

ATLAS Experiment Status Run2 Plans Federation Requirements

XRootD Workshop @ UCSD San Diego 27 January, 2015

Part 1 – overview of changes

Run2 brings new challenges:

- 1kHz trigger rate
- 40 events pile-up
- flat resources

But the long shutdown gave us an opportunity for fundamental changes. And we used it:

- New models and policies
- New DDM system: Rucio
- New distributed production framework: ProdSys2
- Opportunistic resources clouds, HPC
- New data format: xAOD
- New analysis model
- Large changes in reconstruction codes 3x speed up!

Run-1 model, briefly

- Strict hierarchical model (Monarc):
 - Clouds: T1 + T2s (+ T3s)
 - No direct transfers between foreign T2s
 - Relaxed towards the end of Run-1 (Multi-cloud production T2s can process jobs of many clouds)
- Production organization:
 - Tasks assigned to T1s
 - T1 is the aggregation point for the output datasets of the tasks
 - T2 PRODDISK used for input/output transfers from/to T1
- T2 disk space:
 - distribute the final data to be used by analysis
 - store secondary replicas of precious datasets

Planning for Run-2 model - facts

- Network globally improved
 - Much higher bandwidth (an order of magnitude increase)
 - Most of the links between ATLAS sites provide sufficient throughput: full mesh for transfers can be used
- Many Tier-2 sites provide the Tier-1 level stability of computing, storage and WAN
 - Many in LHCONE or other high-throughput networks
 - Tape resource is the only difference between Tier-1s and large Tier-2s, as far as the usability for ATLAS is concerned
- CPU only (opportunistic) centers are fully integrated in ATLAS
 - Some run all kind of tasks, including data reprocessing
 - Have good connectivity to geographically close Storage Elements

CPU and Storage organization

- Breaking the barrier between the Storage Element and Computing Element:
 - Remote I/O, job overflow, remote fail-over of input or output file staging
 → storage not strictly bound to the site computing resource
 - Tier-1, Tier-2, Tier-3 storage classification does not make much sense anymore
- ATLAS Storage pool:
 - TAPE
 - STABLE disk storage T1 + reliable T2 (former T2Ds). For storing custodial, primary data
 - UNSTABLE disk storage less reliable T2s. For secondary data (for analysis)
 - VOLATILE disk storage unreliable T2s, T3s, opportunistic storage.
 LOCALGROUPDISK SEs, Rucio cache storage, Tier3 Analysis
- Disk Space:
 - Lifetime-based Storage Model
 - Disk Tape residency almost 100% algorithmically managed

Job optimizations

- Production / Analysis
 - Run-1: 75% / 25% (slots occupancy ~ cputime usage)
 - Run-2: 90% / 10% (no estimate yet)
 - Bulk of analysis (Derivation) moving to (group) production
 - Remaining analysis will be shorter and I/O intensive
- Reduce the merging
 - Avoid it if possible (simulation, reconstruction)
 - Local merging merge on the site, where the files to be merged are
- Jobs will produce bigger outputs
 - Good for tape storage
 - Bigger files transferred good for efficient transfers (but less files to transfer)
- Massive multicore for ~80% of production
 - All G4 simulation and all digi+reco
 - Effective drop in running jobs from 200k to 60k (20k 8-core + 40k single-core)
- JEDI dynamic resizing tune the jobs to 6-12h
 - Avoid failures and cpu losses for very long jobs
- Automatic healing:
 - Split jobs too long
 - Increase memory requirements for out-of-memory failing jobs

Specializing the sites for workloads

- not all the sites are equal
- not all the job types run equally well on all the sites
- some sites are slow for analysis but they are good for data reprocessing
- some sites are very big but cannot run 100% of heavy I/O jobs
- differentiation was already used during Run-1 by limiting the job types through the fairshare (AGIS settings)
 - e.g. evgensimul=60%,all=40%
- not all the jobs are EQUALLY important:
 - Some tasks have short deadline
 - Some large activities have close deadline (physics conferences)

• FUTURE:

- Dynamic specialization:
 - I/O expensive jobs will be automatically throttled by the central system based on recent history
 keeping track of data transferred to site and reduce the heavy job assignment
 - Migration from fixed bamboo queues to per task/job heaviness estimates
- Forced specialization:
 - ADC will specialize sites for certain activities, if the site provides custom resources (more memory per cpu, GPU availability ...)

