

What do we want to order?

- 1) RUNI: Measurement of hbb coupling (0,2.5) what did we learn?
- c's no information for theories with light H doublet

(expansion parameter EFT $c_b \frac{v^2}{f^2} \gtrsim 1$)

k's - important for theories with NL EWSB (no field expansion)

- 1) RUNI: Measurement of hbb coupling (0,2.5) what did we learn?
- c's no information for theories with light H doublet

(expansion parameter EFT
$$c_b \frac{v^2}{f^2} \gtrsim 1$$
)

- k's important for theories with NL EWSB (no field expansion)
- 2) RUN2: Measurement of V^* ->Vh (or h^* ->ZZ) sensitive to high energy
 - still a valid description? (due to E/M expansion)
 - can info on "energy of highest sensitivity" be provided?

$$hV^{\mu}V_{\mu} \quad hV_{\mu}\bar{f}\gamma^{\mu}f \quad hV^{\mu\nu}V_{\mu\nu}$$
 SM rescaling Grows fast with E Grows with E like I) In some BSM valid at E>M Generally not valid at E>M

- 1) RUNI: Measurement of hbb coupling (0,2.5) what did we learn?
- c's no information for theories with light H doublet

(expansion parameter EFT
$$c_b \frac{v^2}{f^2} \gtrsim 1$$
)

- k's important for theories with NL EWSB (no field expansion)
- 2) RUN2: Measurement of V^* ->Vh (or h^* ->ZZ) sensitive to high energy
 - still a valid description? (due to E/M expansion)
 - can info on "energy of highest sensitivity" be provided?

- 3) RUN2: Measurement of h->Vff sensitive to small energy
 - not capturable by neither c's nor k's

- 1) RUNI: Measurement of hbb coupling (0,2.5) what did we learn?
- c's no information for theories with light H doublet

(expansion parameter EFT
$$c_b \frac{v^2}{f^2} \gtrsim 1$$
)

- k's important for theories with NL EWSB (no field expansion)
- 2) RUN2: Measurement of V^* ->Vh (or h^* ->ZZ) sensitive to high energy
 - still a valid description? (due to E/M expansion)
 - can info on "energy of highest sensitivity" be provided?

$$hV^{\mu}V_{\mu} \quad hV_{\mu}\bar{f}\gamma^{\mu}f \quad hV^{\mu\nu}V_{\mu\nu}$$
 SM rescaling Grows fast with E Grows with E like I) In some BSM valid at E>M Generally not valid at E>M

- 3) RUN2: Measurement of h->Vff sensitive to small energy
 - not capturable by neither c's nor k's

k's no longer "easy" nor complete

- 1) RUNI: Measurement of hbb coupling (0,2.5) what did we learn?
- c's no information for theories with light H doublet

(expansion parameter EFT
$$c_b \frac{v^2}{f^2} \gtrsim 1$$
)

- k's important for theories with NL EWSB (no field expansion)
- 2) RUN2: Measurement of V^* ->Vh (or h^* ->ZZ) sensitive to high energy
 - still a valid description? (due to E/M expansion)
 - can info on "energy of highest sensitivity" be provided?

$$hV^{\mu}V_{\mu} \quad hV_{\mu}\bar{f}\gamma^{\mu}f \quad hV^{\mu\nu}V_{\mu\nu}$$
 SM rescaling Grows fast with E Grows with E like I) In some BSM valid at E>M Generally not valid at E>M

- 3) RUN2: Measurement of h->Vff sensitive to small energy
 - not capturable by neither c's nor k's

k's no longer "easy" nor complete difference with c's: no relation with EWSB observables!