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Topics and outline
 At  hadron colliders the peaks of transverse momentum spectra  for boson production are located  
at small qT or pT: these regions are affected by non-perturbative  QCD effects. We need a method to 
treat them. 

 Transverse momentum distributions involve non-perturbative QCD effects which go beyond the 
usual PDF formalism. New factorization theorem are required. (Collins ‘11, Echevarría-Idilbi-S. ‘12) 

Other processes: Spin dependent observables and transverse momentum dependent observables 
need factorization theorems with TMD’s 

We need to construct both  perturbative and non-perturbative  parts of TMD’s compatibly with 
factorization theorems, maximizing the calculable  information at our disposal. 

Properties of TMD’s:                                                                                                                             
1) The evolution of all TMD’s is universal (alike PDF and FF it is  process independent)                                                                                                     
2) The evolution  of all TMD’s is spin independent and it is the same for TMDPDF and TMDFF 

We can map all these non-perturbative effects fitting DY, SIDIS, ee data at low M:  

Here  results for DY fit and predictions for CMS 
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Example: Z case

We want to describe several energy 
regimes

Landry et al. Phys.Rev. D67 (2003) 073016

S. Melis, arXiv:1412.1719, Gaussian model



Energy scales: DY/Z

Processes with several energy scales are more easily treated with EFT

Q=M=dilepton invariant mass

All coefficients are extracted matching  effective field theories. During the matching the IR 
parts have to be regulated consistently above and below the matching scales



Modes in EFT
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Using power counting we have  
collinear, anti-collinear, and soft sectors 

(+,-,perp)

•  A well-defined TMDPDF should:!
1.  Be compatible with a factorization theorem.!
2.  Have no mixed UV/nUV divergencies, i.e., be renormalizable!
3.  Have a matching coefficient onto PDFs independent of nUV regulators.!

F̃n = J̃ (0)
n (⌘n)

q
S̃(⌘n, ⌘n)

F̃n̄ = J̃ (0)
n̄ (⌘n̄)
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Evolution kernel for TMD’s
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Consistently the A.D. of the TMD is the opposite of the one of the hard coefficient

We evolve from one  M to another
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D-resummation

The perturbative  expansion of the D is valid in limited 
 (but large, using resummation) portion of Impact Parameter Space. 
 Is the bulk of the evolution kernel given by the Landau pole region?

D (b;Qi) = D (b;µb) +

Z Qi
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dµ̄
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Landau pole

7If the answer is yes  we are almost lost ..



Plots for resummed evolution kernel
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Very good convergence up 
to b=4-5/GeV in all cases 

The  region sensitive to the 
Landau pole is strongly 
suppressed b>5/GeV 

For Qf=Mz we are sensitive 
only to b<1.5/GeV region 

For Qf=3-5 GeV we are 
sensitive only to b<4/GeV 
region 

For Qf <2 GeV we can be 
sensitive to the Landau pole 
region 

Studying  processes at different energies one explores different regions in IPS 
The Landau pole  problems appear there where also the Factorization Hyp. fails



Unpolarized TMDPF: 
construction and fits
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Basic  test, preliminary to all spin dependent analysis, many ingredients as in standard perturbative 
QCD. 

More or less standard recipe for TMD construction (CSS, …):
take the asymptotic limit of the TMDPDF

Exponentiation of part of the coefficient and complete resummation of the logs in the exponent 
(Kodaira, Trentadue 1982, Becher, Neubert Wilhelm 2011)

OPE to PDF, valid for qT>> PDF
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finally write a(1/b) in terms of a(mu) and  fix mu=Qi. 
Logs are minimized with the choice Qi=Q0+qT

Common to all analysis: 
Florence (Catani et al.), Zurich ( Gehrmann. et al)

Same resummation as for the D
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Experimental Data
Z, run I: Becher, Neubert, Wilhelm 2011 

Catani et al. 2009: 
ad-hoc  assumptions just for these data

Expected to be insensitive to Landau pole region 
Factorization hypothesis hold



Theoretical settings
Matching scale  of TMDPDF to PDF at Qi=2 GeV+qT 

Hard coefficient  with            resummation (Ahrens, Becher, Lin Yang, Neubert ’08) 

Checked both NLL and NNLL 

Several sets of PDF checked (MSTW, CTEQ) 

Checked several form of non-perturbative models: gaussian, exponential, Q-dependence, … 

Non-perturbative input

⇡2

Mq(x,
~

b,Qi) = exp[��1b](1 + b

2
�2 + . . . )

Order γ Γcusp C D 

LL - α tree - 

NLL α α^2 tree α 

NNLL α^2 α^3 α α^2 

NNNLL α^3 α^4 α^2 α^3 

Aybat, Collins , Qiu,  
Rogers; Aybat, Rogers; 
  Anselmino, Boglione,Melis 

EIS 

Known  pieces: C for unpolarized TMD  
from Catani et al. ’12,  
Gehrmann, Luebbert. Lin Yang ’12, ‘14

Naive attempts

↵sL? ⇠ 1
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 Results at NNLL: Z production
Z-boson data are (fairly) sensitive to  
functional non-perturbative  form  
(gaussian vs exponential) and  
(poorly) sensitive just  to      .  
In order to fix it  we need the global fit
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DYNNLO: Catani, Grazzini ’07, Catani, Cieri, Ferrera, de Florian, Grazzini ‘09



Results at NNLL
Exp. Normalization 
NE288, NR209 
deduced from the fit.

