TMD Evolution Results

Daniël Boer
REF 20I4, Antwerp, December 8, 2014

university of groningen

Outline

- TMD factorization \& evolution: general aspects
- TMD evolution: Sivers and Collins asymmetries
- Higgs transverse momentum distribution
- Higher twist
- Small x

TMD factorization

"Evolution" of TMD Factorization

- Collins \& Soper, I98I: $\mathrm{e}^{+} \mathrm{e}^{-\rightarrow} \mathrm{h}_{1} \mathrm{~h}_{2} \mathrm{X}$ [NPB 193 (198I) 38I]
- X. Ji, J.-P. Ma \& F.Yuan, 2004/5: SIDIS \& Drell-Yan (DY)
[PRD 7 I (2005) 034005 \& PLB 597 (2004) 299]
-Collins (JCC), 20II: "Foundations of perturbative QCD" [Cambridge Univ. Press]
- P. Sun, B.-W. Xiao \& F.Yuan, 20II:Higgs prod. (gluon TMDs)[PRD 84 (20II) 094005]
-Echevarria, Idilbi \& Scimemi (EIS), 20I2/4: DY \& SIDIS (SCET)[JHEP I207 (20|2) 002 \& PRD 90 (2014) 014003]
- J.P. Ma, J.X.Wang \& S. Zhao, 2012: quarkonium prod.I-loop [PRD 88 (2013) 014027]
- J.P. Ma, J.X.Wang \& S. Zhao, 2014: breakdown of factorization in P-wave quarkonium production beyond I-loop
[PLB 737 (2014) I03]
Main differences among the various approaches:
- treatment of rapidity/LC divergences, in order to make each factor well-defined
- redistribution of terms to avoid large logarithms

TMD factorization

TMD factorization for SIDIS, $\mathrm{e}^{+} \mathrm{e}^{-} \rightarrow \mathrm{h}_{1} \mathrm{~h}_{2} \mathrm{X}$ and Drell-Yan (DY)
Schematic form of (new) TMD factorization "JCC" [Collins 201I]:
$d \sigma=H \times$ convolution of $A B+$ high- q_{T} correction $(Y)+$ power-suppressed
A \& B are TMD pdfs or FFs
(a soft factor has been absorbed in them)
Details in book by J.C. Collins
Summarized in arXiv: I I 07.4I23

Convolution in terms of A and B best deconvoluted by Fourier transform

New TMD factorization expressions

$$
\begin{gathered}
\frac{d \sigma}{d \Omega d^{4} q}=\int d^{2} b e^{-i \boldsymbol{b} \cdot \boldsymbol{q}_{T}} \tilde{W}(\boldsymbol{b}, Q ; x, y, z)+\mathcal{O}\left(Q_{T}^{2} / Q^{2}\right) \\
\tilde{W}(\boldsymbol{b}, Q ; x, y, z)=\sum_{a} \tilde{f}_{1}^{a}\left(x, \boldsymbol{b}^{2} ; \zeta_{F}, \mu\right) \tilde{D}_{1}^{a}\left(z, \boldsymbol{b}^{2} ; \zeta_{D}, \mu\right) H(y, Q ; \mu)
\end{gathered}
$$

Fourier transforms of the TMDs are functions of the momentum fraction x (or z), the transverse coordinate b, a rapidity variable ζ, and the renormalization scale μ

$$
\zeta_{F}=M^{2} x^{2} e^{2\left(y_{P}-y_{s}\right)} \quad \zeta_{D}=M_{h}^{2} e^{2\left(y_{s}-y_{h}\right)} / z^{2}
$$

y_{s} is an arbitrary rapidity that drops out of the final answer

$$
\zeta_{F} \zeta_{D} \approx Q^{4} \quad \zeta_{F} \approx \zeta_{D} \approx Q^{2}
$$

The TMDs in principle also depend on the Wilson line U

$$
\tilde{f}^{[\mathcal{U}]}\left(x, b_{T}^{2} ; \zeta, \mu\right)
$$

New TMD factorization expressions

$$
\begin{gathered}
\frac{d \sigma}{d \Omega d^{4} q}=\int d^{2} b e^{-i \boldsymbol{b} \cdot \boldsymbol{q}_{T}} \tilde{W}(\boldsymbol{b}, Q ; x, y, z)+\mathcal{O}\left(Q_{T}^{2} / Q^{2}\right) \\
\tilde{W}(\boldsymbol{b}, Q ; x, y, z)=\sum_{a} \tilde{f}_{1}^{a}\left(x, \boldsymbol{b}^{2} ; \zeta_{F}, \mu\right) \tilde{D}_{1}^{a}\left(z, \boldsymbol{b}^{2} ; \zeta_{D}, \mu\right) H(y, Q ; \mu)
\end{gathered}
$$

Fourier transforms of the TMDs are functions of the momentum fraction x (or z), the transverse coordinate b, a rapidity variable ζ, and the renormalization scale μ

$$
\zeta_{F}=M^{2} x^{2} e^{2\left(y_{P}-y_{s}\right)} \quad \zeta_{D}=M_{h}^{2} e^{2\left(y_{s}-y_{h}\right)} / z^{2}
$$

y_{s} is an arbitrary rapidity that drops out of the final answer

$$
\zeta_{F} \zeta_{D} \approx Q^{4} \quad \zeta_{F} \approx \zeta_{D} \approx Q^{2}
$$

The TMDs in principle also depend on the Wilson line U

$$
\tilde{f}^{[\mathcal{U}]}\left(x, b_{T}^{2} ; \zeta, \mu\right)
$$

Gauge invariance of TMD correlators

summation of all gluon insertions leads to path-ordered exponentials in the correlators

$$
\begin{aligned}
& \mathcal{L}_{\mathcal{C}}[0, \xi]=\mathcal{P} \exp \left(-i g \int_{\mathcal{C}[0, \xi]} d s_{\mu} A^{\mu}(s)\right) \\
& \Phi \propto\langle P| \bar{\psi}(0) \mathcal{L}_{\mathcal{C}}[0, \xi] \psi(\xi)|P\rangle
\end{aligned}
$$

Efremov \& Radyushkin, Theor. Math. Phys. 44 ('8I) 774

Resulting Wilson lines depend on whether the color is incoming or outgoing
[Collins \& Soper, I983; DB \& Mulders, 2000; Brodsky, Hwang \& Schmidt, 2002;
Collins, 2002; Belitsky, X. Ji \& F.Yuan, 2003; DB, Mulders \& Pijlman, 2003]
This does not automatically imply that this affects observables, but it turns out that it does in certain cases, for example, Sivers asymmetries [Brodsky, Hwang \& Schmidt, 2002; Collins, 2002; Belitsky, Ji \& Yuan, 2003]

Process dependence of Sivers TMD

Gauge invariant definition of TMDs in semi-inclusive DIS contains a future pointing Wilson line, whereas in Drell-Yan (DY) it is past pointing
[Belitsky, X. Ji \& F.Yuan '03]

$$
\gamma^{*} p \rightarrow h X \text { (SIDIS) }
$$

$$
p p \rightarrow \gamma^{*} X \text { (Drell-Yan) }
$$

One can use parity and time reversal invariance to relate the Sivers functions:

$$
f_{1 T}^{\perp[\text { SIDIS }]}=-f_{1 T}^{\perp[\mathrm{DY}]}
$$

[Collins '02]

Process dependence of Sivers TMD

Gauge invariant definition of TMDs in semi-inclusive DIS contains a future pointing Wilson line, whereas in Drell-Yan (DY) it is past pointing
[Belitsky, X. Ji \& F.Yuan '03]

One can use parity and time reversal invariance to relate the Sivers functions:

$$
f_{1 T}^{\perp[\text { SIDIS }]}=-f_{1 T}^{\perp[\mathrm{DY}]} \quad \text { [Collins '02] }
$$

The more hadrons are observed in a process, the more complicated the end result: more complicated N_{c}-dependent prefactors
[Bomhof, Mulders \& Pijlman '04; Buffing, Mulders '14]

Process dependence of Sivers TMD

Gauge invariant definition of TMDs in semi-inclusive DIS contains a future pointing Wilson line, whereas in Drell-Yan (DY) it is past pointing
[Belitsky, X. Ji \& F.Yuan '03]

$$
\gamma^{*} p \rightarrow h X \text { (SIDIS) }
$$

$$
p p \rightarrow \gamma^{*} X \text { (Drell-Yan) }
$$

One can use parity and time reversal invariance to relate the Sivers functions:

$$
f_{1 T}^{\perp[\text { SIDIS }]}=-f_{1 T}^{\perp[\mathrm{DY}]}
$$

[Collins '02]
The more hadrons are observed in a process, the more complicated the end result: more complicated N_{c}-dependent prefactors
[Bomhof, Mulders \& Pijlman '04; Buffing, Mulders 'I4]
When color flow is in too many directions: factorization breaking
[Collins \& J. Qiu '07; Collins '07; Rogers \& Mulders 'I 0]

Scale dependence of TMDs

QCD corrections will also attach to the Wilson line, which needs renormalization This determines the change with renormalization scale μ

Wilson lines not smooth \rightarrow cusp anomalous dimension [Polyakov '80; Dotsenko \&Vergeles '80; Brandt, Neri, Sato '81; Korchemsky, Radyushkin '87]

As a regularization of rapidity/LC divergences of a lightlike Wilson line, in JCC's TMD factorization the path is taken off the lightfront, the variation in rapidity determines the change with ζ

$$
\tilde{f}^{[\mathcal{U}]}\left(x, b_{T}^{2} ; \zeta, \mu\right)
$$

Scale dependence of TMDs

QCD corrections will also attach to the Wilson line, which needs renormalization This determines the change with renormalization scale μ