Rucio

Run 2 Data Management model

File level granularity

- In production
 Ironing kinks
 Adding functionality
- Multiple ownerships (user/group/activity)
- Policy based replication for space/network optimization

- Plug in based architecture supporting multiple protocols (SRM/gridFTP/xrootd/HTTP...)
- Unified dataset/file catalog, supports metadata

Lifetime-based Storage Model

- Use updated version of current model to calculate CPU usage and dataset volumes
- Keep track of creation date of each dataset
- Remove each dataset from disk and tape when it has exceeded its (type-specific) Lifetime.
- Adjust total request for disk and tape to be sufficient to accommodate the requested lifetimes.
- Assign an experience-driven fraction of the disk+ tape storage to disk.
- Model is now being refined
- Will be used to inform the ATLAS resource request for 2016 in February 2015

ProdSys2

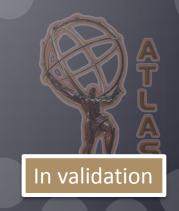
- DEfT task request and task definition
 - new web interface to requests, review, submission
 - templates for easy task definitions.
 - chaining of steps, requests series of chains
 - post-production interface
- JEDI dynamic job definition and task execution
 - integrated with PanDA
 - engine for user analysis tasks
 - New features:
 - dynamic job definition
 - lost file recovery
 - network-aware brokerage
 - log file merging
 - output merging
 - support for event service
- PanDA covered later today by Kaushik De
- BigPanDA brand new monitor

Adding functionality Validating workflows

In production since August Tuning parameters

In production since August

New data format: xAOD


 "Dual-use" xAOD replaces separate ATHENAreadable and Root-readable formats.

In use
Some tuning still possible

Will be covered in details by Doug Benjamin

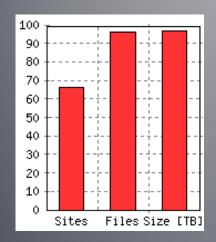
New Analysis Model

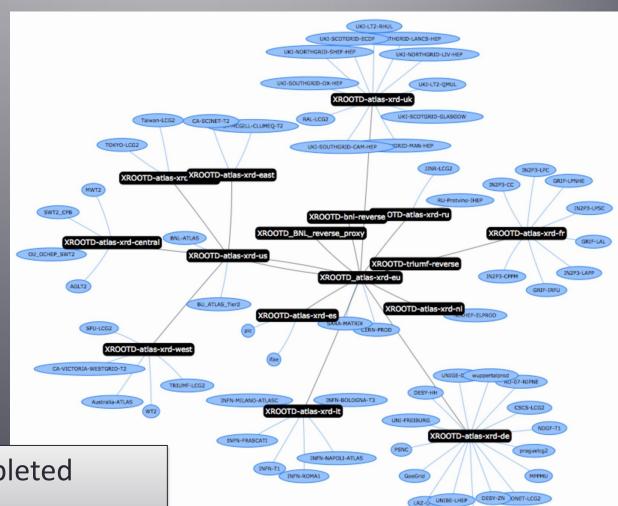
- More efficient
- More user-friendly
- Derivation Framework (trains with carriages provided by groups) replaces incoherent "group production"
- Analysis Framework, supporting standardized use of performance group recommendations (jet energy scale etc.)

In use Some tools in validation

Part 1 - Conclusion

- ATLAS is making excellent progress towards readiness for Run 2.
- New production and data management system provides many possibilities for further improvements and dynamic optimizations
- Many of the changes can be implemented before the Run-2 starts
- A lot of things need tuning
- Even during the Run-2 we can afford to bring drastic improvements to our distributed system
- The production STABILITY will be the FIRST PRIORITY during data taking
- Unknown: What will groups and physicists really do?




