
ALICEALICE

Lessons Learned & What We Would Have 
Differently

Costin.Grigoras@cern.ch

mailto:Costin.Grigoras@cern.ch


2015/01/27 ALICE Lessons Learned 2

Outline
● Object model
● Data model
● Monitoring



2015/01/27 ALICE Lessons Learned 3

Object model
● Complex objects

– Deep object hierarchy

– Many branches (~800/ESD, ~400/AOD)

● Good for flexibility
– Any production, central or user analysis runs on one of the 

2 formats

● Bad for I/O
– Large event sizes

– Depends on AliRoot objects

– Large deserialization penalty



2015/01/27 ALICE Lessons Learned 4

Flat AODs
● Similar number of branches
● Better compression, smaller 
overhead

● Doesn't solve the I/O problems
● Needs a lot of effort to develop and 
maintain



2015/01/27 ALICE Lessons Learned 5

NanoAODs
● Analysis-specific objects

– Filtered once, reused many times

● Might solve the I/O problem
– Flat, as small as needed, structures

● But not necessarily feasible
– Analysis touch most of the current branches

– Interferes with the train model

● Also harder to manage centrally
– All central productions are nicely accounted for



2015/01/27 ALICE Lessons Learned 6

Current data model
● Jobs go to where a copy of the input 
data is

● Uploading 2 (or even 3) copies of the 
results to the nearby SEs

● Single catalogue for all files
● Single protocol (Xrootd) to access data
● Central authorization service



2015/01/27 ALICE Lessons Learned 7

And problems
● Not enough I/O throughput for the analysis

– Didn't foresee a throughput/hepspec requirement

– The hepspec to local storage volume one was very 
inspired

● Wishing there wasn't a CPU / Storage split
– Hadoop model

● Too many layers between data and processing
– And too many flavors of them

– Loosely coupled is good … or not ?



2015/01/27 ALICE Lessons Learned 8

Keeping me busy
● “We have to remove some out-of-warranty xrootd 
servers and replace them by new servers. Apart from 
dealing with the data that we will have to discuss later, 
some choices have to be made”...

● “Several ALICE files (*) on our HPSS instance were 
lost last week. “

● “We have to evacuate also data from one of our disk 
server : aa.bb.cc. The size is about 50To. But we don't 
have now free space.”

● “We are very sorry to have to inform you that we lost 
the storage filesystem on“...



2015/01/27 ALICE Lessons Learned 9

Consequently
● To sync the content of catalogue and SEs requires 
patience
Removed 19206246 files (383.2 TB), kept 91392933 files (3.789 
PB) from ALICE::CERN::EOS, took 38d 16:08
… ALICE::CNAF::SE, took 31d 16:59
… ALICE::PRAGUE::SE, took 57d 2:48

– Because `xrd rm ...` exited with exit code 0 even if there was an 
error and I wasn't checking further

● Procedure to continuously check input data of 
suspiciously failing jobs
– Replicas gone, without notice

– Corrupted content, requires full download of all replicas

– Inaccessible data servers



2015/01/27 ALICE Lessons Learned 10

Monitoring
● High-level views critical to understand 
the system

● In-detail monitoring useful for 
debugging the components

● Most important is how to use this data 
to take automatic decisions
– Quite happy with the SE discovery 

mechanism we have



2015/01/27 ALICE Lessons Learned 11

Missing data
● Many blind spots, often end up in long 
debugging threads with the admins

● SE health status, having to trust the site to 
handle it

● No self-healing mechanism
– EOS is a good example of lessons learned

● The opposite is also true, it is trivial to 
generate more monitoring than experiment 
data



2015/01/27 ALICE Lessons Learned 12

Also on the wish list
● Updates push mechanism

– Almost all 5yo+ Xrootd versions 
have been updated, moving on to 
the 3.1.0 and higher :)

● Time to upgrade the Xrootd 
client in AliEn



2015/01/27 ALICE Lessons Learned 13

Summary
● The good

– Single catalogue for all files, single protocol to access them

– Job brokering to data

– Automatic data placement

● The bad
– I/O is a bottleneck, for some activities at least

– Separated CPU from Storage is part of the problem

– Monitoring was an afterthought

● The ugly
– Manual interventions on broken components

– Many layers between the processing code and the data


	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13

