
CMS Lessons
Learned & What
We Would Have

(Done) Differently
Ken Bloom

For CMS and the AAA team
January 27, 2015

CMS Lessons Learned — K. Bloom1/27/15

Lesson #1: this works!

‣ Any Data, Anytime, Anywhere (CMS implementation of xrootd)
has been enthusiastically received and implemented in CMS, by
both sites and users, and is a key piece of the Run 2 computing
strategy

‣ A good fit for CMS:

‣ File namespace and I/O model turned out to be an excellent fit

‣ Effort made to optimize WAN reads made AAA useable and was
beneficial for CMS as a whole

‣ Was easy to implement within CMS system; many applications
simply enabled via fallback mechanism which requires only three
lines of configuration

‣ AAA is everywhere:

‣ Data available from all T1 sites, all but three functional T2 sites

‣ Access via fallback mechanism available ~everywhere
2

CMS Lessons Learned — K. Bloom1/27/15

Throughput

‣ Sometimes have in excess of 1 GB/s moving via AAA

‣ Average transfer rate in PhEDEx 0.5 GB/s during this time, comparable

‣ NB: this tally is incomplete, e.g. missing most of FNAL! (more later)
3

CMS Lessons Learned — K. Bloom1/27/15

Scale testing

‣ Probed performance of ~35 sites with tests of file-opening and
file-reading rates

‣ Varied performance, but ~20 sites can successfully handle 600
simultaneous open connections, reading total 1.2 Gbit/s

‣ Also have performed system-wide tests of simulated loads;
observe little lost processing time from job failures

4

CMS Lessons Learned — K. Bloom1/27/15

Happy users

‣ Greater awareness of AAA thanks to last summer’s CSA14
exercise, in which expansion of AAA use was a goal

‣ Real quotes from CMS members (not affiliated with AAA):

‣ “It’s like a dream come true….”

‣ “These days I always run relying on AAA to serve data remotely, so
there is no worry where the dataset is. Just need to set
ignoreLocality to True in crab3 config.”

‣ “Xrootd is a really powerful tool that is going to make doing analysis
a lot easier.”

‣ “AAA is awesome!”

5

CMS Lessons Learned — K. Bloom1/27/15

Lesson #2: you can never have too much monitoring

‣ New technologies inspire a lot of curiosity about performance

‣ Much more curiosity than exists for default technologies

‣ There has been a lot of demand for “monitoring”

‣ Sometimes “monitoring” really means “accounting”

‣ But we struggled to define the right metrics to track

‣ Amount of data flowing in/out of sites? # of successful file opens? #
of jobs using AAA? Rescued by AAA? Increase in user happiness?
Speed of analysis completion? # of emails in my inbox?

‣ Providing a lot of data about the wrong information just adds noise

‣ Different people want different metrics: whom to satisfy?

‣ Then, additional struggles to deploy the tools needed to get the
metrics and to validate what was then being measured

‣ Prettiness of dashboard makes people think it’s truthful, but GIGO

6

CMS Lessons Learned — K. Bloom1/27/15

Lesson #3: N goes in the exponent

‣ Lesson already learned from ~a decade of working with ~50 T2
sites in 26 countries: it’s hard to get them all to do something

‣ Particularly when it is something that’s for a single VO

‣ Sites had to be encouraged one by one to deploy AAA

‣ Big struggle to get sites to deploy the monitoring tools

‣ Made more difficult by the heterogeneity of the tools for different
storage systems, and lack of support from some storage developers

‣ In general, a lot of the responsibility for configuration falls on sites;
we can only plead with them to do the right things

‣ Q: Why hasn’t WLCG embraced this more strongly and backed us
up with the sites? Why can’t we package this better such that it
can serve all VO’s in a similar way?

