
Fine grained event processing
using an Event Service

Vakho Tsulaia (LBNL)

For the ATLAS Event Service Team

XRootD Workshop @ UCSD
January 27, 2015



Contents

• Event Service – a new approach to event processing

• Current implementation of the Event Service for running ATLAS 
Geant4 simulations

● Handling of event data and meta-data by the Event Service: 
current limitations and further developments

• Deployment of the Event Service to various platforms: HPC, 
clouds, ATLAS@Home, 'conventional resources'

- 2 -



• A fine grained Event Service (ES)
✔ Job granularity changes from files to individual events
✔ Deliver only those events to a compute node, which will be processed there by 

the payload application
✔ Don't stage in entire input files

• ES is agile and efficient in exploring diverse, distributed, potentially short-
lived (opportunistic) resources

✔ HPCs, spot market clouds, volunteer computing

• Minimize use of costly storage in favor of strongly leveraging powerful 
networks

• The job runs either until it reaches its lifetime or until it gets terminated
✔ Minimal data losses 

- 3 -

A New Approach to Event Processing



• Event Service is our approach to running event processing jobs on 
opportunistic resources. Common characteristics to using such resources

✔ Quick start when they appear, quick exit when they are about to disappear
✔ Robust against their disappearance with no notice: minimize losses
✔ Use them until they disappear – soak up unused cycles
✔ Fill them with fine-grained workloads: send a steady stream of events and 

return outputs in a steady stream

• Managers of 'conventional' resources – especially VM/cloud based – love 
the idea of workloads that can be instantaneously jettisoned with negligible 
losses

• Data intensive, network centric, platform agnostic computing. Applicable to 
any workflow that can support fine grained partitioning of the processing 
and its outputs

- 4 -

A New Approach to Event Processing (2)



ES Collaboration

A broad Lab/University collaboration bringing together experts from various 
domains of ATLAS Computing: software development, distributed operations.

• BNL: (Big)PanDA and its JEDI fine grained extension, HPC porting

• LBNL: AthenaMP parallel processing framework, HPC porting

• ANL: Parallel I/O, WAN data access

• UTA: (Big)PanDA, HPC porting

• University of Wisconsin: Pilot, HPC porting

- 5 -



ES Components

• PanDA/JEDI
✔ Job brokerage, workload management, bookkeeping

• AthenaMP (multi-process version of Athena – ATLAS reconstruction, 
simulation and data analysis framework)

✔ Efficient usage of the CPU and memory resources on the compute node
✔ Configured to process fine grained workloads (events, event ranges)

• Remote I/O
✔ Efficient delivery of the event data to compute nodes

• Object store
✔ Efficient management of the outputs produced by ES jobs

- 6 -



ES schematic

- 7 -



• First implementation of the Event Service can run only ATLAS Geant4 
simulation

✔ The biggest return for the least investment
✔ CPU-intensive job (5-10min/event wall time) with minimal I/O requirements 

(<3MB/event output size)
✔ Meta-data handling relatively simple (wrt other payloads)

• Other payloads expected to follow ... 

- 8 -

First use-case



Current Implementation

- 9 -

• Pilot lands on an empty 
compute node and pulls a job 
definition from PanDA/JEDI

• Pilot receives a request to 
start an ES Job and launches 
the payload AthenaMP with 
no input

• AthenaMP goes through the 
initialization stage and 
informs Pilot that it is ready to 
start event processing

• Pilot starts pulling ES work 
load from PanDA/JEDI

• Pilot gets the workload in the form of Event Ranges – strings, which contain: Range 
ID, Input file name and ID, positional event numbers within the file (first event, last 
event)



Current Implementation (2)

- 10 -

• AthenaMP transforms Event 
Ranges into the list of Tokens

• The list of Tokens ultimately 
gets delivered to AthenaMP 
Worker Process

• Each AthenaMP Worker 
retrieves event data 
independently using the 
Token and a local File Catalog

• AthenaMP worker creates 
new output file for each 
Event Range



Current Implementation (3)

- 11 -

• Pilot promptly streams the 
output files to Object Stores 
at BNL, CERN 

• Panda keeps event range 
statuses – 
running/completed/failed – 
up to date in the database