Wilson lines not smooth \rightarrow cusp anomalous dimension
[Polyakov '80; Dotsenko \&Vergeles '80; Brandt, Neri, Sato '81; Korchemsky, Radyushkin '87]

As a regularization of rapidity/LC divergences of a lightlike Wilson line, in JCC's TMD factorization the path is taken off the lightfront, the variation in rapidity determines the change with ζ

$$
\tilde{f}^{[\mathcal{U}]}\left(x, b_{T}^{2} ; \zeta, \mu\right)
$$

Two important consequences:

- yields energy evolution of TMD observables
- allows for calculation of the Sivers and Boer-Mulders effect on the lattice Musch, Hägler, Engelhardt, Negele \& Schäfer, 2012

Definition of TMDPDFs: Cancellation of RDs

MGE, Idilbi, Scimemi JHEP'12, PLB'13

- Pictorially, the relevant (anti-)collinear and soft modes are represented as:

$$
\begin{aligned}
k_{n} & \sim\left(1, \lambda^{2}, \lambda\right) \\
k_{\bar{n}} & \sim\left(\lambda^{2}, 1, \lambda\right) \\
k_{s} & \sim(\lambda, \lambda, \lambda)
\end{aligned}
$$

$$
y=\frac{1}{2} \ln \left|\frac{k^{+}}{k^{-}}\right|
$$

- Naive collinear $=\mathbf{A}+\mathbf{B}$
- Soft = B
- Naive anticollinear $=\mathbf{C}+\mathrm{B}$
- $($ Pure collinear $=A)$
- (Pure anticollinear $=\mathrm{C}$)
- Each piece is boost invariant and depends on the difference of rapidities at the borders.
- x-section $=(A+B)+(C+B)-B=A+B+C$
- Divergences at yn and ynbar as spurius...
- (Anti-)Collinear and Soft are ill-defined!!!

So in order to cancel rapidity divergences, we define the TMDPDFs as:

$$
\begin{aligned}
G_{g / A}^{\mu \nu}\left(x_{A}, k_{n \perp}, S_{A} ; \zeta_{A}, \mu^{2}\right) & =A+B_{n} \\
G_{g / B}^{\mu \nu}\left(x_{B}, k_{\bar{n} \perp}, S_{B} ; \zeta_{B}, \mu^{2}\right) & =C+B_{\bar{n}}
\end{aligned}
$$

Definition of TMDPDFs: Cancellation of RDs

The goal is to cancel Rapidity Divergences. The particular regulator is irrelevant!!

MGE, Idilbi, Scimemi JHEP'12, PLB'13

- Rapidity regulator I: Δ-regulator (MGE, Idilbi, Scimemi JHEP'12)
$\tilde{G}_{g / A}^{\mu \nu}\left(x_{A}, \boldsymbol{b}_{T}, S_{A} ; \zeta_{A}, \mu^{2}\right)=\tilde{J}_{n}^{\mu \nu}\left(x_{A}, \boldsymbol{b}_{T}, S_{A} ; Q^{2}, \mu^{2} ; \Delta^{+}\right) \tilde{S}_{+}^{-1}\left(b_{T} ; \zeta_{B}, \mu^{2} ; \Delta^{+}\right)$

$$
\begin{aligned}
& \zeta_{A}=Q^{2} / \alpha \\
& \zeta_{B}=Q^{2} \alpha
\end{aligned}
$$

- Rapidity regulator II: rapidity-regulator (eta) (Chiu, Jain, Neill, Rothstein PRL'12)

$$
\begin{aligned}
& \overline{\tilde{G}_{g / A}^{\mu \nu}\left(x_{A}, \boldsymbol{b}_{T}, S_{A} ; \zeta_{A}, \mu^{2}\right)=\tilde{J}_{n}^{\mu \nu}{ }^{(0)}\left(x_{A}, b_{T}, S_{A} ; Q^{2}, \mu^{2} ; \nu_{-} ; \eta\right) \tilde{S}_{-}\left(b_{T} ; \mu^{2} ; \alpha \nu_{-} ; \eta\right)} \\
& \zeta_{A}=Q^{2} / \alpha \\
& \zeta_{B}=Q^{2} \alpha
\end{aligned}
$$

- Rapidity regulator III: "combining integrands" (Collins'11)

$$
\tilde{G}_{g / A}^{\mu \nu}\left(x_{A}, \boldsymbol{b}_{T}, S_{A} ; \zeta_{A}, \mu^{2}\right)=\left.\lim _{\substack{y_{n} \rightarrow+\infty \\ y_{\bar{n}} \rightarrow-\infty}} \tilde{J}_{n}^{\mu \nu}\left(x_{A}, \boldsymbol{b}_{T}, S_{A} ; \mu^{2} ; y_{\bar{n}}\right) \sqrt{\frac{\tilde{S}\left(y_{n}, y_{c}\right)}{\tilde{S}\left(y_{c}, y_{\bar{n}}\right) \tilde{S}\left(y_{n}, y_{\bar{n}}\right)}}\right|_{\substack{\zeta_{A}=\left(p^{+}\right)^{2} e^{-2 y_{c}} \\ \zeta_{B}=\left(\bar{p}^{-}\right)^{2} e^{+2 y_{c}}}}
$$

- One could also use off-shellnesses, masses, "real Δ 's", analytic regulator, etc... Yet they all mean (pictorially):

$$
\tilde{G}_{g / A}^{\mu \nu}\left(x_{A}, b_{T}, S_{A} ; \zeta_{A}, \mu^{2}\right)=A+B_{n}
$$

Previous dide!

New TMD factorization expressions

$$
\begin{gathered}
\frac{d \sigma}{d \Omega d^{4} q}=\int d^{2} b e^{-i \boldsymbol{b} \cdot \boldsymbol{q}_{T}} \tilde{W}(\boldsymbol{b}, Q ; x, y, z)+\mathcal{O}\left(Q_{T}^{2} / Q^{2}\right) \\
\tilde{W}(\boldsymbol{b}, Q ; x, y, z)=\sum_{a} \tilde{f}_{1}^{a}\left(x, \boldsymbol{b}^{2} ; \zeta_{F}, \mu\right) \tilde{D}_{1}^{a}\left(z, \boldsymbol{b}^{2} ; \zeta_{D}, \mu\right) H(y, Q ; \mu)
\end{gathered}
$$

Take $\mu=Q$

$$
H\left(Q ; \alpha_{s}(Q)\right) \propto e_{a}^{2}\left(1+\alpha_{s}\left(Q^{2}\right) F_{1}+\mathcal{O}\left(\alpha_{s}^{2}\right)\right)
$$

This choice avoids large logarithms in H , but now they will appear in the TMDs
Use renormalization group equations to evolve the TMDs to the scale:

$$
\mu_{b}=C_{1} / b=2 e^{-\gamma_{E}} / b \quad\left(C_{1} \approx 1.123\right)
$$

Or to a fixed low (but still perturbative) scale Q_{0}, although that only works for not too large Q

RG and CS equations

$$
\begin{gathered}
\frac{d \ln \tilde{f}(x, b ; \zeta, \mu)}{d \ln \sqrt{\zeta}}=\tilde{K}(b ; \mu) \quad \text { Collins-Soper equation } \\
\frac{d \ln \tilde{f}(x, b ; \zeta, \mu)}{d \ln \mu}=\gamma_{F}\left(g(\mu) ; \zeta / \mu^{2}\right) \quad \text { RG equation } \\
d \tilde{K} / d \ln \mu=-\gamma_{K}(g(\mu)) \\
\gamma_{F}\left(g(\mu) ; \zeta / \mu^{2}\right)=\gamma_{F}(g(\mu) ; 1)-\frac{1}{2} \gamma_{K}(g(\mu)) \ln \left(\zeta / \mu^{2}\right)
\end{gathered}
$$

Using these equations one can evolve the TMDs to the scale μ_{b} $\tilde{f}_{1}^{a}\left(x, b^{2} ; \zeta_{F}, \mu\right) \tilde{D}_{1}^{b}\left(z, b^{2} ; \zeta_{D}, \mu\right)=e^{-S(b, Q)} \tilde{f}_{1}^{a}\left(x, b^{2} ; \mu_{b}^{2}, \mu_{b}\right) \tilde{D}_{1}^{b}\left(z, b^{2} ; \mu_{b}^{2}, \mu_{b}\right)$
with Sudakov factor

$$
S(b, Q)=-\ln \left(\frac{Q^{2}}{\mu_{b}^{2}}\right) \tilde{K}\left(b, \mu_{b}\right)-\int_{\mu_{b}^{2}}^{Q^{2}} \frac{d \mu^{2}}{\mu^{2}}\left[\gamma_{F}(g(\mu) ; 1)-\frac{1}{2} \ln \left(\frac{Q^{2}}{\mu^{2}}\right) \gamma_{K}(g(\mu))\right]
$$

Perturbative expressions

At leading order in α_{s}

$$
\begin{aligned}
\tilde{K}(b, \mu) & =-\alpha_{s}(\mu) \frac{C_{F}}{\pi} \ln \left(\mu^{2} b^{2} / C_{1}^{2}\right)+\mathcal{O}\left(\alpha_{s}^{2}\right) \\
\gamma_{K}(g(\mu)) & =2 \alpha_{s}(\mu) \frac{C_{F}}{\pi}+\mathcal{O}\left(\alpha_{s}^{2}\right) \\
\gamma_{F}\left(g(\mu), \zeta / \mu^{2}\right) & =\alpha_{s}(\mu) \frac{C_{F}}{\pi}\left(\frac{3}{2}-\ln \left(\zeta / \mu^{2}\right)\right)+\mathcal{O}\left(\alpha_{s}^{2}\right)
\end{aligned}
$$

