & cmsd

e For xrootd

info:
link:
proc:
sched:

sgen:

buff:
ofs:
0SS:
poll:
xrootd:

name, port, host

in/out transfers, # of connections, ...

sys and user cpu usage

total / used threads, max task queue length
time needed for generation of the report

data buffer number, total size, # of requests
files-system level operation counts

list of used paths / configured spaces + free space
of polling operations / events

of different operations, logins on protocol level

* For cmsd, mostly relevant for manager cmsds

cmsm:

per server statistics of redirections, responses, ...

How does one collect this

« mpxstats included in distribution
— aggregates messages into a single stream

« xrd-rep-snatcher developed for AAA

— https://github.com/osschar/xrd-rep-snatcher

— What it does:
* Normalize input
 Domain -> site name (a bit obsolete with all.sitename)
 Calculate rates on relevant fields
* Report selected fields to MonALISA using ApMon

— Can be extended for other time series tracking tools

https://github.com/osschar/xrd-rep-snatcher
https://github.com/osschar/xrd-rep-snatcher
https://github.com/osschar/xrd-rep-snatcher
https://github.com/osschar/xrd-rep-snatcher
https://github.com/osschar/xrd-rep-snatcher

XrdReport for link traffic on UCSD

171.7 MB/fs
162.1 MB/s
152.6 MB/fs
143.1 MEB/s
133.5 MB/s

124 MB/(s
114.4 MB/s
104.9 MB/s
95.37 MB/s

Out

85.83 MB/s
T6.29 MB/s
66.76 MB/s
57.22 MB/s
47.68 MB/s
38.15 MB/s
28.61 MB/s
19.07 MB/s
9.537 MB/s

0Bfs
293 KBfs

1953 KB/fs

In

9.766 KB/fs

0 B/fs -

13:00 i 14:00 ' 15.00 | 16:00
19 Jan 2015
local time

cabinet-10-10-10 & cahinet-8-8-1 » cabinet-8-8-10 cabinet-8-8-11 & cabinet-8-8-13 a cabinet-8-8-2 © cabinet-8-8-3 & cahinet-8-8-4 a cabinet-8-8-5
cabinet-8-8-6 a cabinet-8-8-7 a genki © nfs-5 & phiphi © vaf-5 uaf-6 » uaf-7 & uaf-8 & uaf-9 & xrootd

XRootD@UCSD, 1/28/15 M. Tadel: Understanding XRootD Monitoring 14

Aggregated Xrootd traffic

4.424 GB/s
4.191 GB/s

3.958 GBfs

3.725 GBfs

3.492 GBfs Requires post processing to merge

3.26 GBis all servers from a given site
3.027 GBfs

2.794 GB/s
2.561 GB/s

2.328 GBfs

ouT

2.095 GB/s

1.863 GB/s
1.63 GE/s
1.397 GBfs

1.164 GB/s

953.7 MB/s
715.3 MB/s

476.8 MB/(s

238.4 MB/s

0 Bfs T _.Ah Y O T vy N,
13 | 14 | 15

1i&
Jan 2015

& AT Vienna & BE UCL & BR Sprace Brown © CalTech a CERM & CH CSCS & CH PSI © CN IHEP » DE KIT & DE RWTH & DESY & EE KBFI & ES Ciemat a ES IFCA
ES FICT1 & Fl HIF a GRIF IRFU & HU Budapest & IN2ZP3 © INFN Bari ~ INFN Legnarc a INFM Pisa & INFN Romal & INFN T1 © INFN & KR KNU & MIT & Purdue a RU IHEP
RU ITEP m RU JINR T1 & RU JINR & UAKIPT © UCSD © UFL & UK Brunel & UK IC London UK RAL © UK & UND & unknown & UNL & Vanderbilt & Wisconsin

XRootD@UCSD, 1/28/15 M. Tadel: Understanding XRootD Monitoring 15

Detailed monitoring

* |nspect in detail what servers are doing
— xXrootd process only
— redirectors can also report every redirection

