
XrootdFS:

a Posix Filesystem for Xrootd

Wei Yang

2

Introduction

the Xrootd workshop at UCSD

 Xrootdfs is a posix file system for the xrootd storage

» Mount the xrootd storage and use standard Unix

commands

» Implement most of the posix functions supported by the

xrootd posix IO API

» Use the FUSE framework

• Imagine how much work we need to do if there is no FUSE

 Applications access xrootd storage without knowledge of

the xroot protocol

» Initially motivation was to use Berkeley SRM with xrootd

storage

» Many other applications also work on xrootdfs:

• Gridftp, bbcp, scp/sftp, root/proofLite

3

FUSE in one slide

the Xrootd workshop at UCSD

 A daemon running in user space and communication between
kernel and storage. It is a xrootd client

 Applications talk to the kernel, not the daemon

 The daemon implement a set of posix-like functions under the
FUSE framework

» Customized for the specific storage:

» Example: xrootdfs, sshfs, ftpfs, etc.

Application

Kernel / FUSE module

FUSE daemon

e.g. xrootdfs or sshfs

xrootd storage

or ssh server

Posix IO functions: open(), read(), write(),

 stat(), readdir(), etc.

via /dev/fuse

Implement: xrootdfs_open, xrootdfs_read, etc.

4

Xrootdfs daemon detail

the Xrootd workshop at UCSD

Three categories of functions

• Data IO, Meta Data IO, Query and Control

 Data IO functions:

» open(), read(), write(), release() (async close)

» Assign each file a 128KB cache to capture sequential
writes

• Note linux kernel breaks large write into 4KB blocks

(except very recent kernel and FUSE combination)

 Query & Control of xrootdfs internal parameters

» Via filesystem extended attribute (xattr)

• For example, refresh the internal list of xrootd data servers

getfattr –n xrootdfs.fs.dataserverlist -–only-value /mountpoint

setfattr –n xrootdfs.fs.dataserverlist /mountpoint

• Change the # of threads working on meta data operations

5

Xrootdfs daemon detail, cont’d

the Xrootd workshop at UCSD

 Meta data operation functions
» Meta data on all of xrootd data servers need to be handled, e.g.

• readdir() combines directory entries from all data servers, with
duplicated ones removed.

• unlink() need to delete an item from all data servers.

• Return code, errno from each data server need to be combined.

» Implemented a queue to handle the meta data IO

• To prevent overwhelming the data servers by meta data IO

• A number of worker threads dedicated to handle them
▫ The number is queried/adjusted via xattr.

» Special considerations
• Brute force stat() (on all data servers via the queue) to avoid the

5 second delay on non-existing files
▫ Why? Consider an application searching a .so on a xrootdfs path

• Caching directory entries to avoid brute force stat() on common
usages
▫ ls -l dir or find /dir -mtime +10 –exec … {} \;

6

Security

the Xrootd workshop at UCSD

 Can use any xrootd security plugin

» “unix”, “gsi”, none, etc.

» Only “sss” allows xrootdfs to pass the actual usernames
(not uid) to the xrootd server

• Servers and xrootdfs instances share a predefined “sss” key:
the servers trust the xrootdfs

 Xrootd use ACL based authorization

» Defined at the Xrootd server side

» chmod, chown, chgrp won’t work

» Query your own access privilege
$ getfattr –n xrootdfs.file.permission

/xrootd/atlas/atlasdatadisk

getfattr: Removing leading '/' from absolute path names

file: xrootd/atlas/atlasdatadisk

xrootdfs.file.permission="lr"

7

Other things supported/unsupported

the Xrootd workshop at UCSD

 Support Composite Name Space (CNS)

» CNS hosts the complete file system metadata info

• on one auxiliary xrootd server that is not part of the cluster.

» Some files may not be available for access immediately

(even thought their meta data is available), e.g. files on

tape.

» In a disk only environment, CNS is seldom used nowadays

 Don’t support changing mtime, atime, etc.

 Don’t support file locking

 close() are asynchronous

» Though xrootd sync() and close() will be called eventually

8

IO Performance

the Xrootd workshop at UCSD

Meta data IO performance depends on the number of data servers and

the number of worker threads

9

How to use it

the Xrootd workshop at UCSD

Documented in “man xrootdfs”

 run from command line with debugging output
xrootdfs -d -o rdr=root://rdr:port//data,uid=daemon /mnt

 use with autofs

add a line to /etc/auto.master
/- /etc/auto.fuse

create /etc/auto.fuse with the following one line
/mnt -fstype=fuse,uid=2,rdr=root://rdr\:port//data :xrootdfs.sh

create script /usr/bin/xrootdfs.sh (and set the +x bit)
#!/bin/sh

exec /usr/bin/xrootdfs $@ >/dev/null 2>&1

 Now you can cd, df, ls, rm

10

Backup Slides

the Xrootd workshop at UCSD

0

10

20

30

40

50

60

70

80

0 100 200 300 400 500 600

dir_io 0k wcache

dir_io 128k wcache

indor_io 128k wcache

0

10

20

30

40

50

60

70

80

90

0 100 200 300 400 500 600

dir_io 0k rcache

dir_io 64k rcache

dir_io 256k rcache

indir_io 0k rcache

indir_io 512k rcache

Old measurement from 2009

