Fine grained event processing
using an Event Service

Vakho Tsulaia (LBNL)
For the ATLAS Event Service Team

XRootD Workshop @ UCSD
January 27, 2015

Office of

}“" 2 y U.S. DEPARTMENT OF
¥ ENERGY s
i Science

Contents

* Event Service - a new approach to event processing

* Current implementation of the Event Service for running ATLAS
Geant4 simulations

* Handling of event data and meta-data by the Event Service:
current limitations and further developments

* Deployment of the Event Service to various platforms: HPC,
clouds, ATLAS @ Home, 'conventional resources’

Office of

f(‘*ﬁa"t@% U.S. DEPARTMENT OF
& ENERGY science "2-

A New Approach to Event Processing

* Afine grained Event Service (ES)
v Job granularity changes from files to individual events
v Deliver only those events to a compute node, which will be processed there by
the payload application
v Don't stage in entire input files

* ESis agile and efficient in exploring diverse, distributed, potentially short-
lived (opportunistic) resources
v HPCs, spot market clouds, volunteer computing

* Minimize use of costly storage in favor of strongly leveraging powerful
networks

* The job runs either until it reaches its lifetime or until it gets terminated
v Minimal data losses

d“"’"’f;t..% U.S. DEPARTMENT OF Office of

EN ERGY Science -3- i

A New Approach to Event Processing (2)

* Event Service is our approach to running event processing jobs on

opportunistic resources. Common characteristics to using such resources
v Quick start when they appear, quick exit when they are about to disappear
v Robust against their disappearance with no notice: minimize losses
v Use them until they disappear - soak up unused cycles
v Fill them with fine-grained workloads: send a steady stream of events and
return outputs in a steady stream

* Managers of 'conventional' resources - especially VM/cloud based - love
the idea of workloads that can be instantaneously jettisoned with negligible
losses

* Data intensive, network centric, platform agnostic computing. Applicable to
any workflow that can support fine grained partitioning of the processing
and its outputs

U.S. DEPARTMENT OF Office of

EN ERGY Science "4 Emﬂ‘“/—i;lﬂﬂﬂ

=
A
rrrrrrr |"'|

ST,
@

ES Collaboration

A broad Lab/University collaboration bringing together experts from various
domains of ATLAS Computing: software development, distributed operations.

BNL: (Big)PanDA and its JEDI fine grained extension, HPC porting
* LBNL: AthenaMP parallel processing framework, HPC porting

* ANL: Parallel I/0, WAN data access

* UTA: (Big)PanDA, HPC porting

* University of Wisconsin: Pilot, HPC porting

) OF Office of

o
f/‘\} U.S. DEPARTMEN /—\l

2 (2 s . -5-

3>--s»~“ EN ERG Science BERKELEY LAB

=
A
rrrrrrr |"'|

ES Components

* PanDA/JEDI
v Job brokerage, workload management, bookkeeping

* AthenaMP (multi-process version of Athena - ATLAS reconstruction,

simulation and data analysis framework)
v Efficient usage of the CPU and memory resources on the compute node
v Configured to process fine grained workloads (events, event ranges)

* Remote /O
v Efficient delivery of the event data to compute nodes

* Object store
v Efficient management of the outputs produced by ES jobs

E R, U-S. DEPARTMENT OF Office of

é‘ I ENERGY Science A

ES schematic

Event IDs

| Fine grined tsputeher e Blgsrety mansess. | Event requester

: Event Event list
dispatcher y

Event data

Event data fetch

Async data cache

‘Event data
service Parallel payload

Event
loop

Output files

Output events
Output stager

Remote ! Worker node

First use-case

* First implementation of the Event Service can run only ATLAS Geant4
simulation

v The biggest return for the least investment

v CPU-intensive job (5-10min/event wall time) with minimal 1I/O requirements
(<3MB/event output size)

v Meta-data handling relatively simple (wrt other payloads)

* Other payloads expected to follow ...

