Boosted Higgs in gluon fusion

Ennio Salvioni UC Davis

LHC Higgs XSWG2 meeting CERN, July 18, 2014

based on:

1309.5273 by A.Azatov and A.Paul

1312.3317 by C.Grojean, ES, M.Schlaffer and A.Weiler

see also: 1308.4771 by A.Banfi, A.Martin and V.Sanz

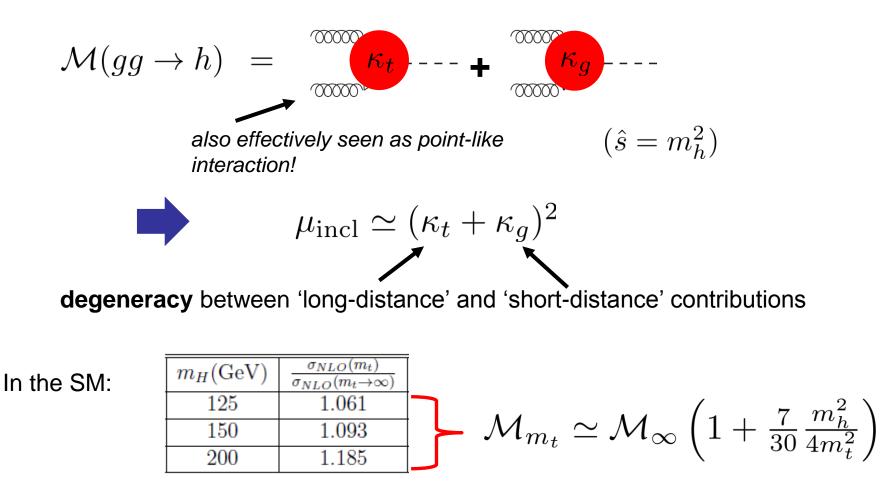
Higgs production in gluon fusion

Consider parameterization

$$\mathcal{L}_{\text{couplings}} = -\kappa_t \frac{m_t}{v} h t \bar{t} + \kappa_g \frac{\alpha_s}{12\pi} \frac{h}{v} G_{\mu\nu} G^{\mu\nu}$$

• For inclusive production,

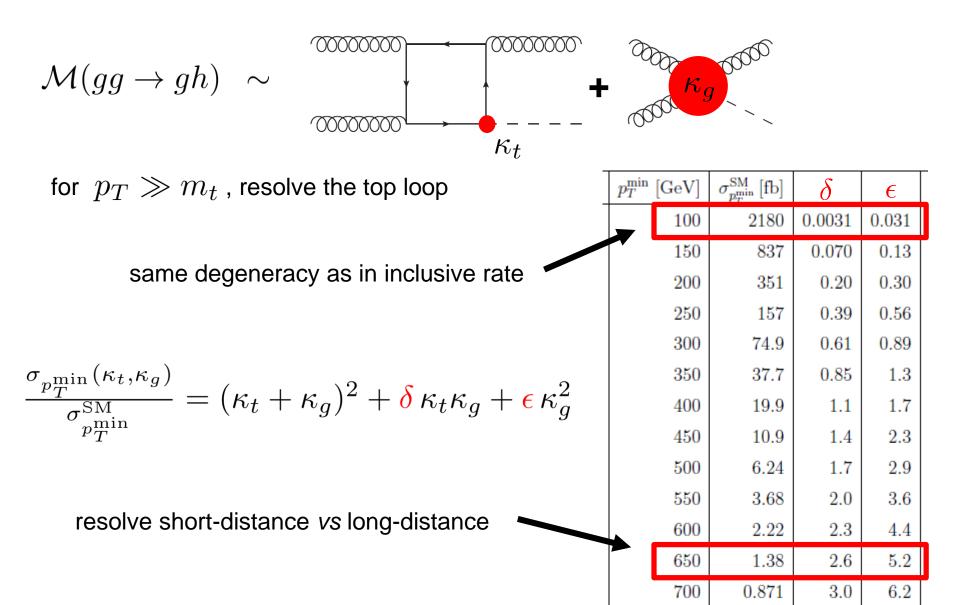
$$\mathcal{M}(gg \to h) = \underbrace{\kappa_t}_{\kappa_t} \underbrace{\kappa_t} \underbrace{\kappa_t} \underbrace{\kappa_t}_{\kappa_t} \underbrace{\kappa_t} \underbrace{\kappa_t}_{\kappa_t} \underbrace{\kappa_t} \underbrace{\kappa_t}$$

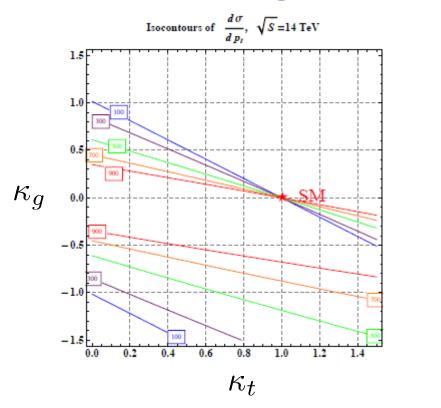

in terms of dimension-6 operators:

Higgs production in gluon fusion

Consider parameterization

$$\mathcal{L}_{\text{couplings}} = -\kappa_t \frac{m_t}{v} h t \bar{t} + \kappa_g \frac{\alpha_s}{12\pi} \frac{h}{v} G_{\mu\nu} G^{\mu\nu}$$


• For inclusive production,


Boosted regime

1312.3317

Higgs recoiling against a large - p_T jet

Boosted regime/2

- Measurement at each p_T constrains couplings to a line.
- Combining different p_T 's gives a finite region of the plane. Ultimately, want to **measure the whole** p_T **distribution**

1309.5273

Estimate of measurement: $h \rightarrow \tau \tau$

To break the degeneracy in (κ_t, κ_g) plane, **combine** measurements of inclusive and boosted rates

For boosted measurement, to reduce theory uncertainty use ratio

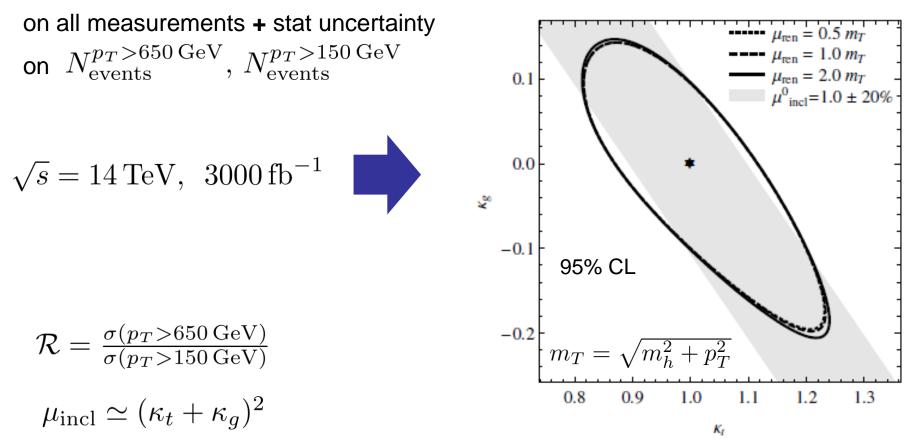
$$\mathcal{R} = \frac{\sigma(p_T > 650 \,\mathrm{GeV})}{\sigma(p_T > 150 \,\mathrm{GeV})}$$

NB: QCD-NLO corrections to Higgs p_{τ} spectrum are not known yet for finite m_t

Assume decay $h \rightarrow \tau \tau$, take efficiencies from 'ditau-jet tagging' (theory) analysis of Katz et al. (1011.4523),

$$\epsilon_{\rm tot} = {\rm BR}(h \to \tau \tau) \left(\sum_{i \in \tau_{\ell} \tau_{\ell}, \tau_{\ell} \tau_{h}, \tau_{h} \tau_{h}} {\rm BR}(\tau \tau \to i) \epsilon_{i} \right) \simeq 2 \times 10^{-2}$$

Only a first estimate. More realistic collider study in Schlaffer et al., 1405.4295

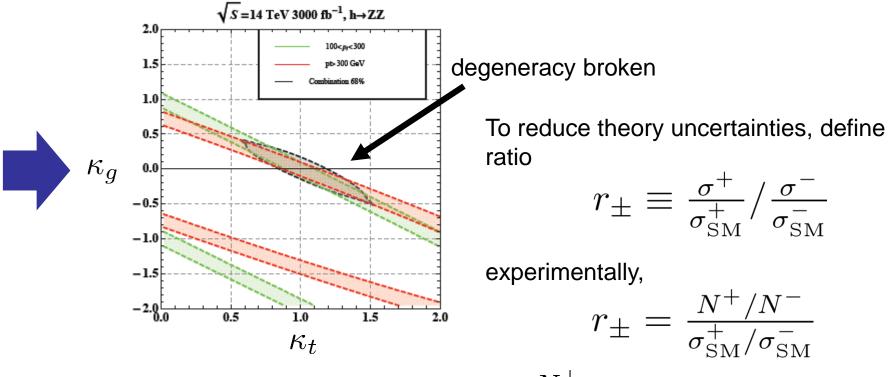

Breaking the degeneracy

1312.3317

Combine measurements using simple procedure (no background):

$$\chi^2(\kappa_t,\kappa_g) = \left(\frac{\mathcal{R}(\kappa_t,\kappa_g) - \mathcal{R}^*}{\delta\mathcal{R}}\right)^2 + \left(\frac{\mu_{\text{incl}}(\kappa_t,\kappa_g) - \mu_{\text{incl}}^*}{\delta\mu_{\text{incl}}}\right)^2$$