Such that the perturbative expression for the Sudakov factor becomes:

$$
S_{p}(b, Q)=\frac{C_{F}}{\pi} \int_{\mu_{b}^{2}}^{Q^{2}} \frac{d \mu^{2}}{\mu^{2}} \alpha_{s}(\mu)\left(\ln \frac{Q^{2}}{\mu^{2}}-\frac{3}{2}\right)+\mathcal{O}\left(\alpha_{s}^{2}\right)
$$

It can be used whenever the restriction $b^{2} \ll I / \Lambda^{2}$ is justified (e.g. at very large Q^{2})
If also larger b contributions are important, at moderate Q and small Q_{τ} for instance, then one needs to include a nonperturbative Sudakov factor

Nonperturbative Sudakov factor

$$
\begin{gathered}
\tilde{W}(b) \equiv \tilde{W}\left(b_{*}\right) e^{-S_{N P}(b)} \quad b_{*}=b / \sqrt{1+b^{2} / b_{\max }^{2}} \leq b_{\max } \\
b_{\max }=1.5 \mathrm{GeV}^{-1} \Rightarrow \alpha_{s}\left(b_{0} / b_{\max }\right)=0.62
\end{gathered}
$$

such that $\mathrm{W}\left(\mathrm{b}^{*}\right)$ can be calculated within perturbation theory
In general the nonperturbative Sudakov factor is Q dependent and of the form:

$$
S_{N P}(b, Q)=\ln \left(Q^{2} / Q_{0}^{2}\right) g_{1}(b)+g_{A}\left(x_{A}, b\right)+g_{B}\left(x_{B}, b\right) \quad Q_{0}=\frac{1}{b_{\max }}
$$

Collins, Soper \& Sterman, NPB 250 (1985) 199
The g.. functions need to be fitted to data
Until recently $S_{N P}$ typically chosen as a Gaussian, e.g. Aybat \& Rogers ($x=0.1$):

$$
S_{N P}\left(b, Q, Q_{0}\right)=\left[0.184 \ln \frac{Q}{2 Q_{0}}+0.332\right] b^{2}
$$

Recently alternatives considered in: P. Sun \& F.Yuan, PRD 88 (2013) 034016
P. Sun, Isaacson, C.-P.Yuan \& F.Yuan, arXiv: I 406.3073

Form suggested by Collins at QCD evolution workshop 2013: $e^{-m\left(\sqrt{b^{2}+b_{0}^{2}}-b_{0}\right)}$

$S_{N P}$

Problem is to find one single universal $S_{N P}$ that describes both SIDIS and DY/Z data

Figure 6. Coefficient of $-b_{\mathrm{T}}^{2}$ in the exponent in Eq. (6), from Sun and Yuan [13], as a function of Q at $x=0.1$. The blue dashed line is for the BLNY fit, and the red solid line for a KN fit with $b_{\text {max }}=1.5 \mathrm{GeV}^{-1}$. The dot represents the value needed for SIDIS at HERMES.

From Collins, I409.5408 based on P. Sun \& F.Yuan, PRD 88 (20I3) 0340 I6
BLNY = Brock, Landry, Nadolsky, C.-P.Yuan, PRD67 (2003) 073016
KN = Konychev \& Nadolsky, PLB 633 (2006) 710

Further resummations

$$
\tilde{F}\left(x, b_{T} ; \zeta_{f}, \mu_{f}\right)=\tilde{R}\left(b_{T} ; \zeta_{i}, \mu_{i}, \zeta_{f}, \mu_{f}\right) \tilde{F}\left(x, b_{T} ; \zeta_{i}, \mu_{i}\right)
$$

$$
\begin{aligned}
& \text { Evolutor: } \\
& \begin{array}{r}
\tilde{R}\left(b_{T} ; \zeta_{i}, \mu_{i}, \zeta_{f}, \mu_{f}\right)=\exp \left\{\int_{\mu_{i}}^{\mu_{f}} \frac{d \bar{\mu}}{\bar{\mu}} \gamma_{F}\left(\alpha_{s}(\bar{\mu}), \ln \frac{\zeta_{f}}{\bar{\mu}^{2}}\right)\right\}\left(\frac{\zeta_{f}}{\zeta_{i}}\right)^{-D\left(b_{T} ; \mu_{i}\right)} \\
D\left(b_{T}, \mu\right)=-\frac{1}{2} \tilde{K}\left(b_{T}, \mu\right) \quad \frac{d D\left(b_{T}, \mu\right)}{d \ln \mu}=\Gamma_{\mathrm{cusp}}=\frac{1}{2} \gamma_{K}
\end{array}
\end{aligned}
$$

Echevarria, Idilbi, Schäfer, Scimemi, EPJC 73 (20I3) 2636:

$$
\begin{aligned}
D^{R}\left(b_{T} ; \mu\right) & =-\frac{\Gamma_{0}}{2 \beta_{0}} \ln (1-X)+\frac{1}{2}\left(\frac{a_{s}}{1-X}\right)\left[-\frac{\beta_{1} \Gamma_{0}}{\beta_{0}^{2}}(X+\ln (1-X))+\frac{\Gamma_{1}}{\beta_{0}} X\right] \\
& +\frac{1}{2}\left(\frac{a_{s}}{1-X}\right)^{2}\left[2 d_{2}(0)+\frac{\Gamma_{2}}{2 \beta_{0}}(X(2-X))+\frac{\beta_{1} \Gamma_{1}}{2 \beta_{0}^{2}}(X(X-2)-2 \ln (1-X))+\frac{\beta_{2} \Gamma_{0}}{2 \beta_{0}^{2}} X^{2}\right. \\
& \left.+\frac{\beta_{1}^{2} \Gamma_{0}}{2 \beta_{0}^{3}}\left(\ln ^{2}(1-X)-X^{2}\right)\right],
\end{aligned}
$$

where we have used the notation

$$
a_{s}=\frac{\alpha_{s}(\mu)}{4 \pi}, \quad X=a_{s} \beta_{0} L_{T}, \quad L_{T}=\ln \frac{\mu^{2} b_{T}^{2}}{4 e^{-2 \gamma_{E}}}=\ln \frac{\mu^{2}}{\mu_{b}^{2}} .
$$

Convergence fails as b approaches $\mathrm{b} \times$ which to leading order is $b_{X}=\frac{C_{1}}{\mu_{i}} \exp \left(\frac{2 \pi}{\beta_{0} \alpha_{s}\left(\mu_{i}\right)}\right)$

(a)

(b)

Fig. 1 Resummed D at $Q_{i}=\sqrt{2.4} \mathrm{GeV}$ with $n_{f}=4$ (a) and $Q_{i}=5 \mathrm{GeV}$ with $n_{f}=5$ (b)
Echevarria, Idilbi, Schäfer, Scimemi, EPJC 73 (20I3) 2636

Fig. 3 Resummed $D\left(b ; Q_{i}=\sqrt{2.4}\right)$ at LL of Eqs. (25), (a), and (26), (b), with the running of the strong coupling at various orders and decoupling coefficients included

Evolutor R vanishes well before $b \sim b x$ if $Q_{f} \gg Q_{i}$, reduces sensitivity to large b region

Fig. 4 Evolution kernel from $Q_{i}=\sqrt{2.4} \mathrm{GeV}$ up to $Q_{f}=\{\sqrt{3}, 5,10,91.19\} \mathrm{GeV}$ using ours and CSS approaches, both at NNLL Echevarria, Idilbi, Schäfer, Scimemi, EPJC 73 (2013) 2636
This approach favors $\mathrm{b}_{\max }=1.5 \mathrm{GeV}^{-1}$

Further resummations

For the TMD at small b one often considers the perturbative tail, which is calculable
$\tilde{f}_{g / P}\left(x, b^{2} ; \mu, \zeta\right)=\sum_{i=g, q} \int_{x}^{1} \frac{d \hat{x}}{\hat{x}} C_{i / g}\left(x / \hat{x}, b^{2} ; g(\mu), \mu, \zeta\right) f_{i / P}(\hat{x} ; \mu)+\mathcal{O}\left(\left(\Lambda_{\mathrm{QCD}} b\right)^{a}\right)$

To extend it to be valid at larger b values one can perform further resummation:

$$
\begin{gathered}
\tilde{F}_{q / N}^{\mathrm{pert}}\left(x, b_{T} ; \zeta, \mu\right)=\left(\frac{\zeta b_{T}^{2}}{4 e^{-2 \gamma_{E}}}\right)^{-D^{R}\left(b_{T} ; \mu\right)} e^{h_{\Gamma}^{R}\left(b_{T} ; \mu\right)-h_{\gamma}^{R}\left(b_{T} ; \mu\right)} \sum_{j} \int_{x}^{1} \frac{d z}{z} \hat{C}_{q \leftarrow j}\left(x / z, b_{T} ; \mu\right) f_{j / N}(z ; \mu) \\
\tilde{F}_{q / N}\left(x, b_{T} ; Q_{i}^{2}, \mu_{i}\right)=\tilde{F}_{q / N}^{\text {pert }}\left(x, b_{T} ; Q_{i}^{2}, \mu_{i}\right) \tilde{F}_{q / N}^{\mathrm{NP}}\left(x, b_{T} ; Q_{i}\right) \\
\tilde{F}_{q / N}^{\mathrm{NP}}\left(x, b_{T} ; Q_{i}\right) \equiv \tilde{F}_{q / N}^{\mathrm{NP}}\left(x, b_{T}\right)\left(\frac{Q_{i}^{2}}{Q_{0}^{2}}\right)^{-D^{\mathrm{NP}}\left(b_{T}\right)}
\end{gathered}
$$