Part 2 – Federation Role and scale in Run2

- Three main roles
 - Enable remote IO jobs
 - Increase job turnover (shorter wait in queues, faster startup)
 - Increase wall time utilization of CE (no wait for input data)
 - Lower number of replicas needed
 - Better use available bandwidth by streaming only what is actually needed
 - Enabling users to easily and efficiently access much more data than they could possibly have locally. Make diskless Tier3s possible and practical.
 - Add redundancy to the existing data delivery mechanisms.
- An ideal scale would be the one where we use all the available bandwidth to make all the CPU's busy and have a minimal number of rarely accessed files/datasets.
 - Currently system is much simple than that.

Part 3 – FAX currently

Deployment completed Coverage >96%

FZK-LCG2

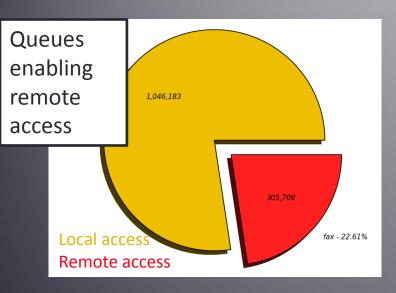
FAX - stability

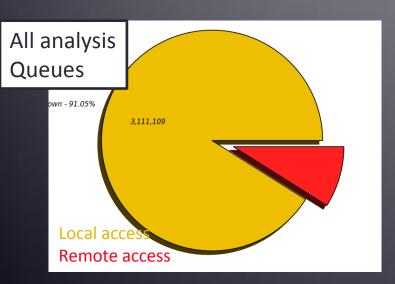
- Most sites running stably
- Glitches do happen but are fixed usually in few hours
- No signs of stability issues caused by load

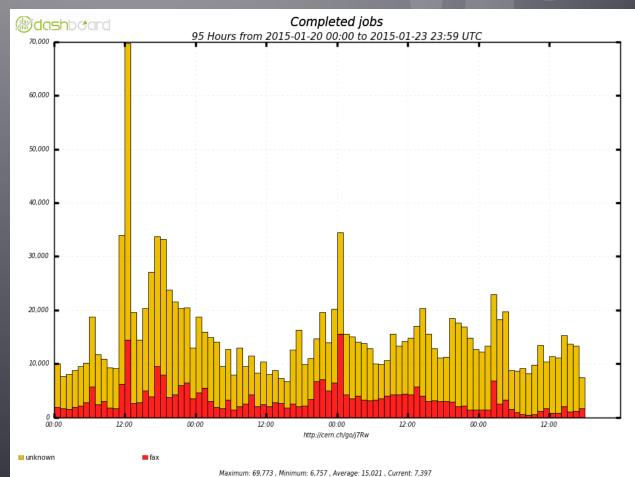
Site Name	Direct _	Upstream redirection \$	Downstream redirection	ATLAS readonly \$
UKI-NORTHGRID-LANCS-HEP	ОК	ок	ок	On
pic	ОК	ок	ок	On
UKI-SCOTGRID-ECDF	ОК	ок	NoFirstLevelRedirection	On
UKI-NORTHGRID-LIV-HEP	ОК	ок	ок	On
wuppertalprod	ОК	ок	ок	Off
CERN-PROD	ОК	ок	ок	On
BNL-ATLAS	ОК	ок	ок	On
OU_OCHEP_SWT2	ОК	ок	ок	On
IN2P3-LPC	ОК	ок	ок	On
CYFRONET-LCG2	ОК	ок	ОК	On
SFU-LCG2	ОК	ок	ок	On
MWT2	OK	OK	OK	On
INFN-ROMA1	OK	ОК	ОК	On