E R, U-S. DEPARTMENT OF Office of

d I EN ERGY Science o

Current Implementation

Event Service getlob request returns

Returns manages event loop

run#/evi/guid list
- I

Token extractor

Events
complete
notification

PanDA
creates

; o Event retrieval tokens
merge job

Token Scatterer

AthenaMP

Event data
retrieval
(xrootd)

: Payload
]
1
CR)
| 0
1
1r 3
- | stager ™
- Output aggregation . E Event files -
1
Remote | Worker node

as realized in ATLAS today o event service job Pilot
getlob
Jaob specification
runEvent module
getEvents o

Event
loop

Pilot lands on an empty
compute node and pulls a job
definition from PanDA/JEDI

Pilot receives a request to
start an ES Job and launches
the payload AthenaMP with
no input

AthenaMP goes through the
initialization stage and
informs Pilot that it is ready to
start event processing

Pilot starts pulling ES work
load from PanDA/JEDI

* Pilot gets the workload in the form of Event Ranges - strings, which contain: Range
ID, Input file name and ID, positional event numbers within the file (first event, last

event)

U.S. DEPARTMENT OF Ofﬂce Of

ENERGY Science -9-

Current Implementation (2)

Event Service getlob request returns

getEvents
Returns manages event loop

Events run#/ev#/guid list .
complete Event lis
Tokens

notification

Token extractor
PanDA
creates
merge job

o. Event retrieval tokens

Token Scatterer

AthenaMP
Payload

Event data
retrieval
(xrootd)

merge
job

stager

l -

1

1
Output aggregation i Event files

Remote i Worker node

U.S. DEPARTMENT OF Office of

ENERGY Science -10-

as realized in ATLAS today o event service job Pilot
B e Jaob specification
dNUAJEL Dispatcher
o runEvent module

Event
loop

AthenaMP transforms Event
Ranges into the list of Tokens

The list of Tokens ultimately
gets delivered to AthenaMP
Worker Process

Each AthenaMP Worker
retrieves event data
independently using the
Token and a local File Catalog

AthenaMP worker creates
new output file for each
Event Range

~

A
|

frreeerer

BERKELEY LB

Current Implementation (3)

Event Service
as realized in ATLAS today

Events
complete
notification

PanDA
creates
merge job

Output aggregation

Remote i Worker node

U.S. DEPARTMENT OF

getlob request returns

getEvents
Returns
run#/evi/guid list

manages event loop

Token extractor

Event |

Tokens

o. Event retrieval tokens

Token Scatterer

AthenaMP
Payload

Event data
retrieval
(xrootd)

stager

Event files

Office of

ENERGY Science

Pilot

o event service job
getlob \
— : Jaob specification
SA/IEL Dispatcher
o runEvent module

Event
loop

Pilot promptly streams the
output files to Object Stores
at BNL, CERN

Panda keeps event range
statuses -
running/completed/failed -
up to date in the database

Failed event ranges are
re-dispatched later on

Finally the outputs are
merged. PanDA triggers the
start of a merge job

~

A
|

frreeerer

BERKELEY LB

Inefficiencies of Event Data Reading

* Current implementation or event data reading in ES is rather inefficient
* Each worker process reads event data separately from other workers

* In the case of Geant4 Simulation, the worker usually needs only one event
from a given ROOT basket. The rest of the basket is discarded

v In our CPU-intensive simulation jobs 1 Event Range = 1 Event

* This results in many duplicate transfers of the same basket over the
network to different worker processes

* This can be avoided by matching the number of events in the range to the
number of events in the basket

v Does not apply to G4 simulation, but can be achieved for other payloads

1 aF Office of

jy‘“ﬁ"\’@% U.S. DEPARTMEN /—\l
A 17)i : -12 -
’)k EN ERG Science BERKELEY LAB

=
A
rrrrrrr |"'|

Shared Reader

* |n order to implement Event Data Service depicted on page 7, it is essential
to have a mechanism for transferring Event Data Objects between
processes

v Current implementation of ATLAS 1/0 and Persistency infrastructure does not
provide such functionality

* First step in this direction would be to develop a Shared Event Reader
(Event Source) for AthenaMP

v Single place for reading input data objects and decompressing ROOT baskets
v Sends individual events or event ranges to the workers

v Has a potential of asynchronous reading of input event data

* Implementation of such shared reader is a fairly non-trivial task

v Relatively simple to develop shared reader for Simulation jobs (compared to
shared readers for other types of payload)