Further resummations

$$
\tilde{F}_{q / N}^{\text {pert }}\left(x, b_{T} ; \zeta, \mu\right)=\left(\frac{\zeta b_{T}^{2}}{4 e^{-2 \gamma_{E}}}\right)^{-D^{R}\left(b_{T} ; \mu\right)} e^{h_{\Gamma}^{R}\left(b_{T} ; \mu\right)-h_{\gamma}^{R}\left(b_{T} ; \mu\right)} \sum_{j} \int_{x}^{1} \frac{d z}{z} \hat{C}_{q \leftarrow j}\left(x / z, b_{T} ; \mu\right) f_{j / N}(z ; \mu)
$$

D'Alesio, Echevarria, Melis, Scimemi, arXiv: I 407.33 I |
Resummed TMD at low scales is reduced at large b_{T} where $\alpha_{s}\left(\mu_{\mathrm{b}}\right)$ is very large

New approach to Landau pole problem

Sensitivity to Landau pole minimized by using $\mathrm{Q}_{\mathrm{i}}=\mathrm{Q}_{0}+\mathrm{q}_{\mathrm{T}}$ rather than μ_{b}

Correspondingly a new F^{NP} form is considered

High Q data ($D Y / Z$) need only $\lambda_{1} \& \lambda_{2}$ Low Q (SIDIS) needs modification $\left(\lambda_{3}\right)$
$\tilde{F}_{q / N}^{\mathrm{NP}}\left(x, b_{T} ; Q\right)=e^{-\lambda_{1} b_{T}}\left(1+\lambda_{2} b_{T}^{2}\right)\left(\frac{Q^{2}}{Q_{0}^{2}}\right)^{-\frac{\lambda_{3}}{2} b_{T}^{2}}$

Comparison

Formalisms used: They don't all appear compatible

Parton model:	QCD complications ignored
Original CSS:	non-light-like axial gauge; soft factor
Ji-Ma-Yuan:	non-light-like Wilson lines; soft factor; parameter ρ
New CSS:	clean up, Wilson lines mostly light-like; absorb (square roots of) soft factor in TMD pdfs
Becher-Neubert:	SCET, but without actual finite TMD pdfs
Echevarría-Idilbi-Scimemi:	SCET
Mantry-Petriello:	SCET
Boer, Sun-Yuan:	Approximations on CSS

Disagreement on non-perturbative contribution to evolution ($\tilde{K}\left(b_{\mathrm{T}}\right)$ at large b_{T}), or even whether it exists.

Tool to compare different methods: The L function

(JCC \& Rogers, in preparation)

- Shape change of transverse momentum distribution comes only from b_{T}-dependence of \tilde{K}
- So define scheme independent

$$
L\left(b_{\mathrm{T}}\right)=-\frac{\partial}{\partial \ln b_{\mathrm{T}}^{2}} \frac{\partial}{\partial \ln Q^{2}} \ln \tilde{W}\left(b_{\mathrm{T}}, Q, x_{A}, x_{B}\right) \stackrel{\mathrm{CSS}}{=}-\frac{\partial}{\partial \ln b_{\mathrm{T}}^{2}} \tilde{K}\left(b_{\mathrm{T}}, \mu\right)
$$

- QCD predicts it is
- independent of Q, x_{A}, x_{B}
- independent of light-quark flavor
- RG invariant
- perturbatively calculable at small b_{T}
- non-perturbative at large b_{T}

Collins, QCD Evolution workshop, May 12, 2014
L is called A in Collins, I 409.5408

Comparing different results using the L function

(Preliminary)

Q	Typical b_{T}
2 GeV	$3 \mathrm{GeV}^{-1}$
10 GeV	$1.2 \mathrm{GeV}^{-1}$
m_{Z}	$0.5 \mathrm{GeV}^{-1}$

SY = Sun \& Yuan (PRD 88, 114012 (2013)):

$$
L_{\mathrm{SY}}=C_{F} \frac{\alpha_{s}(Q)}{\pi}
$$

Depends on Q : contrary to QCD

TMD evolution

Large p_{T} tail

Factorization dictates the evolution:
Under evolution TMDs develop a power law tail
Up Quark TMD PDF, $x=.09, \mathrm{Q}=91.19 \mathrm{GeV}$

Aybat \& Rogers, PRD 83 (20II) II4042

Evolution of Sivers function

TMDs and their asymmetries become broader and smaller with increasing energy

D'Alesio, A.Kotzinian, S.Melis, F.
Murgia,A. Prokudin, C.Turk; 2009

Aybat \& Rogers, PRD 83 (201 I) II4042
Aybat, Collins, Qiu, Rogers, PRD 85 (2012) 034043

Comparing TMD and DGLAP evolution

Anselmino, Boglione, Melis PRD 86 (2012) 014028

All curves evolved from $\mathrm{Q}^{2}=1 \mathrm{GeV}^{2}$

Makes quite a difference in this limited range of Q: from 1.5 to 4.5 GeV
$S_{\text {NP }}$ dominates evolution

TMD evolution of azimuthal asymmetries

- Sivers effect in SIDIS and DY
[Idilbi, Ji, Ma \& Yuan, 2004;Aybat, Prokudin \& Rogers, 20I2;Anselmino, Boglione, Melis, 20I2;
Sun \& Yuan, 2013; D.B., 2013; Echevarria, Idilbi, Kang \& Vitev, 2014]
- Collins effect in $\mathrm{e}^{+} \mathrm{e}^{-}$and SIDIS
[D.B., 200I \& 2009; Echevarria, Idilbi, Scimemi, 20I4]
- Sivers effect in J/ Ψ production
[Godbole, Misra, Mukherjee, Rawoot, 20I3; Godbole, Kaushik, Misra, Rawoot, 20I4]

Main differences among the various approaches:

- treatment of nonperturbative Sudakov factor
- treatment of leading logarithms, i.e. the level of perturbative accuracy

TMD evolution

of the Sivers asymmetry

Sivers Asymmetry

HERMES data (<Q²> ~ 2.4 GeV²) mostly above COMPASS data (<Q²> ~ 3.8 GeV²)

Evolution of the Sivers Asymmetry

Evolution from HERMES to COMPASS energy scale seems to work well

Aybat, Prokudin \& Rogers, PRL IO8 (2012) 242003

This is obtained using the 201I TMD factorization, including some approximations that should be applicable at small Q :

- Y term is dropped (or equivalently the perturbative tail)
- evolution from a fixed starting Q_{0} rather than μ_{b}
- TMDs at starting scale Q_{0} Gaussian

TMD evolution of the Sivers asymmetry

If in addition one assumes that the TMDs of $b *$ are slowly varying functions of b in the dominant b region ($\mathrm{b} \sim \mathrm{I} / \mathrm{Q}_{\top} \gg \mathrm{I} / \mathrm{Q}$, hence $\mathrm{b}_{*} \approx \mathrm{~b}_{\max }=\mathrm{I} / \mathrm{Q}_{0}$): $\Phi(\mathrm{x}, \mathrm{b} *) \approx \Phi\left(\mathrm{x}, \mathrm{I} / \mathrm{Q}_{0}\right)$, then the Q dependence of the Sivers asymmetry resides in an overall factor:
[D.B., NPB 874 (2013) 2I7]

$$
A_{U T}^{\sin \left(\phi_{h}-\phi_{S}\right)} \propto \mathcal{A}\left(Q_{T}, Q\right)
$$

Observations:

- the peak of the Sivers asymmetry decreases as I/Q ${ }^{0.7 \pm 0.1}$ ("Sudakov suppression")
- the peak of the asymmetry shifts slowly towards higher QT

Testing these features needs a larger Q range, requiring a high-energy EIC

TMD evolution of the Sivers asymmetry

Both approaches use the same formalism (201I TMD factorization), very similar approximations and ingredients, the key difference is in the integration over $\mathrm{x}, \mathrm{z}, \mathrm{P}_{\mathrm{h} \perp}$ The two results are not necessarily in contradiction with each other

The integrated asymmetry falls off fast, not of form I / Q^{α}, but in the considered range it falls off faster than I/Q but slower than I/Q2

TMD evolution of the Sivers asymmetry

At low Q^{2} (up to $\sim 20 \mathrm{GeV}^{2}$), the Q^{2} evolution is dominated by S_{NP}
[Anselmino, Boglione, Melis,PRD 86 (20I2) 014028]

Uncertainty in $S_{N P}$ determines
Q^{2} dependence of Sivers asymmetry
Test of TMDs evolution the ± 0.1 in $\mathrm{I} / \mathrm{Q}^{0.7 \pm 0.1}$

Precise low Q^{2} data from JLab 12 GeV will help to determine the form and size of $S_{N P}$, incl. its x and z-dependence

TMD evolution of Collins asymmetries

Collins Effect

Collins effect is described by a TMD fragmentation function: [NPB 396 (1993) I6I]

$$
\mathrm{H}_{1}^{\perp}=\frac{\mathrm{S}_{\mathrm{T}}}{\pi-\pi-1 \mathrm{k}_{\mathrm{T}}}
$$

Collins Effect

Collins effect is described by a TMD fragmentation function: [NPB 396 (1993) 16I]