INFN-BOLOGNA-T3	OK	ок	ок	On
TOKYO-LCG2	OK	OK	OK	On
RU-Protvino-IHEP	OK	OK OK	OK	On Off
INFN-MILANO-ATLASC IN2P3-CPPM	ОК	OK OK	OK OK	Off On
SWT2_CPB	ок	ок	NoFirstLevelRedirection	On
CA-SCINET-T2	ок	ок	OK	On
NIKHEF-ELPROD	ОК	ок	NoFirstLevelRedirection	On
DESY-HH	ОК	ок	OK	On
MPPMU	ОК	ок	ок	On
IN2P3-LPSC	ОК	ОК	OK .	On
RAL-LCG2	ОК	ок	NoFirstLevelRedirection	On
NDGF-T1	ОК	ок	ок	Off
IN2P3-CC	ОК	ОК	ОК	On
INFN-FRASCATI	ОК	ОК	ок	On
DESY-ZN	ОК	ОК	ОК	On
AGLT2	ок	ок	ок	On
UNIGE-DPNC	ОК	ок	ок	On
LRZ-LMU	ОК	ок	ок	On
CA-MCGILL-CLUMEQ-T2	ОК	ок	ок	On
praguelcg2	ОК	ок	ок	On
INFN-NAPOLI-ATLAS	ОК	ок	NoFirstLevelRedirection	On
PSNC	ОК	ок	ок	On
Taiwan-LCG2	ОК	ок	ок	On
UKI-SCOTGRID-GLASGOW	ОК	ок	ок	On
UKI-LT2-QMUL	ОК	ок	NoFirstLevelRedirection	Off
UNIBE-LHEP	ОК	ок	NoFirstLevelRedirection	On
ifae	ОК	ок	ок	On
UKI-NORTHGRID-MAN-HEP	ОК	ок	ок	On
RO-07-NIPNE	OK	ок	ок	On
UKI-SOUTHGRID-CAM-HEP	OK	OK	ок	On
UKI-SOUTHGRID-OX-HEP	OK	OK	ок	On
UKI-LT2-RHUL	OK	OK	OK	On
IN2P3-LAPP	OK	OK	OK OK	On On
BU_ATLAS_Tier2	OK	OK OK	OK OK	On On
FZK-LCG2 TRIUMF-LCG2	ОК	OK OK	OK OK	On On
INFN-T1	ок	OK OK	ок	Off
WT2	ок	OK	OK OK	On
UKI-NORTHGRID-SHEF-HEP	ОК	ок	ок	On
JINR-LCG2	noDirect	NoUpstreamRedirection	NoFirstLevelRedirection	Off
SARA-MATRIX	noDirect	NoUpstreamRedirection	NoFirstLevelRedirection	Off
CSCS-LCG2	noDirect	NoUpstreamRedirection	NoFirstLevelRedirection	Off
GoeGrid	noDirect	NoUpstreamRedirection	NoFirstLevelRedirection	Off
UNI-FREIBURG	noDirect	NoUpstreamRedirection	NoFirstLevelRedirection	Off
GRIF-IRFU	offline	offline	offline	offline