* “Standard operations”:
— Session begin / end, authentication, user info
— Open / close a file

— Reporting of read / write events:
* report totals on file close
e periodic “progress” updates (f-stream)
* individual requests (t-stream with io option)
» unpacked vector read requests (t-stream with iov option)

XRootD@UCSD, 1/28/15 M. Tadel: Understanding XRootD Monitoring 16

Purpose of detailed monitoring

* Detailed accounting
— When, who, from where, how long and how much
— Every access is reported.
* Analyze data-access patterns
— Improve application access to data
— Tune parameters for a prefetching proxy-cache
 Misuse and abuse detection

What could be added:

— Reporting of failed authentication attempts
— Getting exit status and CPU efficiency from client

Caveats about purpose

* Collecting and archiving this information gets
hard in a large, non-uniform federation.

— But then again, running large, non-uniform
federations is really hard in itself.
 Somebody has to analyze this information and
stay on top of it.

— Every access is registered, including active
monitoring probes, scaling tests, etc

* Can easily skew the results / conclusions

Detailed monitoring — Streams

Different types of UDP packets — each coming in their own
“stream” (from xrootd point of view).

All have binary header followed by either string or more
binary data.

« = server identification — track server restarts
user session + optional authentication info
redirection events

file open events

application info; arbitrary string from client

* Read/write progress — also include file close and session
end records.
— f periodic report on amount of data read/written
—t reports individual read/write requests

Streams use 8-bit sequential ids to determine out of order /
lost packets.

- 0 = c

Configuring detailed monitoring

xrootd.monitor [options] dest [dest]
options:[all] [auth] [flush [io] intvi[(m|s|h]]
[fstat intvi[m|s|h] [lfn] [ops] [ssq] [xfr cnt]]

[ident sec] [mbuff sizel[k] [rbuff sizel[k]]

[rnums cnt] [window intvi[m|s|h]]
dest: dest events host:port
events: [files] [fstat] [io[v]] [info] [redir] [user]

E.g., at UCSD for CMS:

xrootd.monitor all auth flush io 60s ident 5m mbuff 8k
rbuff 4k rnums 3 window 10s
dest files 1o info user redir xrootd.t2.ucsd.edu:9930
dest files iov info user xrootd.t2.ucsd.edu:9932

XRootD@UCSD, 1/28/15 M. Tadel: Understanding XRootD Monitoring 20

Configuration details, e.g. at UCSD

ident 5m server identification interval

all monitor all sessions / transfers

auth include authentication details

flush io 60s send out interval, including 10 (t-stream)
mbuff 8k monitoring buffer size

window 10s timestamp precision

rbuff 4k rnums 3 redirection buffer size & number
dest files io info user redir xrootd.t2.ucsd.edu:9930
dest files iov info user xrootd.t2.ucsd.edu:9932

XRootD@UCSD, 1/28/15 M. Tadel: Understanding XRootD Monitoring 21

=-stream details

* Report static information about the process

srvinfo: &pgm=progé&ver=vnameé&inst=iname&port=pnumé&site=sname

— Server is fully identified by hostname, port and start
time.

* UDP source port is also unique for the lifetime of server.
 Start time is in header of every packet.

* Heart-beat — detect servers that go down

u-stream & authentication details

u userid[\n[authinfo]]
userid: user.pid:sid@host

authinfo: &p=proté&n=[name] &h=[hname] &o=[org] &xr=[role]
&g=[grpl &m=[1info]

Maps the user to an dictid (32-bit unsigned int)
— dictid in map record header

— used in binary streams ‘t’, ‘f’

* Single record per UDP packet, sent out as soon as it happens.

e userid: provided by client: local username, process id and socket file
descriptor

— This uniquely identifies a user session, used in ‘d’ stream
e authinfo: filled if requested, depends on protocol

— &m= a special field for monitoring info
* User identity sent in plain-text

— This got us into EU data privacy law hell

d-stream details

d userid\npath

 Maps file name to a dictid passed in header.
— used in binary streams ‘t’, ‘f’

* Single record per UDP packet, sent out as soon as it
happens.

e User must be found through user id (string).