It gives rise to a $\sin \left(\varphi_{\mathrm{h}}+\varphi_{\mathrm{s}}\right)$ asymmetry in SIDIS:
$\frac{d \sigma\left(e p^{\uparrow} \rightarrow e^{\prime} \pi X\right)}{d \phi_{\pi}^{e} d\left|\boldsymbol{P}_{\perp}^{\pi}\right|^{2}} \propto\left\{1+\left|\boldsymbol{S}_{T}\right| \sin \left(\phi_{\pi}^{e}-\phi_{S}^{e}\right) f_{1 T}^{\perp} D_{1}+\left|\boldsymbol{S}_{T}\right| \sin \left(\phi_{\pi}^{e}+\phi_{S}^{e}\right) h_{1} H_{1}^{\perp}\right\}$

Collins Effect

Collins effect is described by a TMD fragmentation function: [NPB 396 (1993) 16I]

It gives rise to a $\sin \left(\varphi_{\mathrm{h}}+\varphi_{\mathrm{s}}\right)$ asymmetry in SIDIS:
transversity \otimes
Collins function $\left.\frac{d \sigma\left(e p^{\uparrow} \rightarrow e^{\prime} \pi X\right)}{d \phi_{\pi}^{e} d\left|\boldsymbol{P}_{\perp}^{\pi}\right|^{2}} \propto\left\{1+\left|\boldsymbol{S}_{T}\right| \sin \left(\phi_{\pi}^{e}-\phi_{S}^{e}\right) f_{1 T}^{\perp} D_{1}+\left|\boldsymbol{S}_{T}\right| \sin \left(\phi_{\pi}^{e}+\phi_{S}^{e}\right) h_{1} H_{1}^{\perp}\right)\right\}$

Collins Asymmetry in SIDIS

No clear need for TMD evolution from HERMES to COMPASS

Double Collins Effect

The Collins fragmentation function provides a way to probe transversity $\left(h_{1}\right)$, if measured independently in another process

Double Collins effect gives rise to a $\cos 2 \varphi$ asymmetry in $\mathrm{e}^{+} \mathrm{e}^{-} \rightarrow \mathrm{h}_{1} \mathrm{~h}_{2} \mathrm{X}$ [D.B., Jakob, Mulders, NPB 504 (I 997) 345]
Clearly observed in experiment by BELLE (R. Seidl et al., PRL '06; PRD '08) and BaBar (I. Garzia at Transversity 201 I \& J.P. Lees et al., arXiv: I 309.527)

Double Collins Effect

The Collins fragmentation function provides a way to probe transversity $\left(h_{1}\right)$, if measured independently in another process

Anselmino et al., PRD 87 (2013) 094019
Double Collins effect gives rise to a $\cos 2 \varphi$ asymmetry in $\mathrm{e}^{+} \mathrm{e}^{-} \rightarrow \mathrm{h}_{1} \mathrm{~h}_{2} \mathrm{X}$ [D.B., Jakob, Mulders, NPB 504 (I 997) 345]
Clearly observed in experiment by BELLE (R. Seidl et al., PRL '06; PRD '08) and BaBar (I. Garzia at Transversity 20 I I \& J.P. Lees et al., arXiv: I 309.527)

Double Collins Asymmetry

$$
\frac{d \sigma\left(e^{+} e^{-} \rightarrow h_{1} h_{2} X\right)}{d z_{1} d z_{2} d \Omega d^{2} \boldsymbol{q}_{T}} \propto\left\{1+\cos 2 \phi_{1} A\left(\boldsymbol{q}_{T}\right)\right\}
$$

Under similar assumptions as for the Sivers asymmetry:

$$
A\left(Q_{T}\right)=\frac{\sum_{a} e_{a}^{2} \sin ^{2} \theta H_{1}^{\perp(1) a}\left(z_{1} ; Q_{0}\right) \bar{H}_{1}^{\perp(1) a}\left(z_{2} ; Q_{0}\right)}{\sum_{b} e_{b}^{2}\left(1+\cos ^{2} \theta\right) D_{1}^{b}\left(z_{1} ; Q_{0}\right) \bar{D}_{1}^{b}\left(z_{2} ; Q_{0}\right)} \mathcal{A}\left(Q_{T}\right)
$$

Considerable Sudakov suppression ~I/Q (effectively twist-3)
D.B., NPB 603 (200I) I95 \& NPB 806 (2009) 23 \& NPB 874 (20I3) 217 \& arXiv:I308.4262

Next steps

Peak of the asymmetry shifts slowly towards higher Q_{T}, offers a test

Data from charm factory (BEPC) important by providing data around $\mathrm{Q} \approx 4 \mathrm{GeV}$

Next steps

Peak of the asymmetry shifts slowly towards higher Q_{T}, offers a test

Data from charm factory (BEPC) important by providing data around $\mathrm{Q} \approx 4 \mathrm{GeV}$

Next steps

Peak of the asymmetry shifts slowly towards higher Q_{T}, offers a test

Data from charm factory (BEPC) important by providing data around $\mathrm{Q} \approx 4 \mathrm{GeV}$

The I/Q behavior should modify the transversity extraction using Collins effect, full TMD evolution still to be implemented (for $\mathrm{Q} \sim 10 \mathrm{GeV} \mathrm{S}_{\text {pert }}$ is important)

Need to check the TMD evolution of the Collins asymmetry in SIDIS, which is slower than that of the double Collins asymmetry (Jefferson Lab \& possibly EIC)

Double Collins Asymmetry

Data from BES important by providing data at lower Q

FIG. 4 (color online). The Collins asymmetries in di-hadron azimuthal angular distributions in $e^{+} e^{-}$annihilation processes: fit to the BELLE experiment at $\sqrt{S}=10.6 \mathrm{GeV}$ Ref. [8], and predictions for the experiment at BEPC at $\sqrt{S}=4.6 \mathrm{GeV}$.
P. Sun \& F.Yuan, PRD 88 (2013) 034016

One does have to worry about I/Q ${ }^{2}$ corrections (analogue of the Cahn effect), which can be bounded by study simultaneously the I/Q $\cos \varphi$ asymmetry
E.L. Berger, ZPC 4 (I980) 289; Brandenburg, Brodsky, Khoze \& D. Mueller, PRL 73 (I994) 939

- The measured Collins asymmetries

Compatible with a I/Q type of evolution! (which also applies to double ratios) at BESIII is larger than those at higher \mathbf{Q}^{2} at \mathbf{B} factories.

- This trend accords with predictions in PRD 88. 034016 (2013). = Sun \& Yuan

Transversity extraction using Collins effect

$$
\frac{d \sigma\left(e p^{\uparrow} \rightarrow e^{\prime} \pi X\right)}{d \phi_{\pi}^{e} d\left|\boldsymbol{P}_{\perp}^{\pi}\right|^{2}} \propto\left\{1+\left|\boldsymbol{S}_{T}\right| \sin \left(\phi_{\pi}^{e}-\phi_{S}^{e}\right) f_{1 T}^{\perp} D_{1}+\left|\boldsymbol{S}_{T}\right| \sin \left(\phi_{\pi}^{e}+\phi_{S}^{e}\right) h_{1} H_{1}^{\perp}\right\}
$$

Extraction of $h_{1}{ }^{q}(x)=\Delta_{T} q(x)$ at $Q^{2}=2.4 \mathrm{GeV}^{2}$ from HERMES, COMPASS \& BELLE data Anselmino et al., PRD 75 (2007) 054032 \& PRD 87 (2013) 0940I9

It shows: $h_{1}{ }^{q}(x) \approx f_{1}{ }^{q}(x) / 3$
About half its maximally allowed value Similar in size as $\Delta q(x)$

This extraction uses that the Collins function is universal Metz '02; Collins \& Metz '04;Yuan '08; Gamberg, Mukherjee \& Mulders' 08; Meissner \& Metz '09

Transversity extraction using DiFF

Dihadron or Interference Fragmentation Functions (DiFF or IFF) also allow for transversity extraction using SIDIS and $\mathrm{e}^{+} \mathrm{e}^{-}$data

$$
\begin{aligned}
e p^{\uparrow} \rightarrow e^{\prime}\left(\pi^{+} \pi^{-}\right) X \quad h_{1} \otimes H_{1}^{\varangle} & H_{1}^{\searrow}\left(z, M_{\pi \pi}^{2}\right) \\
\text { Ji '94; Collins, Heppelmann, Ladinsky '94; Jaffe, Jin, Tang '98; ... } & \text { not a TMD! }
\end{aligned}
$$

Bacchetta, Courtoy, Radici JHEP 1303 (2013) 119

Vossen et al., BELLE Collaboration PRL 107 (2011) 072004

From a theoretical point of view very clean: collinear factorization \& universal Currently offers the safest and easiest way to extract transversity

Transversity extraction using DiFF

Allows a transversity extraction from COMPASS \& HERMES and BELLE data using different data selections

$$
e p^{\uparrow} \rightarrow e^{\prime}\left(\pi^{+} \pi^{-}\right) X \quad h_{1} \otimes H_{1}^{\varangle} \quad H_{1}^{\Varangle}\left(z, M_{\pi \pi}^{2}\right)
$$

[Bacchetta, Courtoy, Radici, JHEP I303 (20|3) I I9]

The two extractions (Collins and DiFF methods) are compatible with each other

BELLE vs SIDIS data

Both transversity extractions are compatible with each other But should they be?

