Taming the off-shell Higgs boson

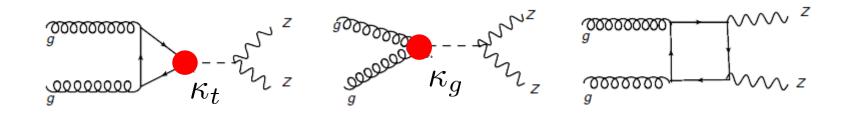
Ennio Salvioni UC Davis

LHC Higgs XSWG2 meeting
CERN
July 18, 2014

based on 1406.6338 with A. Azatov, C. Grojean and A. Paul

High-mass gg → VV constrains Higgs couplings

Assume:


- No invisible Higgs decay width
- Higher-dimensional operators modifying Higgs couplings:

$$\mathcal{L}_6 = c_y \frac{y_t H^{\dagger} H}{v^2} \overline{q}_L \widetilde{H} t_R + \text{h.c.} + c_g \frac{g_s^2}{48\pi^2 v^2} H^{\dagger} H G_{\mu\nu} G^{\mu\nu}$$

$$\mathcal{L}_{\text{couplings}} = -\kappa_t \frac{m_t}{v} \bar{t} t h + \kappa_g \frac{\alpha_s}{12\pi} \frac{h}{v} G_{\mu\nu} G^{\mu\nu}$$

$$(\kappa_t = 1 - \operatorname{Re} c_y, \ \kappa_g = c_g)$$

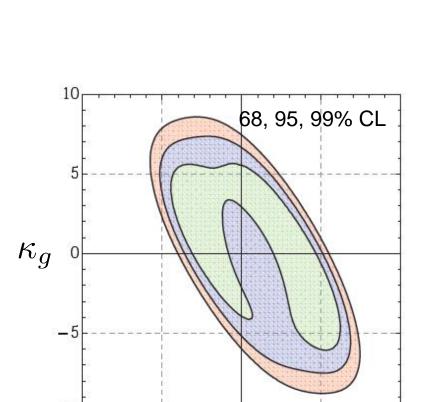
$$\mathcal{M}_{gg \to ZZ} = \kappa_t \mathcal{M}_{\kappa_t} + \kappa_g \mathcal{M}_{\kappa_g} + \mathcal{M}_{\text{background}}$$

Example: CMS 8 TeV 4/ data

CMS PAS - HIG - 14 - 002

m₄₁ (GeV)

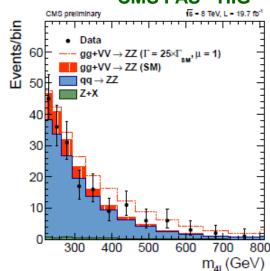
 $gg+VV \rightarrow ZZ (\Gamma = 25 \times \Gamma_{ou}, \mu = 1)$

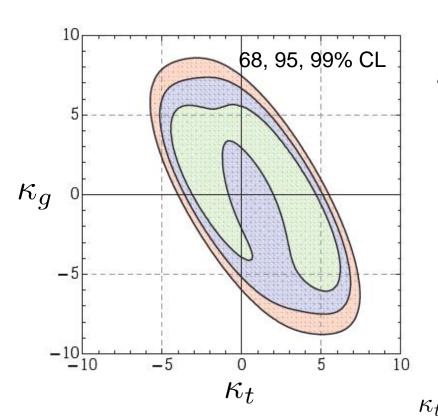

- Use MCFM to extract $rac{d\sigma}{dm_{4l}}(\kappa_t,\kappa_g)$
- Take $q\bar{q}$ background and observed yields from CMS' first note (cut and count, no MELA)

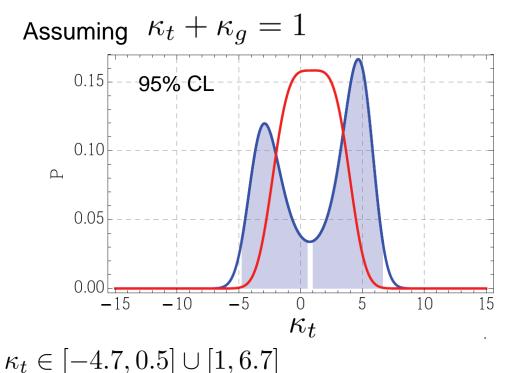
10

20

10


 κ_t


-5


Example: CMS 8 TeV 4/ data

CMS PAS - HIG - 14 - 002

- Use MCFM to extract $rac{d\sigma}{dm_{4l}}(\kappa_t,\kappa_g)$
- Take $q\bar{q}$ background and observed yields from CMS' first note (cut and count, no MELA)