FAX usage

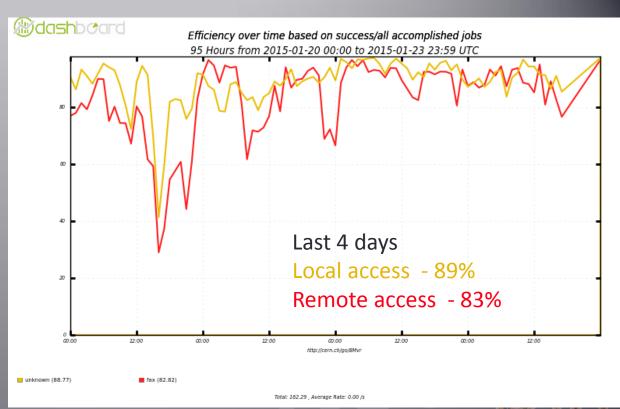
- Physicists are slowly starting to use it
 - Mainly thanks to our Offline software tutorial sessions.
 - Only anecdotal evidence due to both privacy and monitoring issues
- Failovers jobs that could not access the data from local storage, try to get them elsewhere
 - Few thousands jobs / day. Saves roughly half of them.

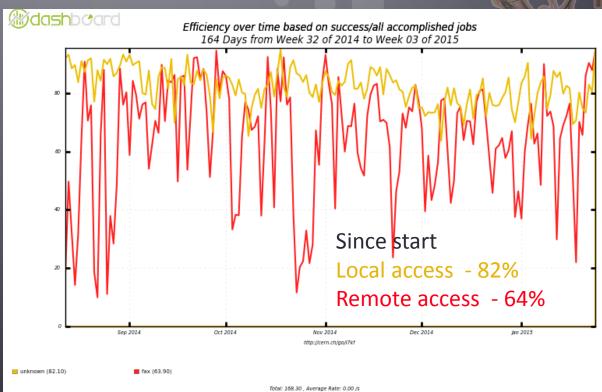

FAX usage


- Overflows our term for jobs brokered to a site that does not have the input data, sent with explicit instruction to use FAX to get them.
- Goals for beginning of Run2:
 - Handle 5-10% of all the Analysis jobs
 - Have job efficiency roughly the same as jobs locally accessing data
 - Have CPU efficiency at least 50% of the locally run jobs
- Decision to overflow is made by JEDI based on:
 - Where is the data
 - How busy is the destination site
 - What kind of data rate job can expect between source and destination
- In operation since August.
- Initially only enabled in USA. Now includes 4 sites in Europe.
- Started with a suboptimal system, big improvements still to come.

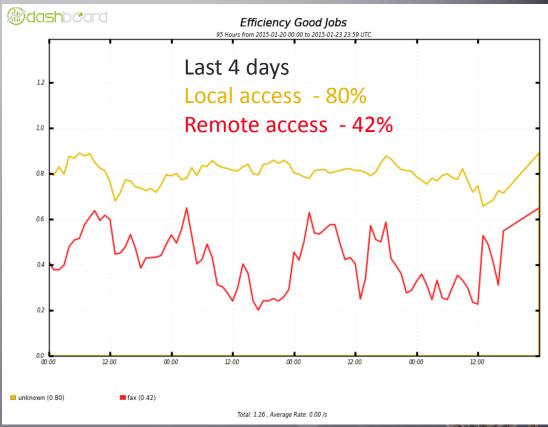


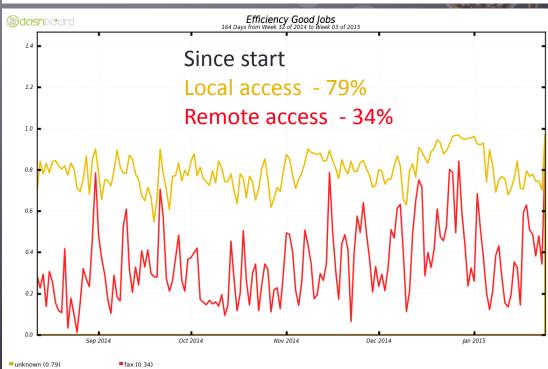
Job rates and efficiencies




Analysis jobs per hour					
	Remote access				
All queues	Queues enabling overflow				
33k	11k	3.2k (9/22%)			

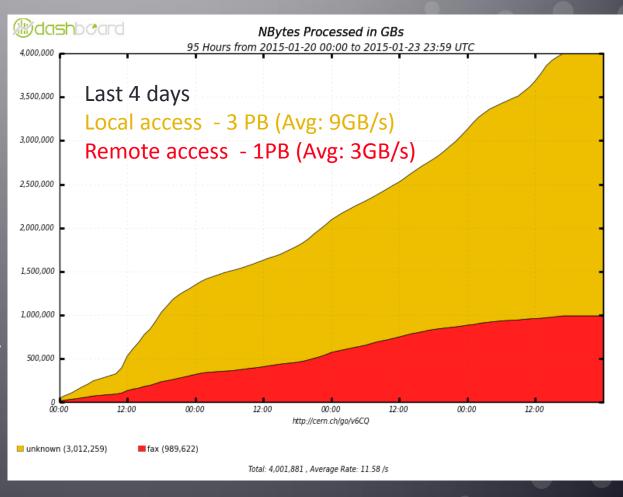
Job efficiency


- We were and still are debugging the system and that causes lower job efficiency
- We will start blacklisting sites
 accepting/delivering overflow
 jobs when their FAX endpoint fails
 the tests.
- We are confident that error rate will be at the level of jobs accessing data locally.