BELLE and SIDIS data are obtained at quite different scales:
$\mathrm{Q}^{2}=110 \mathrm{GeV}^{2}$ vs $\left\langle\mathrm{Q}^{2}\right\rangle=2.4 \mathrm{GeV}^{2}$
Collins effect method requires TMD evolution
DiFF method requires DGLAP evolution, which is much slower

Extraction of $h^{\prime}{ }^{q}(x)=\Delta_{T} q(x)$ using Collins effect method used DGLAP-like evolution (the one of D_{1} not H_{1})

$$
H_{1}^{\perp}\left(z, \boldsymbol{k}_{T}^{2} ; Q\right) \equiv D_{1}(z ; Q) F\left(z, \boldsymbol{k}_{T}^{2}\right)
$$

Anselmino et al., PRD 75 (2007) 054032 \& PRD 87 (20I3) 0940 I9

This type of DGLAP-like evolution for the Sivers function is quite different from the TMD evolution, especially at low energies

Anselmino, Boglione, Melis, PRD 86 (20I2) 014028

The h_{1} extraction "conundrum"

For small b (in W(b*)) one can consider the perturbative tail, which is calculable

$$
\tilde{f}_{g / P}\left(x, b^{2} ; \mu, \zeta\right)=\sum_{i=g, q} \int_{x}^{1} \frac{d \hat{x}}{\hat{x}} C_{i / g}\left(x / \hat{x}, b^{2} ; g(\mu), \mu, \zeta\right) f_{i / P}(\hat{x} ; \mu)+\mathcal{O}\left(\left(\Lambda_{\mathrm{QCD}} b\right)^{a}\right)
$$

TMD factorized expression with TMD perturbative tails only = CSS expression
For the Collins asymmetry:
[Kang, Prokudin, Sun \& Yuan, arXiv:I4I0.4877]

$$
\begin{aligned}
F_{U T} & =-\frac{1}{2 z_{h}^{3}} \int \frac{d b b^{2}}{(2 \pi)} J_{1}\left(\frac{P_{h \perp} b}{z_{h}}\right) e^{-S_{\mathrm{PT}}\left(Q, b_{*}\right)-S_{\mathrm{NP} \mathrm{coll}}^{\text {(SIDIS) }}(Q, b)} \\
& \times \delta C_{q \leftarrow i} \otimes h_{1}^{i}\left(x_{B}, \mu_{b}\right) \delta \hat{C}_{j \leftarrow q}^{(\mathrm{SIDIS})} \otimes \hat{H}_{h / j}^{(3)}\left(z_{h}, \mu_{b}\right),(2)
\end{aligned}
$$

Include evolution of the tail, but only the homogeneous part:
hand, the evolution equation for $\hat{H}_{h / q}^{(3)}$ is more complicated $[26,27,43]$. However, if we keep only the homogenous term, it reduces to a simpler form as

$$
\begin{equation*}
\frac{\partial}{\partial \ln \mu^{2}} \hat{H}_{h / q}^{(3)}(z, \mu)=\frac{\alpha_{s}}{2 \pi} P_{q \leftarrow q}^{\text {coll }} \otimes \hat{H}_{h / q}^{(3)}(z, \mu), \tag{5}
\end{equation*}
$$

Evolution kernel same as of transversity

The h_{1} extraction "conundrum"

$$
\begin{equation*}
\delta q^{\left[x_{\min }, x_{\max }\right]}\left(Q^{2}\right) \equiv \int_{x_{\min }}^{x_{\max }} d x h_{1}^{q}\left(x, Q^{2}\right) \tag{16}
\end{equation*}
$$

In Fig. 3, we plot the χ^{2} Monte Carlo scanning of SIDIS data for the contribution to the tensor charge from such a region, and find

$$
\begin{align*}
\delta u^{[0.0065,0.35]} & =+0.30_{-0.11}^{+0.12} \tag{17}\\
\delta d^{[0.0065,0.35]} & =-0.20_{-0.13}^{+0.36} \tag{18}
\end{align*}
$$

at 90% C.L. at $Q^{2}=10 \mathrm{GeV}^{2}$. We notice that this result is comparable with previous TMD extractions without evolution [19-21] and di-hadron method [35, 36].

Kang, Prokudin, Sun \& Yuan, arXiv:|410.4877

This leads to very similar h_{I} as other methods and gives very similar tensor charge, but why? Is the evolution too slow to matter?

The h_{1} extraction "conundrum"

$\mathrm{P}_{\mathrm{h} \perp}$ distribution very sensitive to evolution however

FIG. 2. Collins asymmetries measured by BABAR [17] collaboration as a function of $P_{h \perp}$ in production of unlike sign "U" over like sign " L " pion pairs at $Q^{2}=110 \mathrm{GeV}^{2}$. The solid line corresponds to the full NLL^{\prime} calculation, the dashed line to the LL calculation, and the dotted to the calculation without TMD evolution. Calculations are performed with parameters from Table I.

Higgs transverse momentum distribution

Higgs transverse momentum

The transverse momentum distribution in Higgs production at LHC is also a TMD factorizing process
P. Sun, B.-W. Xiao \& F.Yuan, PRD 84 (20II) 094005

In this case starting the evolution from a fixed scale Q_{0} is not appropriate due to the large $\mathrm{Q} / \mathrm{Q}_{0}$ ratio

The linear polarization of gluons inside the unpolarized protons plays a role Catani \& Grazzini, 20I0; Sun, Xiao, Yuan, 20II; D.B., Den Dunnen, Pisano, Schlegel, Vogelsang, 2012

Gluon polarization inside unpolarized protons

Linearly polarized gluons exist in unpolarized hadrons
Mulders, Rodrigues, 2001

an interference between \pm I helicity gluon states

For $h_{1}^{\perp g}>0$ gluons prefer to be polarized along $\mathrm{k}_{\mathrm{T},}$ with a $\cos 2 \phi$ distribution of linear polarization around it, where $\phi=\angle\left(k_{T}, \varepsilon_{T}\right)$

It affects the transverse momentum distribution in $p p \rightarrow H X$ (Higgs production) Catani \& Grazzini, 20IO; Sun, Xiao, Yuan, 20II; D.B., Den Dunnen, Pisano, Schlegel,Vogelsang, 2012

TMD factorization expressions

$$
\frac{d \sigma}{d x_{A} d x_{B} d \Omega d^{2} \boldsymbol{q}_{T}}=\int d^{2} b e^{-i \boldsymbol{b} \cdot \boldsymbol{q}_{T}} \tilde{W}\left(\boldsymbol{b}, Q ; x_{A}, x_{B}\right)+\mathcal{O}\left(\frac{Q_{T}^{2}}{Q^{2}}\right)
$$

$\tilde{W}\left(\boldsymbol{b}, Q ; x_{A}, x_{B}\right)=\tilde{f}_{1}^{g}\left(x_{A}, \boldsymbol{b}^{2} ; \zeta_{A}, \mu\right) \tilde{f}_{1}^{g}\left(x_{B}, \boldsymbol{b}^{2} ; \zeta_{B}, \mu\right) H(Q ; \mu)$

TMD factorization expressions

$$
\frac{d \sigma}{d x_{A} d x_{B} d \Omega d^{2} \boldsymbol{q}_{T}}=\int d^{2} b e^{-i \boldsymbol{b} \cdot \boldsymbol{q}_{T}} \tilde{W}\left(\boldsymbol{b}, Q ; x_{A}, x_{B}\right)+\mathcal{O}\left(\frac{Q_{T}^{2}}{Q^{2}}\right)
$$

$\tilde{W}\left(\boldsymbol{b}, Q ; x_{A}, x_{B}\right)=\tilde{f}_{1}^{g}\left(x_{A}, \boldsymbol{b}^{2} ; \zeta_{A}, \mu\right) \tilde{f}_{1}^{g}\left(x_{B}, \boldsymbol{b}^{2} ; \zeta_{B}, \mu\right) H(Q ; \mu)$

This is a naive expression, since gluons can be polarized inside unpolarized protons [Mulders, Rodrigues ' 0 I]

$$
\begin{aligned}
\Phi_{g}^{\mu \nu}\left(x, \boldsymbol{p}_{T}\right) & \left.=\frac{n_{\rho} n_{\sigma}}{(p \cdot n)^{2}} \int \frac{d(\xi \cdot P) d^{2} \xi_{T}}{(2 \pi)^{3}} e^{i p \cdot \xi}\langle P| \operatorname{Tr}\left[F^{\mu \rho}(0) F^{\nu \sigma}(\xi)\right]|P\rangle\right\rfloor_{\mathrm{LF}} \\
& =-\frac{1}{2 x}\left\{g_{T}^{\mu \nu} f_{1}^{g}-\left(\frac{p_{T}^{\mu} p_{T}^{\nu}}{M^{2}}+g_{T}^{\mu \nu} \frac{\boldsymbol{p}_{T}^{2}}{2 M^{2}}\right) h_{1}^{\perp g}\right\}
\end{aligned}
$$

Second term requires nonzero k_{T}, but is k_{T} even, chiral even and T even

$$
\tilde{\Phi}_{g}^{i j}(x, \boldsymbol{b})=\frac{1}{2 x}\left\{\delta^{i j} \tilde{f}_{1}^{g}\left(x, b^{2}\right)-\left(\frac{2 b^{i} b^{j}}{b^{2}}-\delta^{i j}\right) \tilde{h}_{1}^{\perp g}\left(x, b^{2}\right)\right\}
$$

Cross section

$$
\begin{aligned}
&\left.\frac{E d \sigma^{p p \rightarrow H X}}{d^{3} \vec{q}}\right|_{q_{T}<m_{H}}=\frac{\pi \sqrt{2} G_{F}}{128 m_{H}^{2} s}\left(\frac{\alpha_{s}}{4 \pi}\right)^{2}\left|\mathcal{A}_{H}(\tau)\right|^{2} \\
& \times\left(\mathcal{C}\left[f_{1}^{g} f_{1}^{g}\right]+\mathcal{C}\left[w_{H} h_{1}^{\perp g} h_{1}^{\perp g}\right]\right)+\mathcal{O}\left(\frac{q_{T}}{m_{H}}\right) \\
& w_{H}=\frac{\left(\boldsymbol{p}_{T} \cdot \boldsymbol{k}_{T}\right)^{2}-\frac{1}{2} \boldsymbol{p}_{T}^{2} \boldsymbol{k}_{T}^{2}}{2 M^{4}} \quad \tau=m_{H}^{2} /\left(4 m_{t}^{2}\right)
\end{aligned}
$$