Note: When using f-stream, one can get the information
by specifying Ifn option in fstat configuration fragment.

t-stream details

* Highly encoded binary stream:

— Packet is sent out when mbuff is full or flush timeout
is reached ... but only when the next message comes!

* With io/iov each session has its own buffer!

— A vector of messages describing session / file events:
* time window transition
* file close / session end messages. Close includes xfer totals.

* with jo option: write / read / vector read messages
— read/write requests have offset, length

— vector reads have: time, total length, number of sub-requests
(offsets are not known).

e With jov option: as above but

— vector reads are unpacked so length and offset for every sub-
request are known

f-stream details

* Highly encoded binary stream:
— Packet is sent out at configured interval
* Begin/End times in header

— After that the following records follow:

 file open events, optionally including file name

* transfer progress for files that were accessed in the interval;
total bytes read/written

e close events with detailed statistics of accesses
e disconnect events

* Uses much less resources
— A good option when access details are not needed

* |s also supported by dCache-2.6 and later!

f & t stream vs. UDP packet loss

‘u’ packet — session will not be tracked
‘d’ packet — the file will not be tracked
‘t’ packet without a file close/disconnect event

— The lost part of accesses is not accounted for.

— Totals are still reported in close record.

t" or ‘' packet containing a file close or a disconnect
event:

— Collector keeps the file / session as open and eventually
times out on inactivity.

— A possible way out: server periodically reports all session /
filed dictids that are still active.

Hanging connections on XRootD servers

e xrootd does not always get notified that a client
got zapped. Contributing factors:
— Brutal killing of processes
— Virtual machines, natted hosts, firewalls

* Monitoring can not know what happened, either.
* Solution: tell xrootd to be more vigilant:

xrd.network keepalive kaparms 10m,1m,5
xrd.timeout idle 60m

With this, we have practically no hanging
connections at UCSD and MIT.

COLLECTION AND ANALYSIS OF
DETAILED MONITORING DATA

Collecting detailed monitoring data

* Not entirely straightforward ©
— Maintain mapping of user and file dictids to
corresponding objects for each server
* Tracking progress:

— For io/iov: Accumulate information in memory
until a file is closed

— For f-stream: Just update counters on update

* Real action can only be taken when file is
closed.

Collector overview

 The official collector XrdMon:

— http://www.gled.org/cgi-
bin/twiki/view/Main/XrdMon

* Binary distribution:
— RPM: ftp://ftp.gled.org/xrdmon/

— Yum repo: http://linuxsoft.cern.ch/wicg/
init.d scripts packaged for usage at CERN

* A bit of a monster but not a hog!
* Includes UDP to TCP translation service

ALICE uses their own Java implementation.

XRootD@UCSD, 1/28/15 M. Tadel: Understanding XRootD Monitoring 31

http://www.gled.org/cgi-bin/twiki/view/Main/XrdMon
http://www.gled.org/cgi-bin/twiki/view/Main/XrdMon
http://www.gled.org/cgi-bin/twiki/view/Main/XrdMon
http://www.gled.org/cgi-bin/twiki/view/Main/XrdMon
ftp://ftp.gled.org/xrdmon/
ftp://ftp.gled.org/xrdmon/
ftp://ftp.gled.org/xrdmon/
http://linuxsoft.cern.ch/wlcg/
http://linuxsoft.cern.ch/wlcg/
http://linuxsoft.cern.ch/wlcg/

XrdMon implementation

* Implemented as a library within Gled, http://gled.org
— C++ framework for The Brave & Bold
— Uses ROOT for network interface, serialization, and
configuration (scripts)
* Components:
— Packet queues, sources and consumers
— XrdMonSucker — processing of detailed streams
— Domain, Server, User, File representations
— Classes for generating output
— Simple ROQOT classes for exporting data in binary format.