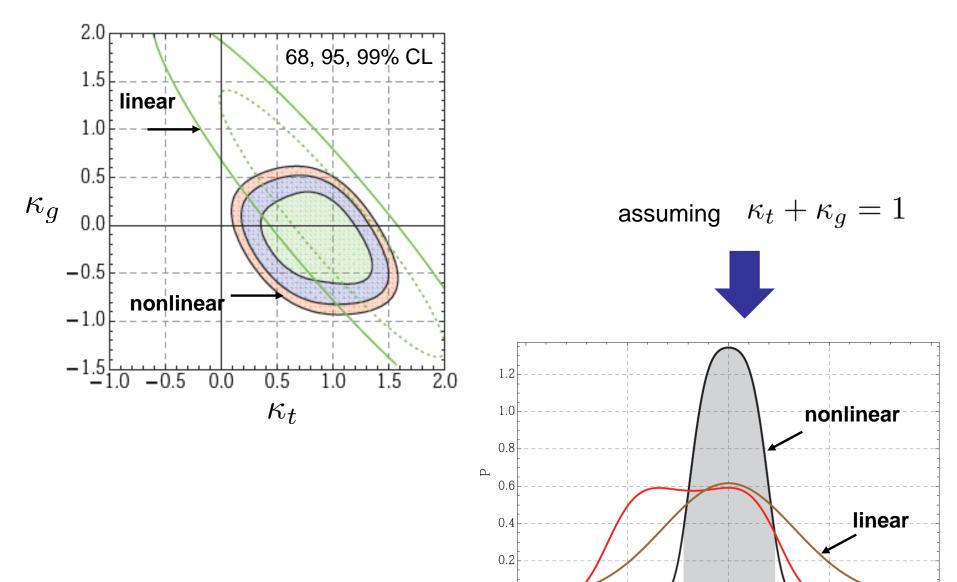
EFT validity

- Current bounds are weak, no interpretation in terms of EFT.
 With increasing precision, important to check validity of the expansion.
- Our analysis neglects dim-8 operators, e.g. corrections to box diagrams

$$c_8 \frac{g_s^2}{16\pi^2 v^4} G_{\mu\nu} G^{\mu\nu} (D_{\lambda} H)^{\dagger} D^{\lambda} H$$

 Fully model-independent results include only interference of dim-6 operators with SM: 'linear' analysis, valid up to scale

$$\sqrt{\hat{s}} \sim \sqrt{\frac{c_y, c_g}{c_8}} v$$

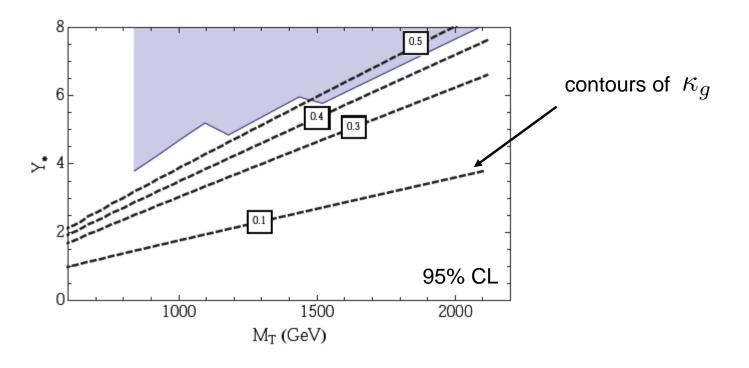

(e.g. for fermionic top partner, ~ mass of the resonance).

Stronger bounds obtained retaining also terms ~ (dim-6)² :
 'nonlinear' analysis, valid provided

$$c_{y,g}^2 \gg c_8$$

So applicability of the nonlinear bound is model-dependent.

14 TeV, 3/ab results (MCFM)



 κ_t

95%: $\kappa_t \in [0.56, 1.46]$

Backup

Example: fermionic top partner

$$-\mathcal{L} = y\overline{q}_L\widetilde{H}t_R + Y_*\overline{q}_L\widetilde{H}T_R + M_*\overline{T}_LT_R + \text{h.c.}$$

$$\kappa_t + \kappa_g = 1$$

Future pp colliders

	$33\mathrm{TeV}$	$50\mathrm{TeV}$	$80\mathrm{TeV}$	$100\mathrm{TeV}$
${\rm non\text{-}linear} < 2{\rm TeV}$	[0.92, 1.14]	[0.95, 1.11]	[0.96, 1.08]	[0.97, 1.07]
$\mathrm{linear} < 2\mathrm{TeV}$	[0.83, 1.18]	[0.9, 1.11]	[0.94, 1.07]	[0.95, 1.05]
non-linear all	[0.94, 1.11]	[0.96, 1.08]	[0.98, 1.05]	[0.98,1.04]
linear all	[0.84,1.16]	[0.91, 1.09]	[0.95, 1.05]	[0.96,1.04]

Table 2: 68% probability intervals on the value of c_t , obtained assuming $c_t + c_g = 1$ and injecting the SM signal at various collider energies. In all cases an integrated luminosity of $3 \, \text{ab}^{-1}$ was assumed. The numbers in the second and the third row present the non-linear and linear analysis, respectively, for the low-energy bins only, $\sqrt{s} < 2 \, \text{TeV}$. The fourth and the fifth rows contain the corresponding numbers obtained including all the bins up to 5 TeV.