• Failed event ranges are
re-dispatched later on

• Finally the outputs are 
merged. PanDA triggers the 
start of a merge job



• Current implementation or event data reading in ES is rather inefficient

• Each worker process reads event data separately from other workers

• In the case of Geant4 Simulation, the worker usually needs only one event 
from a given ROOT basket. The rest of the basket is discarded

✔ In our CPU-intensive simulation jobs 1 Event Range = 1 Event

• This results in many duplicate transfers of the same basket over the 
network to different worker processes

• This can be avoided by matching the number of events in the range to the 
number of events in the basket

✔ Does not apply to G4 simulation, but can be achieved for other payloads

- 12 -

Inefficiencies of Event Data Reading



• In order to implement Event Data Service depicted on page 7, it is essential 
to have a mechanism for transferring Event Data Objects between 
processes

✔ Current implementation of ATLAS I/O and Persistency infrastructure does not 
provide such functionality

• First step in this direction would be to develop a Shared Event Reader 
(Event Source) for AthenaMP 

✔ Single place for reading input data objects and decompressing ROOT baskets
✔ Sends individual events or event ranges to the workers
✔ Has a potential of asynchronous reading of input event data

• Implementation of such shared reader is a fairly non-trivial task
✔ Relatively simple to develop shared reader for Simulation jobs (compared to 

shared readers for other types of payload)

- 13 -

Shared Reader



• Current approach of the Event Service to dealing with output files:
✔ Use a special Output File Sequencer mechanism for writing new output file for 

each event range
✔ As a result, each worker process creates many small output files

• This mechanism has been working well for Geant4 simulation jobs so far, ... 
✔ Good scaling is yet to be confirmed for HPCs with shared file systems 

• ... however, for I/O-intensive payloads we consider implementing Shared 
Writer (Event Sink) processes

– Only one process/thread writing to the disk
– Less files to merge at the end

- 14 -

Shared Writer



• When switching from file-based to event-based workloads, the handling of 
event meta-data is rather straightforward

✔ Events never span file boundaries
✔ Event meta-data is written to the output right after processing the given event

• In-file meta-data is not that simple
✔ Either accumulated/summarized over the run time of the job
✔ Or propagated from the Input to Output file 

• We store in-file meta-data with different purposes: to be able to set up a job 
(Interval Of Validity), to describe a workflow, to describe the events

• For working with fine-grained workloads – events, event ranges – the existing 
meta-data infrastructure needs to be thoroughly changed/redesigned

✔ Relatively simple task for Geant4 simulation payloads

- 15 -

Handling of Meta-Data



• Supercomputers
✔ We have developed Yoda – a MPI-based implementation of the Event Service – 

specifically for running on HPCs
✔ Yoda is flexible in defining duration and size of MPI jobs
✔ Offers the efficiency and scheduling flexibility of preemption without the 

application needing to support or utilize checkpointing
✔ By reusing the code of the conventional event service, we were able to very 

rapidly go from the concept of Yoda to its first implementation
✔ Demoed at Supercomputing 2014 as a DOE ASCR Data Demo
✔ Currently being validated by running ATLAS Geant4 simulation validation 

samples on Edison supercomputer at NERSC (LBNL)

 

- 16 -

Deployment platforms



Yoda

• MPI application

• Reuse conventional ES code 
wherever possible

• Rank 0 (Yoda, master). 
Distributes workload 
between slave ranks

• Fine grained workload: 
individual events or event 
ranges

• Rank N (Droid, slave). 
Processes assigned workload, 
saves output to the shared 
file system, asks for the next 
workload ...



• Clouds
✔ Event Service has been successfully tested on Amazon Spot Market
✔ No scalability issues have been identified

● 'Conventional resources' (Grid)
✔ Initial platform for the development and testing of the Event Service
✔ Now we are about to start Event Service commissioning on the Grid

✔ The idea is to get the ES up and running in production on the sites, which express 
interest in being its early adopters

● Volunteer computing (BOINC)
✔ Underway ... 

 

- 18 -

Deployment platforms (continued)



Summary

• The concept of an Event Service is applicable to any workflow 
that can support fine grained partitioning of the processing and 
its outputs

• First implementation of the Event Service, which works only for 
Geant4 Simulation, is currently being validated

● We are ready to start Event Service commissioning on various 
deployment platforms: Grid, Clouds, HPCs

• Rapid progress so far, but lots of work ahead: the extension of 
the Event Service mechanism to other payloads beyond 
simulation is a major development task!

- 19 -


	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19