7

CMS Lessons Learned — K. Bloom1/27/15

Lesson #4: the playing field is not level

‣ In an idealized implementation, if a file is available at N locations,
it’s OK to read the file from any of the N

‣ But in fact not all sites are provisioned equal

‣ Storage responsiveness, WAN bandwidth…

‣ Want to give users the best performance while also making the data
federation as large/broad as possible

‣ And perhaps want to protect against poor performance in real time

‣ Solutions are emerging for this:

‣ Ability to separate a federation into “production” and “transitional”
sites is available in Xrootd 4.1; try to get files from production sites
first then fall back to transitional sites

‣ Multisource routing, fallback to fallback part of 2015 analysis release

8

CMS Lessons Learned — K. Bloom1/27/15

Lesson #5: fear of users and usage

‣ (Or, how is AAA like Obamacare?)

‣ Concerns exist that users could essentially perform a DOS attack
on individual sites, or perhaps the entire system

‣ In working experience so far, such incidents have turned out to be
rare, contained and unintentional!

‣ “I trust AAA so much that I expect any failures are transient, so I just
put in automatic retries of my jobs when they fail….”

‣ But it is a valid issue for individual sites:

‣ When storage is accessed directly through local CPU’s, required
storage performance is determined by the number of batch slots

‣ When storage is accessed remotely, sites have no control

‣ Sites do need something that will let them protect themselves if
necessary (“throttles”)

‣ But how to make sure sites use them wisely?
9

CMS Lessons Learned — K. Bloom1/27/15

Lesson #5: fear of users and usage

‣ Robust debate in CMS on how best to put this powerful
technology to use for the maximal benefit of users

‣ Let users choose whether to allow remote access?

‣ Give users maximal control over how they get their work done

‣ Potentially maximally efficient use of CPU resources

‣ “But we can’t have everyone doing this!” — no regulation

‣ Only allow remote access as a last resort?

‣ Jobs run where the data lives, only go to federation when in trouble

‣ Probably don’t get all possible benefits of AAA

‣ Make central decisions about remote access?

‣ Implemented via Condor job overflows, not available everywhere

‣ Could work if system is sufficiently responsive

‣ Users don’t always like having decisions made for them
10

CMS Lessons Learned — K. Bloom1/27/15

Lesson #6: one piece of the puzzle

‣ More about how we pitch AAA, rather than AAA itself

‣ AAA itself shouldn’t be regarded as a magic bullet for computing

‣ Sometimes it won’t work right, but that’s OK if it is part of a
robust, resilient computing environment:

‣ Worried about file-open failures? Have automatic job resubmission.

‣ Worried about too many jobs trying to read popular data from a
single site? Deploy popularity-based dataset distribution.

‣ Worried about straining networks? Make more access local by
reducing event sizes and allowing each site to host more events.

‣ We are now doing all of these things!

‣ There are many components to CMS computing, and they
support each other to give the best throughput and overall
experience for the user

11

CMS Lessons Learned — K. Bloom1/27/15

If we were to start again?

‣ If only we had had AAA from the very start of our planning!

‣ Build it in as a fundamental piece of CMS computing, not an add-on,
and use it to influence the entire computing model

‣ Create an expectation among sites, experiments, WLCG that this is
a fundamental service (like a CE or an SE) for LHC participation, and
that sites should be provisioned appropriately

‣ Then we could take maximal advantage of the technology

‣ Technical things that would be nice to have at the start:

‣ Better understanding of what we want to monitor/account and how

‣ More central configuration of site behavior

‣ Management of heterogeneous site capabilities

‣ (but now we know about these and are making progress)

12

CMS Lessons Learned — K. Bloom1/27/15

Conclusion: lesson #1 redux

‣ This works!

‣ The system can work at the necessary scale

‣ We have a growing user base, and they give positive feedback

‣ CMS has identified AAA as a key element of the Run 2 computing
strategy, for both organized and chaotic workflows

‣ All thanks to a lot of hard work from very many people

13

CMS Lessons Learned — K. Bloom1/27/15

Any Data, Anytime, Anywhere!

14