http://gled.org

Collector Output — Realtime

* View currently opened files:
— via GUI on the collector itself

 useful for development & debugging

— via a web page, e.g. for CMS, docs for url args

* Other options were discussed:
— Send periodic reports to higher level aggregators

— Abuse detection: reports are only sent out when a
file is closed — collector could do it in real time.

http://xrootd.t2.ucsd.edu:4243/?no_same_site
http://www.gled.org/cgi-bin/twiki/view/Main/XrdMon#xrd_http_serve_open_files_C

Collector Output — Access reports

* File Access Reports are produced at file close

— Historically, t-stream with io/iov was used

e statistics of access produced at file close
— number, min/avg/sigma/max size of requests, vread stats

* now f-stream produces the same information, collected
at the server

* QOutput options:

— ROOT TTrees, optionally including full 10 and 10V
records

— Plain text to an UDP destination = OSG Gratia
— JSON record via ActiveMQ —> Dashboard

Analyzing File Access Reports

* When using TTrees it’s a lot like any physics
analysis ©

— Bunch of root files you have to chain together.
— An awful lot of background and noise.

* In a large federation the sample is polluted by:
— Monitoring, probes, test jobs, scaling tests
— Access types one is not interested in, e.g. local, xrdcp, ...

* Using event lists or skims makes a lot of sense
— Fun with aggregation into cumulative plots
— The ultimate fun with ROOT 2D graphics

AnXrdMon

* Micro framework for analysis of XrdMon TTrees

— Steering code / manager
— Filters
— Extractors

* Produce 1D/2D histograms and cumulative plots

» Several extractors with different filters get run in one pass
— Run over 1 year of AAA data can take close to an hour

* |0V analyzers, including caching proxy simulation

— “Given this IOV trace, how would caching proxy perform?”

— Plotting scripts (combine histograms for comparison)

14000

9
log (average data rate) [Bytes/s]

es

12000
t [hours], from June 21 2012 to February 28 2014

t

10000

Bied

R %ﬁ.&r A
poth g »u”*%«o.w.ﬂMM MH»'.‘ ha

g I
.wa ¥ ide s
ity B Ao

Farat

8000

E.g. |
Total US CMS remote read ra

6000

g PR T
Tt R
SRR

T AL ISR St LR e

c i T Wi wT

SR .

4000

S A
YL b e
T L
bR S

: pE S
PR s &
5] 3] [
lEac d EQQCa
HE] b= &0 <2
£i51 [ii:
SR 32649

o

k=)

0?
10
1

sinoy

[s/se14g] a1kl BlEP 8bRIaAE abelane uaalb yum *"MN

10
37

Understanding XRootD Monitoring

M. Tadel:

XRootD@UCSD, 1/28/15

Job read rate vs. request size

log 10 of avg data rate vs. log 10 of average request size

E.g. Il

* Notice xrdcp / lazy-preload

peaks
* Again, AOD access

consistent, +/- an order of

magnitude ©

log 10 of avg data rate vs. log 10 of average request size

.I-I:I|IIII|IIII|IIII|II

0 1 2 3 4 5 6 7 8 9 10

Entries 1847075

=)

2

IIIIIII| II\IIH| 1 IIII-
2

10

1 M. Tadel: |

Entries 4297387

8

e —— E—

2

2

2

I,I*.T.I.-III|IIII|IIII|IIII|III

]

>

O

O
D_I\IIII| 1 IIIIIl | IIIIIII| -

(=
3]
w
I~
af
o
~
co
w

Entries 2062093

log 10 of avg data rate vs. log 10 of average request size

2

2

IIIIIII| IIIIIIII| IIII-
2

10

E.g. lll., the power of IOV

Offsets & extents
within vector reads
Averages (in bytes):

* requests: 10 kB

1-10 MB

e total extent: upto 1 GB

e offsets:

Sum of each:

* requests: sum up to at
most the file size

e offsets and total extent
practically the same:

They add up to from a
couple to 20-times!

This covers the “missing”
positive offsets.