assuming 10% syst uncertainty

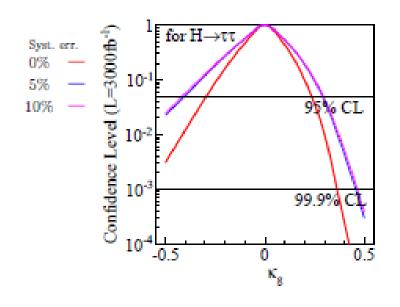


Estimate of measurement: $h \rightarrow ZZ^* \rightarrow 4I$

Combine measurements of low- p_{τ} and high- p_{τ} cross sections: 1309.5273

$$\sigma^- = \int_{100 \,\mathrm{GeV}}^{300 \,\mathrm{GeV}} \frac{d\sigma}{dp_T} dp_T \,, \quad \sigma^+ = \int_{300 \,\mathrm{GeV}}^{1000 \,\mathrm{GeV}} \frac{d\sigma}{dp_T} dp_T$$

Assume decay $h \rightarrow ZZ^* \rightarrow 4I$ and compute background at parton level

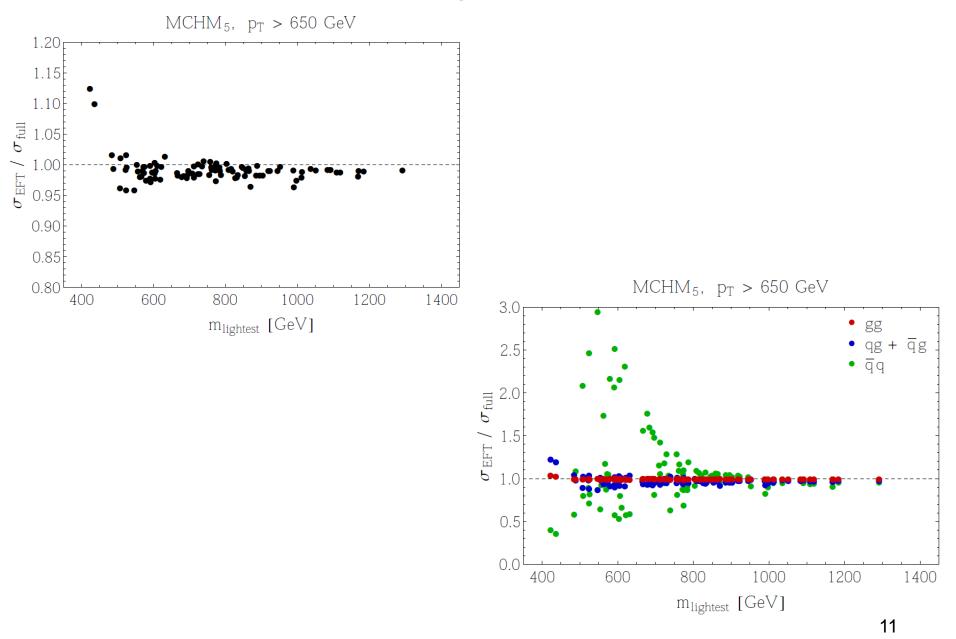


with N^\pm numbers of events in each bin

Boosted Higgs shapes

- Collider analysis focusing on $h \to 2\ell + MET$ via $h \to \tau\tau, WW^*$ and taking into account backgrounds
- Large boost improves the collinear approximation for Higgs mass reconstruction in $h \to \tau \tau$ mode, which does better compared to $h \to WW^*$
- Estimate of capability to distinguish non-SM couplings in presence of backgrounds: assume $\kappa_t + \kappa_g = 1$

assuming 0% syst. uncertainty, at 95% CL


$$-0.29 < \kappa_g < 0.24$$

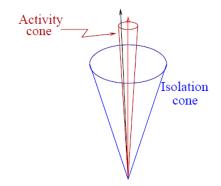
assuming 10% systematics,

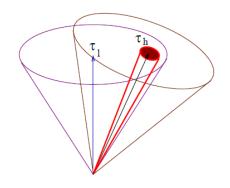
$$-0.4 < \kappa_g < 0.3$$

1405.4295

Validity of EFT

'Ditau-jet' tagging


For $p_T = 650 \,\text{GeV}$, the taus have typical angular separation $\Delta R \sim 2m_h/p_T \sim 0.4$ single tau-tag fails


Introduce 'mutual isolation'.

For example, for **semi-leptonic** ditaus:

- find a lepton which fails isolation within $\Delta R = 0.4$ cone
- find hardest hadronic track inside cone
- draw small (0.07) tau-candidate cone around this track
- check if lepton passes isolation when removing the tau candidate (use only tracker + EM calo)
- if lepton passes, apply standard hadronic tau-tag, ignoring lepton for requirement of tau isolation.

Similarly for two hadronic taus.