The relative effect of linearly polarized gluons:

$$
\begin{gathered}
\mathcal{R}\left(Q_{T}\right) \equiv \frac{\mathcal{C}\left[w_{H} h_{1}^{\perp g} h_{1}^{\perp g}\right]}{\mathcal{C}\left[f_{1}^{g} f_{1}^{g}\right]} \\
\mathcal{R}\left(Q_{T}\right)=\frac{\int d^{2} \boldsymbol{b} e^{i b \cdot \boldsymbol{q}_{T}} e^{-S_{A}\left(b_{*}, Q\right)-S_{N P}(b, Q)} \tilde{h}_{1}^{\perp g}\left(x_{A}, b_{*}^{2} ; \mu_{b_{*}}^{2}, \mu_{b_{*}}\right) \tilde{h}_{1}^{\perp g}\left(x_{B}, b_{*}^{2} ; \mu_{b_{*}}^{2}, \mu_{b_{*}}\right)}{\int d^{2} \boldsymbol{b} e^{i b \cdot \boldsymbol{q}_{T}} e^{-S_{A}\left(b_{*}, Q\right)-S_{N P}(b, Q) \tilde{f}_{1}^{g}\left(x_{A}, b_{*}^{2} ; \mu_{b_{*}}, \mu_{b_{*}}\right) \tilde{f}_{1}^{g}\left(x_{B}, b_{*}^{2} ; \mu_{b_{*} *}^{2}, \mu_{b_{*}}\right)}}
\end{gathered}
$$

CSS approach

Consider now only the perturbative tails:

$$
\begin{aligned}
\tilde{f}_{1}^{g}\left(x, b^{2} ; \mu_{b}^{2}, \mu_{b}\right) & =f_{g / P}\left(x ; \mu_{b}\right)+\mathcal{O}\left(\alpha_{s}\right) \\
\tilde{h}_{1}^{\perp g}\left(x, b^{2} ; \mu_{b}^{2}, \mu_{b}\right) & =\frac{\alpha_{s}\left(\mu_{b}\right) C_{A}}{2 \pi} \int_{x}^{1} \frac{d \hat{x}}{\hat{x}}\left(\frac{\hat{x}}{x}-1\right) f_{g / P}\left(\hat{x} ; \mu_{b}\right)+\mathcal{O}\left(\alpha_{s}^{2}\right)
\end{aligned}
$$

This coincides with the CSS approach
[Nadolsky, Balazs, Berger, C.-P.Yuan, '07; Catani, Grazzini, 'IO; P. Sun, B.-W. Xiao, F.Yuan, 'II]

PHYSICAL REVIEW D 86, 094026 (2012)

Improved resummation prediction on Higgs boson production at hadron colliders

$$
\text { Jian Wang, }{ }^{1} \text { Chong Sheng Li, }{ }^{1,2, *} \text { Hai Tao } \mathrm{Li},{ }^{1} \text { Zhao } \mathrm{Li},{ }^{3, \dagger} \text { and C.-P. Yuan }{ }^{2,3, \ddagger}
$$

They find permille level effects at the Higgs scale, but using the TMD approach at the LL level yields percent level effects
D.B. \& den Dunnen, NPB 886 (2014) 421

Wang et al. include $\alpha_{s}{ }^{2}$ terms, but in denominator only, and also use a different pdf set and $S_{N P}$

TMD / CSS evolution effects

$x_{A}=x_{B}=Q /(8 \mathrm{TeV})$
MSTW08 LO gluon distribution
D.B. \& den Dunnen, NPB 886 (2014) 42 I

Beyond CSS

In the TMD factorized expression there may be nonperturbative contributions from small PT which mainly affect large b

CSS only allows NP contribution via $S_{N P}$ and does not allow all possibilities of the TMD approach

To illustrate this we consider a model which is approximately Gaussian at low PT and has the correct tail at high PT or small b

Comparison

Very small b region

For very small b region (b<<I/Q) the perturbative expressions for S_{A} are all incorrect
$S_{A}(b, Q)=\frac{C_{A}}{\pi} \int_{\mu_{b}^{2}}^{Q^{2}} \frac{d \mu^{2}}{\mu^{2}} \alpha_{s}(\mu)[\ldots] \stackrel{b \ll 1 / Q}{\rightarrow}-\frac{C_{A}}{\pi} \int_{Q^{2}}^{\mu_{b}^{2}} \frac{d \mu^{2}}{\mu^{2}} \alpha_{s}(\mu)[\ldots]$
As a consequence e^{-0} becomes $\mathrm{e}^{-\infty}$, in other words, F.T. $[\mathrm{W}(\mathrm{b})]<0$ at larger q т
See e.g. Boglione, Gonzalez Hernandez, Melis, Prokudin, 14|2.I383

Standard regularization:

$$
Q^{2} / \mu_{b}^{2}=b^{2} Q^{2} / b_{0}^{2} \rightarrow Q^{2} / \mu_{b}^{\prime 2} \equiv\left(b Q / b_{0}+1\right)^{2}
$$

Although $\mathrm{b} \ll \mathrm{I} / \mathrm{Q}$ is perturbative, it is not clear what is the right expression to take in TMD factorization

Precise form of Parisi-Petronzio regularization usually irrelevant since matching to Y-term is needed anyway, but not so in the Higgs case where the problem already arises at $q_{T}=0$!

Very small b region

At low Q there is quite some uncertainty from the very small b region ($b \ll I / Q$) where the perturbative expressions for S_{A} are all incorrect (don't satisfy $S(0)=0$)

reg=standard regularization:

$$
Q^{2} / \mu_{b}^{2}=b^{2} Q^{2} / b_{0}^{2} \rightarrow Q^{2} / \mu_{b}^{\prime 2} \equiv\left(b Q / b_{0}+1\right)^{2}
$$

prime=evolve everything to scale $\mu_{b}{ }^{\prime}$

Very small b region

Altarelli, Ellis, Martinelli, I985:
$\frac{d \sigma}{d q_{T}^{2}}=Y\left(q_{T}^{2}\right)+\int \frac{d^{2} \mathbf{b}}{4 \pi} e^{-i \boldsymbol{q}_{T} \cdot \mathbf{b}} \sigma_{0}(1+A) \exp S(b)$

$$
A_{T}^{2}=A_{T}^{2}(y)=\frac{\left(S+Q^{2}\right)^{2}}{4 S \cosh ^{2} y}-Q^{2} .
$$

where
$S(b)=\int_{0}^{A^{2}} \frac{d k^{2}}{k^{2}}\left(J_{0}(b k)-1\right)\left(B \ln \frac{Q^{2}}{k^{2}}+C\right)$.

$$
\exp S=\exp \int_{0}^{A_{T}^{2}} \approx\left(1+\int_{Q^{2}}^{A_{T}^{2}}\right) \exp \int_{0}^{Q^{2}}
$$

This expression does satisfy $S(0)=0$

Additional resummations by Echevarria et al. may reduce this very small b problem? (and perhaps the ones in Boglione, Gonzalez Hernandez, Melis, Prokudin, I4I2.I383)

Higher twist

P_{T} and Q^{2}-dep Higher Twist $A_{L U}{ }^{\sin \phi}$

TMDs beyond leading twist

Subleading twist asymmetries are relevant for HERMES, COMPASS, JLab, J-Parc

There is no TMD factorization established yet for subleading twist
Promising hints regarding TMD factorization beyond leading twist are found in:
Boer \& Vogelsang, PRD 74 (2006) 014004
Bacchetta, Boer, Diehl \& Mulders, JHEP 0808 (2008) 023

Processes involving higher twist TMD f^{\perp} (which enters the Cahn effect)

Small x

Small x

TMD factorization breaking processes can be TMD factorizing in small-x limit Factorization breaking contributions may become suppressed

Small x

TMD factorization breaking processes can be TMD factorizing in small-x limit Factorization breaking contributions may become suppressed
for nearly back-to-back di-jets ($q_{\perp} \equiv\left|k_{\perp}+k_{\perp}^{\prime}\right| \ll\left|k_{\perp}\right|,\left|k_{\perp}^{\prime}\right| \equiv P_{\perp}$):
$\frac{d \sigma^{p A \rightarrow \text { dijets }+X}}{d^{2} k_{\perp} d^{2} k_{\perp}^{\prime}}=\sum_{a} x_{p} f_{a / p}\left(x_{p}\right) \sum_{i} F_{g / A}^{(a, i)}\left(x_{A}, q_{\perp}\right) H_{a g}^{(i)} \exp \left[-b_{i} \ln ^{2}\left(\frac{P_{\perp}}{q_{\perp}}\right)\right]$
$F^{(a, i)}:$ obtained from two-independent unintegrated gluons $\mathrm{G}^{(1)}$ and $\mathrm{G}^{(2)}$ (with different operator definitions)
hard matrix elements

CSS-like Sudakov factors
Mueller, Xiao and Yuan (2013)

