XrootdFS:
a Posix Filesystem for Xrootd

Wel Yang

Introduction

1 AR

= Xrootdfs is a posix file system for the xrootd storage

» Mount the xrootd storage and use standard Unix
commands

» Implement most of the posix functions supported by the
xrootd posix IO API

» Use the FUSE framework
 Imagine how much work we need to do if there is no FUSE

= Applications access xrootd storage without knowledge of
the xroot protocol

» Initially motivation was to use Berkeley SRM with xrootd
storage

» Many other applications also work on xrootdfs:
 Gridftp, bbcp, scp/sftp, root/proofLite

the Xrootd workshop at UCSD

FUSE in one slide

Application

1 Posix 1O functions: open(), read(), write(),
stat(), readdir(), etc.

Kernel / FUSE module
i via /dev/fuse

xrootd storage
or ssh server

FUSE daemon
e.g. xrootdfs or sshfs

Implement: xrootdfs_open, xrootdfs_read, etc.

A daemon running in user space and communication between
kernel and storage. It is a xrootd client

= Applications talk to the kernel, not the daemon

= The daemon implement a set of posix-like functions under the
FUSE framework

» Customized for the specific storage:
» Example: xrootdfs, sshfs, ftpfs, etc.

the Xrootd workshop at UCSD

Xrootdfs daemon detail

Three categories of functions
- Data IO, Meta Data IO, Query and Control
= Data IO functions:
» open(), read(), write(), release() (async close)

» Assign each file a 128KB cache to capture sequential
writes
* Note linux kernel breaks large write into 4KB blocks
(except very recent kernel and FUSE combination)
= Query & Control of xrootdfs internal parameters

» Via filesystem extended attribute (xattr)

« For example, refresh the internal list of xrootd data servers
getfattr —n xrootdfs.fs.dataserverlist -—only-value /mountpoint
setfattr —n xrootdfs.fs.dataserverlist /mountpoint

* Change the # of threads working on meta data operations

the Xrootd workshop at UCSD

Xrootdfs daemon detail, cont’d

= Meta data operation functions
» Meta data on all of xrootd data servers need to be handled, e.g.

» readdir() combines directory entries from all data servers, with
duplicated ones removed.

 unlink() need to delete an item from all data servers.
» Return code, errno from each data server need to be combined.
» Implemented a queue to handle the meta data IO
* To prevent overwhelming the data servers by meta data 10
* A number of worker threads dedicated to handle them
= The number is queried/adjusted via xattr.
» Special considerations

 Brute force stat() (on all data servers via the queue) to avoid the
5 second delay on non-existing files

= Why? Consider an application searching a .so on a xrootdfs path

« Caching directory entries to avoid brute force stat() on common
usages

= Is -l dir or find /dir -mtime +10 —exec ... {} \;

the Xrootd workshop at UCSD

Security

= Can use any xrootd security plugin
» “unix’, “gsi’, none, etc.

» Only “sss” allows xrootdfs to pass the actual usernames
(not uid) to the xrootd server

« Servers and xrootdfs instances share a predefined “sss” key:
the servers trust the xrootdfs
= Xrootd use ACL based authorization
» Defined at the Xrootd server side
» chmod, chown, chgrp won’t work
» Query your own access privilege

$ getfattr —-n xrootdfs.file.permission
/xrootd/atlas/atlasdatadisk

getfattr: Removing leading '/' from absolute path names
file: xrootd/atlas/atlasdatadisk
xrootdfs.file.permission="1r"

the Xrootd workshop at UCSD

Other things supported/unsupported

e An

= Support Composite Name Space (CNS)

» CNS hosts the complete file system metadata info
« on one auxiliary xrootd server that is not part of the cluster.

» Some files may not be available for access immediately
(even thought their meta data is available), e.g. files on
tape.

» In a disk only environment, CNS is seldom used nowadays
= Don’t support changing mtime, atime, etc.
= Don’t support file locking

close() are asynchronous
» Though xrootd sync() and close() will be called eventually

the Xrootd workshop at UCSD 7

IO Performance

500 T T T T T T T T I T T T I
single read w/o kernel read ahead
sirtgle read w/ kernel read ahead

400 L single write —+— |
" 6 concurrent reads w/ kernel read ahead —&=—
&
=
S 300 | -
=
5
=) M
O
- 200 + .
o
3
S
g &
5 = == = E\E

100 A

0 1 1 I 1 1 1 I 1 1 1 I
1 10 100 1000

10 block size: 0.5, 2,8, 32,128,512, 1024 KB
Meta data 10 performance depends on the number of data servers and
the number of worker threads
the Xrootd workshop at UCSD

How to use it

Documented in “man xrootdfs”
= run from command line with debugging output

xrootdfs -d -o rdr=root://rdr:port//data,uid=daemon /mnt

= use with autofs
add a line to /etc/auto.master

/- /etc/auto. fuse

create /etc/auto.fuse with the following one line
/mnt -fstype=fuse,uid=2, rdr=root://rdr\:port//data :xrootdfs.

create script /usr/bin/xrootdfs.sh (and set the +x bit)
#!/bin/sh
exec /usr/bin/xrootdfs $@ >/dev/null 2>&l

= Now you can cd, df, Is, rm

the Xrootd workshop at UCSD

sh

Backup Slides

>
)

Old measurement from 2009

N

80
70 - —h e |
60
50 =—4—dir_io Ok wcache
:8 _{ =—dir_io 128k wcache
20 =>=indor_io 128k wcache
10 ¢

0

0 100 200 300 400 500 600

90
80 K =¢—dir_io Ok rcache
70 —*
60 \%: ——— ~m—dir_io 64k rcache
50
40 - =&—dir_io 256k rcache
30
20 * =>e=indir_io Ok rcache
10 ¢

0 | | ==indir_io 512k rcache

0 100 200 300 400 500 600

the Xrootd workshop at UCSD

10