U.S. DEPARTMENT OF Office of

EN ERGY Science -13-

=
A
rrrrrrr |"'|

oy
P 3 Lo
{EN
,(pi
"3\ 7
A

Shared Writer

* Current approach of the Event Service to dealing with output files:

v Use a special Output File Sequencer mechanism for writing new output file for
each event range

v As a result, each worker process creates many small output files

* This mechanism has been working well for Geant4 simulation jobs so far, ...

v Good scaling is yet to be confirmed for HPCs with shared file systems

* ... however, for I/O-intensive payloads we consider implementing Shared
Writer (Event Sink) processes

— Only one process/thread writing to the disk

— Less files to merge at the end

SERy, U.S. DEPARTMENT OF Office of

EN ERGY Science -14-

=
A
rrrrrrr |"'|

Handling of Meta-Data

* When switching from file-based to event-based workloads, the handling of
event meta-data is rather straightforward

v Events never span file boundaries

v Event meta-data is written to the output right after processing the given event

* In-file meta-data is not that simple
v Either accumulated/summarized over the run time of the job

v Or propagated from the Input to Output file

* We store in-file meta-data with different purposes: to be able to set up a job
(Interval Of Validity), to describe a workflow, to describe the events

* For working with fine-grained workloads - events, event ranges - the existing
meta-data infrastructure needs to be thoroughly changed/redesigned

v Relatively simple task for Geant4 simulation payloads

U.S. DEPARTMENT OF Office of

EN ERGY Science “15- Emﬂ‘“/—i;lﬂﬂﬂ

=
A
rrrrrrr |"'|

ST,
@

Deployment platforms

* Supercomputers

v

E R, U-S. DEPARTMENT OF Office of

%) ENERGY scionce e

We have developed Yoda - a MPI-based implementation of the Event Service -
specifically for running on HPCs

Yoda is flexible in defining duration and size of MPI jobs

Offers the efficiency and scheduling flexibility of preemption without the
application needing to support or utilize checkpointing

By reusing the code of the conventional event service, we were able to very
rapidly go from the concept of Yoda to its first implementation

Demoed at Supercomputing 2014 as a DOE ASCR Data Demo

Currently being validated by running ATLAS Geant4 simulation validation
samples on Edison supercomputer at NERSC (LBNL)

Yoda

Interactive
Node
Bilot MPI Application Droid N
MPI Rank 1| Yampl | Payload. AthenaMP
Lighweight {—n
runJobHPC Event Ranges Execution Master > worker
(MPI Send/Recv) Wrapper
WN
L/ YOdla i | MPIRank 2 | Yampl | Payload. AthenaMP
MPI Rank 0 [———#| Lighweight —
i | Leightweight JEDI =i Execution [Master | D Worker |
Wrapper
Job \
- i WN ; 9 WN .
Scheduler N e et
Output File Names Payload. AthenaMP
(MPI Send/Recv) ‘ Ml_%hﬁeaig:ts Yampl [Worker_]
™| Execution D [Master | B Worker |
Wrapper

[

* Shared File System

U.S. DEPARTMENT OF Ofﬂce Of

Gy ENERGY Science

MPI application

Reuse conventional ES code
wherever possible

Rank O (Yoda, master).
Distributes workload
between slave ranks

Fine grained workload:
individual events or event
ranges

Rank N (Droid, slave).
Processes assigned workload,
saves output to the shared
file system, asks for the next
workload ...

~

A
|

frreeerer

BERKELEY LAB

Deployment platforms (continued)

* Clouds
v Event Service has been successfully tested on Amazon Spot Market

v No scalability issues have been identified

* 'Conventional resources' (Grid)
v Initial platform for the development and testing of the Event Service

v Now we are about to start Event Service commissioning on the Grid
v The idea is to get the ES up and running in production on the sites, which express

interest in being its early adopters

* Volunteer computing (BOINC)

v Underway ...

E R, U-S. DEPARTMENT OF Office of

%) ENERGY scionce o

Summary

* The concept of an Event Service is applicable to any workflow
that can support fine grained partitioning of the processing and
its outputs

* First implementation of the Event Service, which works only for
Geant4 Simulation, is currently being validated

* We are ready to start Event Service commissioning on various
deployment platforms: Grid, Clouds, HPCs

* Rapid progress so far, but lots of work ahead: the extension of
the Event Service mechanism to other payloads beyond
simulation is a major development task!

Office of

2 y U.S. DEPARTMENT OF
L\ 4 ENERGY Science -19-

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19