CPU efficiency

- Completely depends on the job mix.
- People still not consistently using TTreeCache
- Version of ROOT
 auto-enabling TTC
 still not in wide use

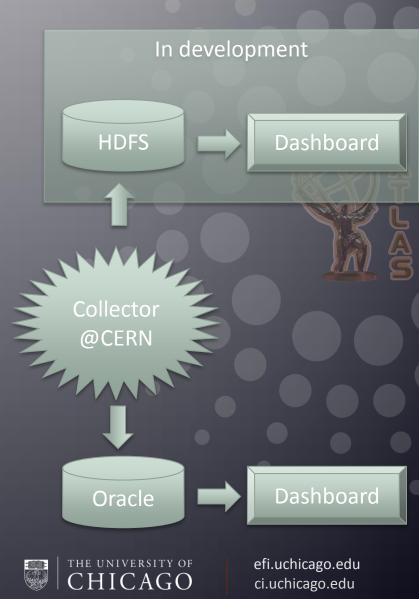


Total: 1.04 , Average Rate: 0.00 /s

FAX - scaling

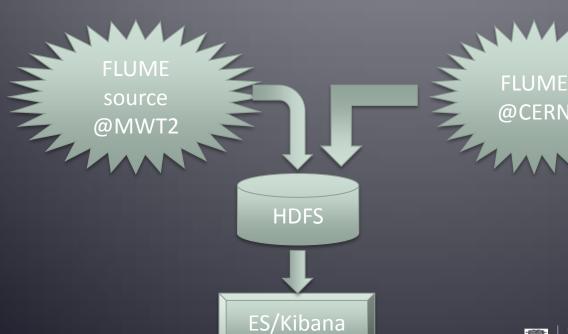
- We are confident it can scale to all the ATLAS queues
- A few important optimizations still in queue:
 - Access data from the optimal place
 - Reducing number of space tokens where N2N looks for the file

Monitoring


- Network has to be managed the same way we manage CPU and storage usage.
- And for that we need accounting.
- That's the part that failed us the most
 - Sites don't really cooperate in enabling it
 - Even when obliged by law
 - We did not make it easy / clear how to do it
 - We don't trust currently shown ML info
 - Instances where ganglia shows 3GB/s and ML 100MB/s
 - Huge differences between summary and detailed monitoring plots.

Current Monitoring Chain

- Collector at SLAC
 - a complicated custom made construction
 - quite difficult to support
 - of a dubious scalability
- ML
 - Difficult to support
 - not easily customizable



Proposal for a new Monitoring Chain

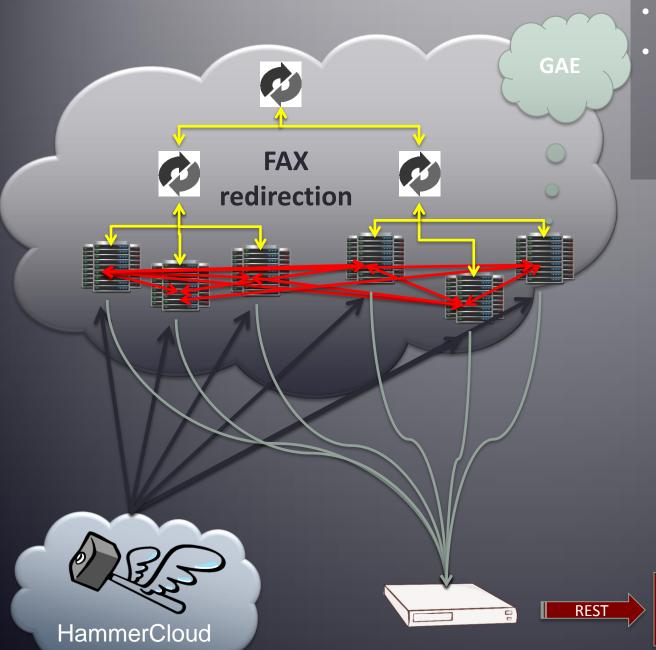
- Collectors
 - FLUME source(s)
 - directly accept UDP messages
 - FLUME sink
 - Aggregates and outputs straight into HDFS
- Cleaning, re-summing
 - PIG running each 10 min.
 - Writing back into HDFS
- Dashboard
 - ElasticSearch indexes data in HDFS
 - Kibana to visualize