Small x

TMD factorization breaking processes can be TMD factorizing in small-x limit Factorization breaking contributions may become suppressed
for nearly back-to-back di-jets $\left(q_{\perp} \equiv\left|k_{\perp}+k_{\perp}^{\prime}\right| \ll\left|k_{\perp}\right|,\left|k_{\perp}^{\prime}\right| \equiv P_{\perp}\right)$:
$\frac{d \sigma^{p A \rightarrow \operatorname{dijets}+X}}{d^{2} k_{\perp} d^{2} k_{\perp}^{\prime}}=\sum_{a} x_{p} f_{a / p}\left(x_{p}\right) \sum_{i} F_{g / A}^{(a, i)}\left(x_{A}, q_{\perp}\right) H_{a g}^{(i)} \exp \left[-b_{i} \ln ^{2}\left(\frac{P_{\perp}}{q_{\perp}}\right)\right]$
$F^{(a, i)}$: obtained from two-independent unintegrated gluons $G^{(1)}$ and $G^{(2)}$ (with different operator definitions)
hard matrix
elements

CSS-like Sudakov factors
Mueller, Xiao and Yuan (2013)

Dominguez, Marquet, Xiao and Yuan (2011)

$$
\begin{aligned}
& x G^{(1)}\left(x, k_{\perp}\right)=2 \int \frac{d \xi^{-} d \xi_{\perp}}{(2 \pi)^{3} P^{+}} e^{i x P^{+} \xi^{-}-i k_{\perp} \cdot \xi_{\perp}}\langle P| \operatorname{Tr}\left[F^{+i}\left(\xi^{-}, \xi_{\perp}\right) \mathcal{U}^{[+] \dagger} F^{+i}(0) \mathcal{U}^{[+]}\right]|P\rangle \\
& x G^{(2)}\left(x, k_{\perp}\right)=2 \int \frac{d \xi^{-} d \xi_{\perp}}{(2 \pi)^{3} P^{+}} e^{i x P^{+} \xi^{-}-i k_{\perp} \cdot \xi_{\perp}}\langle P| \operatorname{Tr}\left[F^{+i}\left(\xi^{-}, \xi_{\perp}\right) \mathcal{U}^{[-] \dagger} F^{+i}(0) \mathcal{U}^{[+]}\right]|P\rangle
\end{aligned}
$$

Small x

Involvement of the two "universal" gluon distributions in other processes:

	DIS and DY	SIDIS	hadron in $p A$	photon-jet in $p A$	Dijet in DIS	Dijet in $p A$
$G^{(1)}(\mathrm{WW})$	\times	\times	\times	\times	$\sqrt{ }$	$\sqrt{ }$
$G^{(2)}$ (dipole)	$\sqrt{ }$	$\sqrt{ }$	$\sqrt{ }$	$\sqrt{ }$	\times	$\sqrt{ }$

Dominguez et al.:"The large N_{c} limit is essential in order to eliminate other nonuniversal distributions or correlators in other different dijet channels, i.e., $\mathrm{qg} \rightarrow \mathrm{qg}, \mathrm{gg} \rightarrow \mathrm{q}^{-} \mathrm{q}$ and $\mathrm{gg} \rightarrow \mathrm{gg}$ in pA collisions"

Small x

Involvement of the two "universal" gluon distributions in other processes:

	DIS and DY	SIDIS	hadron in $p A$	photon-jet in $p A$	Dijet in DIS	Dijet in $p A$
$G^{(1)}(\mathrm{WW})$	\times	\times	\times	\times	$\sqrt{ }$	$\sqrt{ }$
$G^{(2)}($ dipole $)$	$\sqrt{ }$	$\sqrt{ }$	$\sqrt{ }$	$\sqrt{ }$	\times	$\sqrt{ }$

Dominguez et al.:"The large N_{c} limit is essential in order to eliminate other nonuniversal distributions or correlators in other different dijet channels, i.e., $\mathrm{qg} \rightarrow \mathrm{qg}, \mathrm{gg} \rightarrow \mathrm{q}^{-} \mathrm{q}$ and $\mathrm{gg} \rightarrow \mathrm{gg}$ in pA collisions"
"One-Loop Factorization for Inclusive Hadron Production in p-A Collisions in the Saturation Formalism", Chirilli, Xiao, Yuan, PRL I08 (2012) I2230I

$$
\begin{aligned}
\frac{d^{3} \boldsymbol{\sigma}^{p+A \rightarrow h+X}}{d y d^{2} p_{\perp}}= & \sum_{a} \int \frac{d z}{z^{2}} \frac{d x}{x} \xi x f_{a}(x, \mu) D_{h / c}(z, \mu) \\
& \times \int\left[d x_{\perp}\right] S_{a, c}^{Y}\left(\left[x_{\perp}\right]\right) \mathcal{H}_{a \rightarrow c}\left(\alpha_{s}, \xi,\left[x_{\perp}\right] \mu\right)
\end{aligned}
$$

$$
\begin{aligned}
\frac{d^{3} \sigma^{p+A \rightarrow h+X}}{d y d^{2} p_{\perp}}= & \int \frac{d z}{z^{2}} \frac{d x}{x} \xi x q(x, \mu) D_{h / q}(z, \mu) \\
& \times \int \frac{d^{2} x_{\perp} d^{2} y_{\perp}}{(2 \pi)^{2}}\left\{S^{(2)}\left(x_{\perp}, y_{\perp}\right)\right. \\
& \times\left[\mathcal{H}_{2 q q}^{(0)}+\frac{\alpha_{s}}{2 \pi} \mathcal{H}_{2 q q}^{(1)}\right] \\
& \left.+\int \frac{d^{2} b_{\perp}}{(2 \pi)^{2}} S^{(4)}\left(x_{\perp}, b_{\perp}, y_{\perp}\right) \frac{\alpha_{s}}{2 \pi} \mathcal{H}_{4 q q}^{(1)}\right\}
\end{aligned}
$$

Gluon polarization at small x

Often it is said that polarization does not matter at small-x More specifically this refers to $\Delta \mathrm{g}(\mathrm{x})$ which at small x is suppressed w.r.t. $\mathrm{g}(\mathrm{x})$

Evolution kernel does not have I/x behavior, see e.g. Maul's CCFM study, 2002

$$
\Delta P_{g g}(z)=\frac{2 C_{A}(2-z)}{1-z}
$$

This is relevant for the spin sum rule, where one integrates over all x values
$\Delta \mathrm{g}$ corresponds to circularly polarized gluons
Linearly polarized gluon distribution inside unpolarized protons does grow with I / x, it can even become maximal

At small x the k_{T}-factorization approach implies maximum polarization:

$$
\Phi_{g}^{\mu \nu}\left(x, \boldsymbol{p}_{T}\right)_{\operatorname{max~pol}}=\frac{2}{x} \frac{p_{T}^{\mu} p_{T}^{\nu}}{\boldsymbol{p}_{T}^{2}} f_{1}^{g}
$$

Applied to Higgs production by Lipatov, Malyshev, Zotov in 1402.6481

Gluon polarization at small x

At small x the WW (or CGC) gluon field and the dipole distribution have been studied:

$$
\begin{gathered}
h_{1, W W}^{\perp g} \ll f_{1, W W}^{\perp g} \quad \text { for } k_{\perp} \ll Q_{s}, \quad h_{1, W W}^{\perp g}=2 f_{1, W W}^{\perp g} \quad \text { for } k_{\perp} \gg Q_{s} \\
x h_{1, D P}^{\perp g}\left(x, k_{\perp}\right)=2 x f_{1, D P}^{g}\left(x, k_{\perp}\right)
\end{gathered}
$$

Metz, Zhou, 2011

	DIS and DY	SIDIS	hadron in $p A$	photon-jet in $p A$	Dijet in DIS	Dijet in $p A$
$G^{(1)}(\mathrm{WW})$	\times	\times	\times	\times	\checkmark	\checkmark
$G^{(2)}$ (dipole)	\checkmark	\checkmark	\checkmark	\checkmark	\times	\checkmark

DIS, DY, SIDIS, hadron and photon+jet in PA are not sensitive to $\mathrm{h}^{\text {1g }}$
It would thus be very interesting to study dijet DIS at a high-energy EIC (small x in and outside the saturation region)
Pisano, Boer, Brodsky, Buffing \& Mulders, JHEP 10 (2013) 024
Note: for dijet in DIS the result does not require large N_{c}

Nonuniversality

For dijet in pA the result does require large N_{c}. More generally there are 5 TMDs:

$$
h_{1}^{\perp g[U]}\left(x, p_{T}^{2}\right)=h_{1}^{\perp g(A)}\left(x, p_{T}^{2}\right)+\sum_{c=1}^{4} C_{G G, c}^{[U]} h_{1}^{\perp g(B c)}\left(x, p_{T}^{2}\right)
$$

Note: without ISI/FSI it can still be nonzero
Buffing, Mukherjee, Mulders, 2013

Conclusions

Conclusions

- Significant recent developments on TMD factorization and evolution:
- New TMD factorization expressions by JCC (201I) \& EIS (2012)
- Improvements through additional resummations (Echevarria et al.) lifts analyses to the NNLL level (2013/4)
- Progress towards describing SIDIS, DY \& Z production data by a universal non-perturbative function (2013/4)
- Consequences of TMD evolution studied (in varying levels of accuracy) for:
- Sivers \& (single and double) Collins effect asymmetries
- Higgs production including the effect of linear gluon polarization
- Future data from JLabl2 and BES and perhaps a high-energy EIC can help to map out the Q dependence of Sivers and Collins asymmetries in greater detail
- Future data from LHC on Higgs and Xclbo production and from dijet DIS at a highenergy EIC can shed light on h $^{\perp g}$ effects and gluon dominated TMD processes
-TMD (non-)factorization at next-to-leading twist remains entirely unexplored