Federated Storage, 4/10/14

gS CMS, remote AOD access

— Total extent

= ? Inner offsets
a Request size
% 10 1; JJHL\NL

10-2; I—FJLL ¥

SOV S BV). Y N Lll "'WJ -LL’\

AR | I . L i J el ﬂ I
g |
10-5§)

E L | L 1 J_l_ _|_|__|.[||-I“J|IJ L [T R TN NS N R N N Bl L1 I| L
2 3 4 5 6 7 8 9 10
Iogw(Average for all vector reads in a job
— Total extent
z 1e
S E Inner offsets
NN Request size
S l0E e
- S
10-2§ ...
10-3;_. 1"['1'!1 g S — .
= Iy
10-4 E_ 2 | 1 ll_’_rflll 1]_-__‘_. "Iur
— | IJ <] "... ‘..r‘
10 it I.J IJJJ |
_l _|]_[|..[I_|.[11 1 | | T L1 1 1 | T | S T T T N N N Y L [T 1 L1
5 -4 3 -2 -1 0 1 2 3 4 5

Iogw(Sum of sub-requests within each job) [fraction of file-size]

M. Tadel: Transcending the AAA access patterns

39

AnXrdMon Availability

 Codeis at:
https://github.com/osschar/AnXrdMon

* | expect it will get extended and improved
with OSG non-HEP VOs trying to use XRootD.

* Let me know if you’'re interested in using this.

https://github.com/osschar/AnXrdMon
https://github.com/osschar/AnXrdMon

After the sun comes the rain.

XROOTD MONITORING ISSUES IN
CMS

XRootD@UCSD, 1/28/15 M. Tadel: Understanding XRootD Monitoring

41

Issues — the enumeration

Several sites are not sending detailed monitoring at all,
e.g., FNAL using dCache-2.4

Discrepancy between summary monitoring and what is
seen by CERN Dashboard

— Of course we are all pointing fingers across the Atlantic.

Hanging connections — collector closes them after 24
hours:

— Wrong open duration = data rate calculations get screwed.
EU privacy laws

Problem with mixed VO sites —to whom to report?

Issues — the consequences

e We have a limited and erratic view of the
federation. Yay, etc ...

* The mngmnt wants a reliable reporting for
production and centrally controlled jobs.

Solution:

e Collect statistics in CMS’s XrdAdapter and attach
it into cmssw job report.

* Detailed monitoring as we have it:
— Remains as an opt-in service for sites.

— |s used by experts for data access debugging,
optimizations and development of new services.

XRootD Client as the Source!

Provide detailed monitoring from XRootD Client:

— Report progress in streams, as detailed monitoring does
Now.

— Accumulate access history:
* Send a complete report at the end.

* Application can also do what it wants, send it on to whomever,
include it in its log / job report.

— Can report full redirection paths, reconnects, multi-
stream input etc.

— No problem with mixed VO sites!
— Easier to avoid violation of privacy laws.

— The problem with zapped jobs remains (is even worse).

Location of monitoring collectors

e Original monitoring design called for collectors to be
“close” to monitored servers.

— Nobody really expected them to be half way across the world

* |t also turned out that letting “random people” control
your redirectors isn’t such a great idea.

Provide a VM image that contains redirector and collector.

— Controlled by federation operators, not site admins.

— Monitoring data can be collected on site and/or distributed to
a central location in a controlled and secure way.

XRootD@UCSD, 1/28/15 M. Tadel: Understanding XRootD Monitoring 45

XRootD@UCSD, 1/28/15

CONCLUSION

M. Tadel: Understanding XRootD Monitoring

46

XRootD provides powerful and complete set of
monitoring features, services, and tools.

There is no complete framework:

— The idea is one integrates this functionality with other site
/ VO monitoring probes and tools.

— XRootD can not provide all required information anyway.

It is really hard to monitor huge non-homogenous
federations with limited control over resources.

— Client side monitoring seems to be the way to go — keep
sites out of the loop.

It will be interesting to see how things go with 0SG ...
We’re here to help: xrootd-l@slac.stanford.edu

Over and Out