Scalable
Industry standard tools
Very customizable dashboard
Easy to do detailed analytics

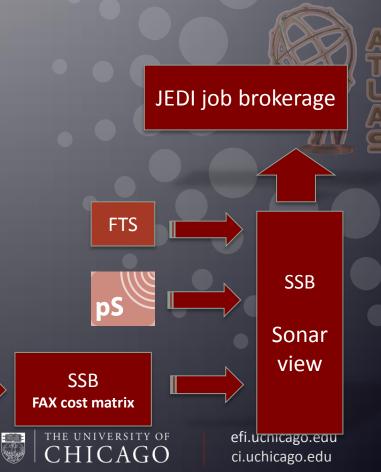
Federation requirements

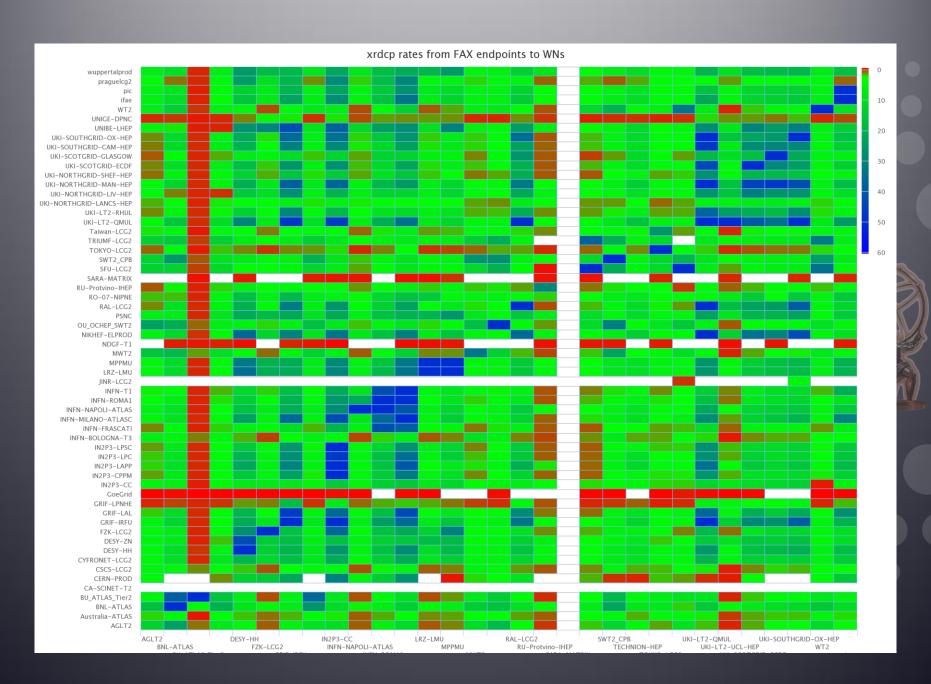
- Stability
- Stability
- Stability
- Monitoring
- User friendliness

Reserve



Actions on solving protocol zoo


- 1. Short Term (?): Eliminate the need of space tokens (rely on paths) for accounting.
- 2. Short Term: Move to gridFTP only for 3rd party transfer (requires 1)
- Short Term: Move to xrootd/http for uploads and downloads (requires 1)
- 4. Short/Medium Term: commission http/WebDAV to production quality for deletions
- Medium Term: Decommission SRMfrom non tape sites (requires all the above)
- 6. Short Term: Move to xrootd (or file) all the directIO
- 7. Short Term: Decommission other directIO protocols (requires 6)
- Medium/Long Term: Commission xrootd and WebDAV for 3rd party transfers
- Medium/Long Term: Decommission gridFTP (requires 8)
- Long Term: Consolidate Davix and evaluate Davix and xrootd for directIO
- Long Term: Keep both webDAV and xrootd or decommission one


FAX cost matrix

- Data collected between 20 ANALY queues (compute sites) and 58 FAX endpoints
- Jobs submitted by HammerCloud
- Results to ActiveMQ, consumed by SSB with network & throughput measurements (perfSONAR and FTS)

Cost matrix - results

Cost matrix - results