Total: 4 parameters



Results: PDF choice

MSTW08 CTEQ10Overall chi^2 good!
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Results: PDF choice

MSTW08 CTEQ10Improvement NLL->NNLL
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Results: PDF choice

MSTW08 CTEQ10Values for  fit parameters 



Scale dependence



Model dependence

Theoretical arguments suggest also a non-perturbative  
Q-dependence of the evolution kernel (check RESBOS). 
 We test

Non-perturbative  
inputs necessary  
for the  
peak region in 
Z-production
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Model dependence No significative  
improvement: 

1-
Resummation 

in the 
evolution 

kernel greatly 
reduce TMD 

model 
dependence 

2- 
The bulk of 

non-
perturbative 

QCD 
corrections is 

scale 
independent

CTEQ10



Predictions for CMS

Band from parameter  
statistical error. 
Very large bins:  
results mediated over a bin



Predictions for CMS
Pure-perturbative vs complete TMDs 

at NNLL

NLL vs NNLL  for complete TMDs: 
scale dependence

CMS goes at smaller values of Bjorken x  
than TeVatron: 
broader bands



Conclusions
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The correct measurement of non-perturbative effects in transverse momentum dependent 
observables requires the use  of TMDs (We want to use TMDPDF in the same  way as PDF). 

First fits for unpolarized TMDPDF in DY. Data with 4<Q/GeV<10  can  fix  non-perturbative 
parameters,  which have some impact on  vector boson production and DY processes in LHC. More 
data required. SIDIS and ee-> 2j analysis to be done. 

The evolution of TMD’s should be used at highest available order (here NNLL, expandable at N^3LL) 

We  find that the bulk of non-perturbative QCD corrections are  independent of M. Still true in 
SIDIS? 

TMD’s are universal (the same for SIDIS, DY, ee-> 2 j) . Can we check this on data? 

 The evolution of TMDPDF and TMDFF is the same and spin independent. 

TMD non-perturbative QCD effects should be included in high precision LHC observables: Frontier of 
QCD precision 

Analysis of spin dependent observables including evolution is starting now. Data from Belle, 
Compass, JLab, LHC.. 

Thanks!!.. and enjoy the workshop!



Back up



Outline of Factorization theorem
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SIDIS as a study case: 
both PDF and FF
q2 � q2T

l(k) +N(P ) ! l0(k0) + h(Ph) +X(PX)

Hard coeff.
TMDPDF TMDFF Soft splitting 
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Definition of TMD’s
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Positive and negative rapidity quanta can be collected into 2 different TMDs 
because of the splitting of the soft function: we can consistently split the 

soft radiation in the  two sectors
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EISS vs CSS
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FIG. 4: Evolution kernel from Qi =
p
2.4 GeV up to Qf = {

p
3 ,

p
9 , 5, 91.19} GeV using our and CSS approaches, both at

NNLL.

should be accounted for either by including suppressed operators in the factorization of the cross-section, either by
adjusting the model for the input TMD at low-energy. A complete study of this is left for future work.

A last comment worth mentioning concerns the convergence of the evolution kernel in the small b region. As
discussed above, the convergence of the resummed D is only spoiled in the region around the Landau pole, i.e., for b
close to b

⇤QCD . In the small b region, DR is completely resummable (see Fig. 1) and this agrees with other studies on
the perturbative series in this region in the literature [28]. As a result, both CSS and our kernel perfectly agree for
small values of b, as can be seen in Fig. 4.

IV. RESULTS AND CONCLUSIONS

In this section we provide our results for the evolution kernel and evolved TMDs and compare them with the CSS
approach, which for completeness is outlined in Appendix A. The resulting di↵erences of the application of the two
approaches to the evolution of two di↵erent TMDPDFs (unpolarized and Sivers function) are shown in Fig. 5. In
order to perform the resummation of large logarithms consistently up to NiLL order (or Ni�1LO in RG-improved
perturbation theory) one needs the input shown in Tables I–II. In our approach one takes the resummed series in
Eq. (16) up to the corresponding order i. In [4, 5, 8] the cusp anomalous dimension �

cusp

was not implemented at
2-loop order, as it should be to get a complete NLL result. In Figs. 4 and 5 we have implemented �F , �cusp

and D

consistently within the CSS approach to achieve the NiLL accuracy.
The unpolarized quark-TMDPDF at low energy is modeled as a Gaussian,

F̃up/P (x, b;Qi) = fup/P (x;Qi) exp[��b2T ] , (23)

with � = 0.38/4GeV2 for Qi =
p
2.4 GeV [30] and fup/P the up-quark integrated PDF, which has been taken from

the MSTW data set [33]. The Sivers function at low energy is modeled following what are called the “Bochum” [31]

CSS: The evolution is modeled with a bmax and a  gaussian. 
In this way it is defined also BEYOND the Landau pole 


